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Abstract: This paper describes the design and modus of operation of a neuromorphic robotic platform
based on SpiNNaker, and its implementation on the goalkeeper task. The robotic system utilises
an address event representation (AER) type of camera (dynamic vision sensor (DVS)) to capture
features of a moving ball, and a servo motor to position the goalkeeper to intercept the incoming ball.
At the backbone of the system is a microcontroller (Arduino Due) which facilitates communication
and control between different robot parts. A spiking neuronal network (SNN), which is running
on SpiNNaker, predicts the location of arrival of the moving ball and decides where to place the
goalkeeper. In our setup, the maximum data transmission speed of the closed-loop system is
approximately 3000 packets per second for both uplink and downlink, and the robot can intercept
balls whose speed is up to 1 m/s starting from the distance of about 0.8 m. The interception accuracy
is up to 85%, the response latency is 6.5 ms and the maximum power consumption is 7.15 W. This is
better than previous implementations based on PC. Here, a simplified version of an SNN has been
developed for the ‘interception of a moving object’ task, for the purpose of demonstrating the platform,
however a generalised SNN for this problem is a nontrivial problem. A demo video of the robot
goalie is available on YouTube.

Keywords: neuromorphic engineering; SpiNNaker; DVS; robotic goalkeeper

1. Introduction

Neuromorphic engineering is inspired by the human neural system to address abstraction and
automate human-type activities [1]. Spiking neuronal networks (SNNs) can be implemented in
neuromorphic systems and together they are a part of the third generation of artificial intelligence [2,3].
The information in SNNs is encoded by the signal itself and its timing, and the signal only typically
has two states: logical ‘1′ and logical ‘0′. This encoding works towards reduced computational
complexity in comparison to conventional deep neural networks which deal with real values. This type
of encoding is also in coherence with address event representation (AER) which is often used in sensory
neuromorphic systems [4].

The inherent sparseness of SNNs make them suitable for event-based image processing.
Conventional cameras capture 25 or more still frames per second to present motion. Each frame in
this representation is independent and normally the identical background is repeatedly recorded,
which increases computational complexity and generates excessive and often useless data. However,
pixels in event-driven cameras only generate data when they detect changes that are above a
pre-defined threshold. This presentation enables neural networks to process the information it needs,
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without spending time and power to process irrelevant parts. Each pixel in an event-driven camera,
such as dynamic vision sensor (DVS) [5], is independent; the resulting data are sparse, and information
is encoded by the location of events and its timing. These features of event-driven cameras are in line
with the characteristics of SNNs. Each neuron in the input population of SNNs can correspond to a
pixel of the DVS. Once a pixel generates an event, the corresponding neuron can be injected with a
spike. This encoding method makes SNNs an appropriate platform to process event-driven image
processing. Compared to conventional deep convolutional networks (CNNs), and the task of video
processing, SNNs require much less computational resources, hence lower power consumption and
lower reaction latency compared to CNN.

Hardware solutions for neuromorphic computing have been developed to simulate large-scale
SNNs in real-time, such as TrueNorth [6], Neurogrid [7] and SpiNNaker [8,9], and they use asynchronous
processing of spike-events. In conventional chip designs, the speed of all computations is set by a
global clock. However, SNNs are inherently sparse and calculations are only performed when an event
signal is present. Thus, the asynchronous model is more suitable for SNNs computations. Furthermore,
neuromorphic chips have a routing network, which applies time-division multiplexing to send data
packets. This networks-on-chip design increases the extent of connectivity since the multi-layered
two-dimensional connection topologies are mainly used in silicon chip [8]. Additionally, neuromorphic
chips use distributed on-chip memory to reduce the influence of memory bottleneck, and non-volatile
technology to implement synaptic strength and plasticity [9].

The neuromorphic processor used is SpiNNaker [8], which has one ethernet port to communicate
with the host PC and it does not support direct communication with external devices. To solve
this, advanced processor technologies (APT) group at University of Manchester (UM) uses a PC to
convert communication protocols between SpiNNaker and external devices [10], which is not suitable
for mobile robotics. APT group also designed a field programmable gate array (FPGA) interface to
convert the data received from DVS to spikes and then inject these spikes into SpiNNaker [11]. It is a
unidirectional data flow and cannot be applied for closed-loop execution.

Apart from the FPGA interface, UM and Technical University of Munich (TUM) developed
a microcontroller interface that supports bidirectional data transmission [12]. In this solution,
an additional complex programmable logic device (CPLD) is used for the converting protocol between
SpiNNaker and the microcontroller. The data bus in SpiNNakerLink is 7 bits, and it becomes 9 bits
after the conversion of the CPLD [11]. This solution also has five pre-defined ports for two DVSs and
three motors, which simplifies the connection of DVSs and motors, but also results in a limited capacity
for other external devices and sensors, such as optical flow sensor. Furthermore, the two chips applied
in this solution also mean higher power consumption and increased difficulty for further development.

TUM applies their interface to the robot called ‘PushBot’ or ‘SpOmnibot’, which uses Wi-Fi access
point to relay the robot and a host machine [13,14]. The Wi-Fi connection increases the mobility of
the robot at the expense of higher reaction latency. Another event-driven platform which combines
SpiNNaker with a spiking silicon retina (such as ATIS) has been demonstrated on real-time object
recognition task, specifically to classify 26 class characters [15], as well as for object tracking [16].

In addition to the applications where SpiNNaker was combined with a vision sensor, it has been
used in multiple physical autonomous robots, such as musculoskeletal robotic hardware with neural
control implemented on SpiNNaker [17]. Another application area of SNNs run on SpiNNaker is in the
context of cognitive robotics, where the goal is identifying the approach and strategy how to compute.
It has been demonstrated on a robot called ‘iCub’ and SpiNNaker, which has been developed to grasp
the task of object-specific attention [18].

Neuromorphic systems controlled by SNNs, but implemented on VLSI chips (instead of
SpiNNaker), have been also demonstrated, such as an open-loop motor controller [19], which offer lower
power consumption and simplified motor control. For robotic motion tracking using neuromorphic
vision sensor, algorithms have been developed to distinguish the background and the moving object,
to be used in combination with Hexapod robot [20] or iCub humanoid robot [21].
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Deep neuronal networks applied in low-latency conventional vision-based robotics require high
computational power and are dependent on a powerful, graphics processing unit (GPU)-driven PC.
For a camera with say 50 frames per second, the response latency is not less than 20 ms, which is far
from enough to support a fast-reacting robot. If the frame rate is increased to 5 kHz, the corresponding
data rate will be 234.375 MB/s for a resolution of 128 × 128 pixels. An alternative is to use an AER type
camera device [22]. A robotic goalkeeper based on the DVS128, designed by Delbruck and Lang [23],
achieves 3 ms reaction time. However, this system is using a PC to process data, which is reducing its
mobility and power efficiency, and it cannot capture rich non-linear structures of visual input since
neuronal networks are not applied in the system.

In order to utilise SNN for motion processing and implement the interface between SpiNNaker and
external devices, a neuromorphic robotic platform consisting of a DVS, SpiNNaker and a servo motor
has been designed. It is a ready-to-use neuromorphic platform for running any SNN to process motion
in real-time, for example in the field of neuroprosthetics such as motor neuroprothetics, which allows
people to bypass the spine and directly control the prosthesis, which is vital for patients with spinal
cord injury. In order to evaluate the performance of its closed-loop execution and also demonstrate
the benefit of using SNN in such applications, the platform is implemented on a robot goalkeeper.
A similar problem of trajectory prediction for robotics, which utilises an event-based camera and a
neural network trained to predict the ball’s position has been also investigated by Monforte et al. [24].

In this paper, the architecture of the system and the principle of hardware communication are
described and demonstrated. An evaluation based on efficiency and accuracy is also presented and
discussed. The interface developed in this paper uses a single microcontroller to establish low-latency
communication between DVS, SpiNNaker and a servo motor. It is the first neuromorphic interface
based on SpiNNaker that supports a servo to precisely control the position of the robotic arm. It does not
require a second chip to convert the communication protocol between microcontroller and SpiNNaker,
which reduces power consumption. Furthermore, an Arduino microcontroller is used. It has a number
of built-in libraries for external devices, which means more sensors and actuators supported by the
Arduino platform can be added easily into the platform. The components that comprise the system
are off-the-shelf, and the software implemented only uses the standard libraries. This neuromorphic
system offers a platform for many other applications at low-cost and simple for further development.

2. Materials and Methods

In the designed system, the microcontroller performs communication protocol conversion between
DVS, SpiNNaker and the servomotor. The data formats are different for the three components, and are
referred to as follows:

• Events: visual information captured by DVS and represented by AER protocol (between
microcontroller and DVS).

• Packets: spikes injected to and received from SpiNNaker (between microcontroller and DVS).
• Commands: data used to control the servo (between microcontroller and servo).

As shown in Figure 1, the microcontroller receives events from DVS, the events are then converted
to packets and injected into SpiNNaker. The microcontroller receives packets (spikes) back from
the SNN running on SpiNNaker. Finally, it generates servomotor control commands based on the
received spikes.

The neuromorphic processor used is SpiNNaker SpiNN-3 hosted on a development board. It is a
multi-chip platform, where each chip has 18 identical processing cores and six bidirectional inter-chip
communication links. The SpiNN-3 has 4 SpiNNaker chips and can simulate a SNN with up to
6400 neurons. These chips share a 128 MB SDRAM, which gives over 1 GB/s sustained block transfer
rate [9]. The router can route the spikes from a neuron to many connected neurons. SpiNNaker is
designed to optimise the simulations of SNNs, and implements some common neuron models such as
leaky integrate and fire model.
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2.1. From DVS to SpiNNaker 

DVS only sends the addresses of pixels whose temporal change of intensity is higher than a 
preset threshold [5]. Therefore, the microcontroller receives the horizontal (x) and vertical (y) 
coordinates of events. The resolution of DVS is 128 × 128, which requires 7 bits to encode the x and y 
coordinates of the event address. For example, in Table 1, the packet corresponding to the event at 
pixel at the position (68,98) is encoded as: 

Table 1. Encoding scheme for DVS events. 

1000 0000 0010001 0100011 00 0010 1100 0100 1000 
header x y unused virtual routing key 

Figure 1. Functional blocks of the neuromorphic platform consisting of dynamic vision sensor (DVS),
SpiNNaker board, and servo motor, with the microcontroller implemented as an interface between
these blocks.

The DVS used in our platform is DVS128 from iniLabs, Zurich, which has a resolution of 128 × 128.
The DVS camera has low latency down to 15 µs and high dynamic range of up to 120 dB and can work
at low power at 20 mW [5,22]. Figure 2 shows a DVS recording when a ping-pong ball is moving.
The outline of the ball will produce spikes, but also some random noise is generated, which can be
decreased by increasing the threshold of events.
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2.1. From DVS to SpiNNaker

DVS only sends the addresses of pixels whose temporal change of intensity is higher than a preset
threshold [5]. Therefore, the microcontroller receives the horizontal (x) and vertical (y) coordinates of
events. The resolution of DVS is 128 × 128, which requires 7 bits to encode the x and y coordinates
of the event address. For example, in Table 1, the packet corresponding to the event at pixel at the
position (68,98) is encoded as:

Table 1. Encoding scheme for DVS events.

1000 0000 0010001 0100011 00 0010 1100 0100 1000

header x y unused virtual routing key

The first bit of header is the parity bit, it is set to ensure the whole packet has odd parity. The rest
of header bits and the two unused bits in the packet data are set to 0.

For SpiNNaker, the spikes are encoded as packets, in the following form (Table 2):
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Table 2. SpiNNaker data packet structure.

Header (8 bits) Packet Data (32 bits) PayLoad (32 bits, optional) EOP

A packet contains: Header to indicate its specification, Packet Data which stores information
about the spikes, and an optional PayLoad to carry more information, such as membrane voltage [8].
The packet format used in the designed system is 40-bit multi-cast packet without payload. Furthermore,
SpiNNaker regards external devices as virtual chips on its system [25]. Thus, a virtual routing key
should be defined as the delivery address of the injected spikes. In the designed system, the virtual
routing key consists of four Hex numbers (‘0 × 1′, ‘0 × 2′, ‘0 × 3′ and ‘0 × 4′).

The decimal to binary conversion of SpiNNaker packets starts from the least significant bit, and
the order of virtual routing key is reversed. The reason is that SpiNNaker reads packets from the end.

The events received by the microcontroller can be sub-sampled or preprocessed to increase the
processing speed and filter random noise. The resolution reduction is also important for reducing the
size of the neural network needed to handle the DVS events. As shown in Figure 3, an average mask of
8 × 8 has been applied to the received events and a new threshold is set to the averaged pixel value to
define whether the ‘superpixel’ is generating an event or not.
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Figure 3. DVS data are preprocessed, and overall resolution reduced from 128 × 128 to 16 × 16, where
each ‘superpixel’ represents a block of 64 (8 × 8) original pixels. The decision whether there is spike at a
‘superpixel’ is based on having a set number of spikes in the pixels that it covers within a specific time
window. If the first layer of the SNN has one neuron for each pixel, then required number of neurons is
reduced from 16,384 to 256—some loss of resolution but a significant advantage for the neural network
training phase.

Through the resolution reduction, only 4 bits are needed to encode x and y of the events,
respectively. For instance, the packet corresponding to the event at superpixel (3,15) is shown in
Table 3.

Table 3. DVS resolution reduction event data encoding.

0000 0000 1100 1111 0000 0000 0010 1100 0100 1000

header x y unused virtual routing key

After receiving the raw pixel data from the DVS, the microcontroller is converting them
first into superpixel events, and then into 40-bit packets appropriate for the SpiNNaker system.
The microcontroller will send the packets into SpiNNaker by using 2-of-7 coding and 2-phase
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handshaking protocol. Each packet is sent as 10 symbols followed by an ‘end-of-packet’ (EOP) symbol.
Except for the EOP symbol, the 10 symbols are selected from 16 Hex values, and each Hex value is 4-bit.

Both SpiNNaker input and output data buses are 7 bits. To send a symbol, the microcontroller
only changes the state of two wires and keeps logical levels of the rest five wires unchanged, i.e., uses
the 2-of-7 coding method [26]. In Table 4, ‘1’ is represented by change of the state on the that line and
‘0’ is represented with no change of the state. In other words, logical-1 is physically represented by
a change of the voltage level and not by a specific value for the digital signal. Similarly, logical-0 is
represented by no-change of the physical voltage on the wire, not by a specific value. After sending
a symbol, the voltage levels of the 7 wires will not return to the initial state [27]. This mechanism
increases the transmission speed and reduces power consumption.

Table 4. 2-of-7 coding: converting a symbol into 2 changing bits. ‘1′ and ‘0′ do not represent physical
voltage levels corresponding to logical-1 and logical-0, but symbolise change of state (‘1′) or no change
of state (‘0′). If less confusing, the symbol ‘C’ could be used for change and ‘N’ for no-change, to encode
‘1′ and ‘0′.

Symbol. 0 1 2 3 4 5 6 7 8 9 A B C D E F EOP

L [0] 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
L [1] 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0
L [2] 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0
L [3] 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0
L [4] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
L [5] 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1
L [6] 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

After the microcontroller changed the logical levels of two wires, SpiNNaker will send back an
acknowledge (ACK) signal to indicate the symbol (data) has been received. For the microcontroller,
it will send the next symbol, once it receives the ACK signal from SpiNNaker. Through this 2-phase
handshaking protocol, packets are sent serially.

2.2. From SpiNNaker to Servomotor

After injecting spikes into SpiNNaker, the next hardware communication is to receive spikes back
from SpiNNaker i.e., the output layer of the SNN that it runs, and control the servo on the bases of the
received spikes. The coding method and communication protocol is the same as for injecting spikes
into the SNN, and the IDs of spiking neurons in output population are also sent in 40-bit packets. In our
case, the single-axis robotic arm of the neuromorphic system is set to have eight different movable
positions. Thus, the output layer of the SNN has eight neurons that correspond to eight positions.
What the microcontroller receive is the spiking neuron ID. It is possible to set any other number of the
goalkeeper positions using this digital motor.

The rotation range of the servomotor is 120◦, from −60◦ to 60◦. It is divided into eight equal steps,
with the step angle of 15◦, and each postion corresponds to a neuron ID. The speed of the servomotor
is 120◦/150 ms = 0.8◦/ms (for the weight of our ‘goalkeeper’). Thus, servo commands are executed
at most every 150 ms. The position of the robotic arm is precisely controlled by using pulse width
modulation (PWM) [28]. The range of pulse widths is from 1 ms to 2 ms, which is also divided into
eight equal parts. The method of controlling the servo is described in the algorithm (Figure 4) below.
The position of the robotic arm is changed after minimum 20 neuron IDs. The microcontroller keeps
storing the received neuron IDs into a buffer until the number of IDs is 20. Next, the number of the
most frequent ID in the buffer is found. If the number is equal to or greater than 10, a servo command
corresponding to the ID will be generated. Finally, the command will be executed if the time difference
from the latest execution is equal to or greater than 150 ms.
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3. Implementation

The microcontroller must handle four tasks in parallel:

• receiving and processing events from DVS,
• encoding and injecting spikes to SpiNNaker,
• receiving the output spikes from SpiNNaker, and
• control the servomotor and the goalkeeper position.

Since the corresponding commands are processed virtually in parallel, it is important to synchronise
all of them. The transmission speed of the AER events is not fixed, but it is proportional to the movement
captured by DVS. The resulting speed of injecting spikes into SpiNNaker is also not fixed. Furthermore,
the output spikes from SNNs are sparse and not at a fixed rate, which causes a varying speed of
generating commands.

3.1. Synchronization Mechanism

To ensure the SNN receives the latest events and the command to the servo is generated based on the
latest output spikes, a synchronisation mechanism is proposed, as shown in Figure 5. This mechanism
sets a limit for the maximum transmission speed of injecting spikes. For example, this limit is set to
2000 packets per second. As shown in Figure 5, the microcontroller keeps receiving events but only
stores one event into the buffer every 500 µs. For injecting spikes, the period is also 500 µs and the
microcontroller will reset the buffer if the time difference between current stored event and sent spike
is greater than 1000 µs. For servo command, it will be overwritten and not be executed until the time
difference from last executed command is equal to or greater than 150 ms. Through this mechanism,
events, spikes and commands are synchronised to reduce response latency.

The buffering process for events enables the system to adapt to changing the speed of receiving
events but also brings some limitations. Compared to injecting events directly, the microcontroller
spends computation power on writing, reading and resetting the buffer. Thus, the maximum
transmission speed is further limited. Furthermore, information will be partially dropped out if the
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The setup of the neuromorphic goalkeeper is shown in Figure 6a. The width of the baffle is
approximately 4 cm and the movable range of the robot arm is 30 cm. Figure 6b shows a photo of the
connections between the different modules.
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One input/output port is used on SpiNNaker (SpiNN-3) board (shown left) and set in SpiNNakerLink
class. Two chips on the protoboard are level shifters (1.8 V to/from 3.3 V), which are used between the
microcontroller and SpiNNaker. The microcontroller (Arduino Due) is at the right end of the picture.

3.2. Neural Network Model

For the target application described in this paper, a relatively simple SNN has been developed to
run on SpiNNaker, since the aim is to demonstrate our hardware platform. Development of a general
SNN for the task of predicting the end position of a ball based on its initial motion (the ‘goalkeeper’
task) is a non-trivial problem and it is beyond the scope of this paper. A generalised methodology for
developing an SNN to run on a DVS-SpiNNaker platform, using either supervised or unsupervised
training algorithm, is described in Appendix A. Here the developed SNN is described to demonstrate
our platform, and the model is shown and explained in Figure 7a.

The network has three layers as shown in Figure 7b. The first (input) layer of the SNN is
connected to processed DVS output, which has a resolution of 16 × 16 after downsampling (explained
in Figure 3). The second (hidden) layer has eight neurons, and each neuron is connected to two columns
of the DVS layer, and hence has 32 input synapses. The third (output) layer also has eight neurons,
which correspond to eight possible positions of the goalkeeper. The neurons in the layers two and
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three are connected using one-to-one connectivity. The total number of synapses in the SNN is
32 × 8 + 8 = 264. The SNN has been developed using PyNN [29] with sPyNNeker extension [30] and
run on the SpiNNaker. The neuron model used in the SNN is standard leaky integrate-and-fire (LIF).
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Figure 7. (a) Model: the neural network identifies in which of the possible N ‘lanes’ the ball is
approaching the goal (N = 8 in the demonstration). This model covers only a subset of all possible
trajectories of the ball towards the goal, but it is sufficiently good approximation for the platform
hardware demonstration purposes. The field of view of the DVS camera is approximately 35 cm × 50 cm
(not a square because of perspective). (b) The spiking neuronal network (SNN) topology.

For the input real-time captured events form DVS has been used, which was recording a ball
rolling (pushed by a hand towards the goal from the opposite side of the table). The weights of
all synapses were adjusted manually, without using any training algorithms, based on the model
explained in Figure 7.

As shown in Figure 7b, lateral inhibition is not implemented in the output layer. This means the
output neurons can spike simultaneously, and in that case the resulting output could not guide the
robot arm to a unique location. Therefore, a voting mechanism (Figure 4) has been introduced. It is
setting a threshold of 10 spikes as a criterion for deciding which neuron will determine the goalkeeper′s
position. Additionally, SpiNNaker will not send any packets unless a neuron in the output population
is spiking. Furthermore, this threshold increases the robustness of the network to random spikes in the
input layer representing the DVS pixels.

3.3. The Workflow

The workflow for the proposed method is shown in Figure 8. There are five main steps in the
closed-loop execution:

1. DVS captures the events related to a moving object;
2. The microcontroller receives the events in AER format, converts them to SpiNNaker packets and

sends to SpiNNaker;
3. SpiNNaker receives packets and injects spikes into the SNN, and after processing by SNN sends

the outputs back to the microcontroller;
4. The microcontroller receives the IDs of output spikes and generates the servo command by using

the algorithm (Figure 4);
5. The position of the robotic arm is adjusted by changing the pulse width of control signal received

by the digital servomotor.
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4. Results

The SNN has been coded in PyNN and downloaded to SpiNNaker. After the network was
downloaded, the SpiNNaker board (i.e., the ethernet link) has been disconnected from the laptop,
to demonstrate PC-independent operation. Once the simulation starts, the SNN will run for arbitrary
time (typically 60 s in our experiments) with a time step of 1 millisecond. The input layer receives
the injected spikes from the microcontroller, and the output layer has eight neurons corresponding
to the eight positions. The network will not send any packets unless a neuron in the output
population is spiking. A demo video of the robot goalie action can be found at the following link:
https://www.youtube.com/watch?v=135fH21QXtg. The neuromorphic goalkeeper achieves an accuracy
of up to 85% on the condition that the speed of the ball is up to 1 m/s and the initial distance more than
80 cm.

For the hardware communication, the logical levels of the ACK signals of injecting spikes (uplink)
and receiving spikes (downlink) are monitored to measure the transmission speed, Figure 9. As can
be observed both ACK signals of uplink and downlink have changed 11 times to send a packet,
which indicates that data is in the form of 40-bit packets followed by an EOP symbol.
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transmission at the maximum speed.

According to the reading of the oscilloscope, the frequencies of uplink and downlink ACK signals
are 16.951 kHz and 16.970 kHz, respectively. Two symbols are sent in one period, since the logical
levels of ACK signals change twice every period. Therefore, the uplink speed is:

Vuplink = 16.951 kHz× 2 = 33.902 Ksymbol/s � 3082 packets/s

The download speed is:

Vdownlink = 16.970 kHz× 2 = 33.940 Ksymbol/s � 3085 packets/s

The microcontroller receives events in parallel but injects and receives spikes in serial.
Thus, the speed of receiving events is higher than the speed of injecting and receiving spikes.

https://www.youtube.com/watch?v=135fH21QXtg
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Since each process are parallelly executed and the speed of injecting spikes is higher than the speed
of receiving spikes, the response latency is dominated by the time cost to inject spikes. Furthermore,
the servo command is generated based on 20 spikes. Thus, the response latency is:

tlatency = 20×
1

3082
s � 6.489 ms

The SNN was running for 1 min in multiple trials, and its output spikes were recorded. Since the
servo motor was set to have eight movable positions, the abscissa of the coordinate where the ball
can move is also divided equally into eight parts. The microcontroller obtains current coordinate of
the moving ball from DVS and inputs it to the SNN. The classification of the coordinate will then be
output by the SNN. For example, neuron 6 in the output layer of the SNN will spike if current abscissa
of the moving ball is in the 6th position. An example of the SNN activity for some randomly released
balls is shown in Figure 10. The output spikes are concentrated at one or two neuron IDs in a short
period, which gives strong and effective guidance for the microcontroller to generate servo commands.
Because of the voting method applied in Figure 4, the effect of random noise has been reduced.
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The neuromorphic robotic system has a maximum power consumption of 7.15 W, which is
calculated in the following way. For DVS at high activity, its supply voltage is 5 V and the current is
100 mA. For the microcontroller, its operational voltage is 3.3 V and it has a maximum fuse current
of 500 mA. For SpiNN-3 board, its power supply is 5 V, idle current is 400 mA and peak current is
1 A [31]. Therefore, the maximum power of the system is:

Pmax = 5 V× 0.1 A + 3.3 V× 0.5 A + 5 V× 1 A = 7.15 W.

In our case the neural network can be run on only one chip (one of four) on SpiNNaker,
which requires less than 2 mW of power, so the average power consumption in our example is
approximately 4 W.

The developed system has high efficiency due to the inherently sparse events and spikes, impulse
propagation of SNNs [32], and the synchronisation mechanism. The transmission speed of hardware
communication is not fixed, it only has an assumed limit for the maximum speed in our realisation,
but it could be relaxed. The speed is proportional to the events captured by DVS. Because of the
adaptive speed, the efficiency is significantly improved.

5. Discussion

The platform developed in this paper has successfully demonstrated the closed-loop
communication between DVS, SpiNNaker and a servo motor by using a single microcontroller.
Compared to unidirectional communication of the FPGA interface, the developed solution supports
bidirectional data flow and can control external actuators according to the received spikes from SNNs.
The FPGA interface is based on a high-cost RoggedStone2 development kit, while our solution is based
on the Arduino platform, which is more economical.
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Apart from this solution, another microcontroller interface developed by the UM and TUM also
supports bidirectional communication and control actuators. However, it requires the assistance of a
CPLD, which increases the data transmission speed between SpiNNaker and the microcontroller but
also increases the difficulty of further development. Their solution is based on an ARM Cortex-M4
microcontroller with a 168 MHz clock speed, whilst we use a Cortex-M3 microcontroller with an
86 MHz clock speed. Thus, the data transition of our solution is slower than the speed of the interface
designed by UM and TUM. On the other side, our solution does not need the second chip, which means
lower power consumption and higher stability. Additionally, the microcontroller developed by UM
and TUM has 5 pre-defined peripheral ports for 2 DVSs and 3 motors. This design simplifies the
connections with DVSs and motors but results in a limited capacity for other actuators and sensors.
The microcontroller board used in our solution has 54 GPIOs and built-in libraries for external devices.

Compared to the robot goalie based on a PC (and DVS), the neuromorphic system that uses
SpiNNaker as the processor has a lower power consumption, and it is completely controlled by an
SNN running on a SpiNNaker, not using any PC processing power. Therefore, our system is portable
and readily implementable on autonomous, battery-operated robotic applications. Admittedly for a
small neural network as ours it would be possible to implement it on a microcontroller and thus the
power consumption could be even lower than by using SpiNNaker. However, SpiNNaker is much
easier to be used in developing a new SNN for our platform because of already existing PyNN software
interface, and the power consumption is still acceptable for robotic applications.

Our solution can also be compared with other neuromorphic systems for tracking objects by
using artificial neural networks. For example, Monforte et al. [24] have developed a recurrent neural
network (RNN) for predicting the trajectory of a bouncing ball (the hardware used was ATIS event
camera and iCub robot [16,21,24]). The input events of this neural network were also pre-processed
by sub-sampling. This strategy reduces the computational complexity, but can affect the resolution
precision. The RNN was using the long-short term memory (LSTM) learning rule [24], which indicates
the current output is depended on previous input events. It is similar to our algorithm where the
current prediction of the position of ball’s arrival is based on 20 latest spikes received from SpiNNaker
(Figure 4). Prediction of the upcoming trajectory of a tracked object was done in an asynchronous
fashion. The RNN gives both horizontal and vertical prediction, but our algorithm only focuses on
horizontal information. The training set and the testing set of the RNN are recorded data, and its
performance of real-time events has not been investigated.

The camera (DVS) used to capture the information of moving objects is of the neuromorphic type,
which exploits data-driven, event-based updates—the same as SNNs. It generates inherently sparse
data, which is important for low latency and energy-efficient applications. Compared to frame-based
cameras, bandwidth and computational complexity are greatly reduced. Furthermore, DVS is much
better for the task of object tracking since the static background does not generate data.

The motor control mechanism used in the developed system is PWM, and it can precisely
place the robotic arm. Compared to the pulse-frequency-modulation (PFM) motor control for
neuromorphic robotics [19], PWM is in the standard library and does not require extra hardware.
However, PFM has lower electromagnetic interferences and response latency at the expense of high-cost
and complex design.

Although a relatively simple neural network model is used in this work, it is surprisingly efficient,
as demonstrated in our YouTube video, as long as the incoming ball’s trajectories are not deliberately
chosen to play on the weakness of the model, which is to change the ‘lanes’ of motion. The goalkeeper
can only focus on one ball at the time, hence the accuracy will be reduced if more than one moving
ball appear in the field of view of DVS simultaneously. However, this constraint is more due to the
simplicity of the used SNN rather than being a hardware limitation. For further improvement of
the robot for this task, an advanced SNN could be developed, based on, for example, the human
ball-catching models.
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Another possible limitation of our SNN and potentially use of a DVS in general is the situation
when the background is changing. In that case the number of events will increase rapidly what
might overload the capacity of the microcontroller to handle them, and also to force all pixels to spike
almost simultaneously after post-processing and resolution reduction. Some moderate change of the
background including some other small objects moving in the field of view or some noise is currently
eliminated by adjusting the spiking threshold in the DVS, as well as with our post-processing of events
(decision when a super-pixel spikes) and our algorithm (Figure 4) which sets a minimum threshold in
the number of spikes in the output layer for making the decision about where to move the goalkeeper.

6. Conclusions

This paper focuses on the development of a neuromorphic robotic system and its demonstration
on the robot goalkeeper task. The developed interface is the first neuromorphic interface that can
precisely control the position of the robotic arm by using an SNN. It can allocate different positions
corresponding to the behaviour of each neuron in the output population. The system is neuromorphic
and controlled by an SNN run on SpiNNaker detached from a PC. It has high efficiency, due to the
sparse data, use of SNNs and the adaptive transmission speed.

The designed system provides a low-cost and user-friendly platform for various neuromorphic
robotics applications. The communication between the neuromorphic processor and the microcontroller
is executed automatically. Developers only need to connect sensors to the microcontroller and get the
output spikes through the microcontroller. The designed system is a prototype of general-purpose
neuromorphic robotics platform. An SNN has been successfully applied in this closed-loop hardware
system to solve a real-world problem: interception of a moving object. In further development,
a microcontroller with a higher speed could be used to increase the data transmission speed and an
advanced SNN could be created to increase the accuracy and responsiveness of the system. Regarding
the applications of such a neuromorphic sensory-processing-actuation systems, one potential area
is also in neuroprosthetic systems, such as sensory prosthesis (visual, cochlear, e.g., [33]) or sensory
substitution systems [34]. Future work will also include development of deep learning realised on
SNNs [35], and for that purpose our platform can serve as an excellent testing ground. Deep learning
has been achieving exceptional progress, but for real-time reaction in real environment the efficiency
and latency can be significantly improved by deploying the deep SNNs.
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Appendix A

Here a generalised methodology for training a neural network for our DVS-SpiNNaker-based
platform is described, Figure A1. To run SNNs on SpiNNaker, sPyNNaker [30] software package is
used, which is running PyNN [29] simulations of SNNs on SpiNNaker. PyNN is a Python interface to
define SNN simulations for a range of simulator back-ends. PyNN defines a number of standard cell
models, such as the LIF neuron, and the Izhikevich neuron including custom built models, as well as
different types of synapses and synapse dynamics. For the learning algorithm it is possible to use the
spike-timing-dependent plasticity (STDP) [36]. A demonstration of an SNN topology and how to use
STDP to train an SNN using the example of counting the number of cars passing in each traffic lane
can be found in [37,38]. As shown in Figure A1, to design and train an SNN in our platform, there are
five main steps:
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1. Recording motion by using DVS and generating the AER data;
2. Designing the SNN and writing it in PyNN;
3. Training the SNN (using the STDP learning rule) on SpiNNaker;
4. Reconstructing weights after training;
5. Verifying the SNN.
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