
UWL REPOSITORY

repository.uwl.ac.uk

Improving ultrasound video classification: an evaluation of novel deep learning

methods in echocardiography

Howard, James P., Tan, Jeremy, Shun-Shin, Matthew J., Mahdi, Dina, Nowbar, Alexandra N., Arnold,

Ahran D., Ahmad, Yousif, McCartney, Peter, Zolgharni, Massoud ORCID: https://orcid.org/0000-

0003-0904-2904, Linton, Nick W. F., Sutaria, Nilesh, Rana, Bushra, Mayet, Jamil, Rueckert, Daniel, 

Cole, Graham D. and Francis, Darrel P. (2019) Improving ultrasound video classification: an 

evaluation of novel deep learning methods in echocardiography. Journal of Medical Artificial 

Intelligence. 

10.21037/jmai.2019.10.03

This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/6632/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: 

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Page 1 of 9

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2019 | http://dx.doi.org/10.21037/jmai.2019.10.03

Introduction

Echocardiography is the commonest use of medical 
ultrasound, and efforts are being made to streamline the 
time-consuming process of reporting and automate the 
analysis of studies to allow sonographers to scan more 
patients. One major barrier, however, is that each study 
comprises upwards of 50 video loops providing depictions 
of slices of the heart in a variety of anatomical planes and 
orientations, also known as ‘views’. Before each video loop 
can be analysed, the view it represents must be correctly 
identified. One possible approach to this task is using neural 
networks, which have been employed successfully in several 
other fields of medical image classification (1-3).

However, the accuracy of echocardiogram view 
classification using neural networks has been variable (4,5) 
with studies typically classifying individual video frames 

in isolation, missing the opportunity to use temporal 
information of how features such as heart valves or 
ventricular walls move during the cardiac cycle. 

In this paper we first assess the relative performance 
of several classical convolutional neural network (CNN) 
architectures. We then introduce some new architectures, 
inspired by current work in the field of human action 
recognition, which can process both the spatial and 
temporal information contained in video (Figure 1). The 
four groups of architectures we asses are as follows:

(I)	 Classical CNN. We assessed 5 different CNN 
architectures each of which has held the title 
of being the state-of-the-art in network design 
for image recognition. As with previous studies, 
accuracy is calculated using the modal prediction 
across multiple video frames (4).
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Figure 1 The four different types of neural network architectures used in this study, along with the lowest error rate of each model 
within each group. The best-performing neural network was a “two-stream” network using both spatial and optical flow inputs, with a 
corresponding error rate of only 3.9%. Conversely, the 3D CNN architectures failed to classify echocardiograms. Conv, convolutional layer; 
batch norm, batch normalisation layer; ReLu, rectified linear unit layer. 3D, three-dimensional; CNN, convolutional neural network.

(II)	 Classical CNN encapsulated within a time-
distributed layer. In this design, an entire video is 
passed through a classical CNN, frame by frame, 
and CNN’s output from each frame is collated. 
Then each output is fed, sequentially, into a second 
neural network. 

(III)	 Three-dimensional (3D) CNN. We assessed 
the ability of a 3D CNN which comprises filters 
which not only scan (‘convolve’) through the two 
dimensions of each frame of a video, but also across 
frames in the third dimension. 

(IV)	 “Two stream” CNNs. This network takes in two 
streams of data: a spatial stream, and a temporal 
stream. The spatial stream processes sequential 
video frames and comprises either a time-

distributed classical CNN network (see 2) or 3D 
CNN (see 3). A second ‘temporal’ network is 
also trained to which receives optical flow data, 
i.e., data describing the movement of objects 
between frames. The final view decision is based on 
integration of both temporal and spatial signals.

Finally, we compare the error rate of the best performing 
network with the disagreement rate of two echocardiography 
experts, which may represent the upper limits of what is 
achievable using retrospective human-labelled data.

Methods

Data extraction

A random sample of echocardiogram studies and their 
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Figure 2 The 14 echocardiographic views. A2CH, apical 2 chamber; A3CH, apical 3 chamber; A4CH, apical 4 chamber; A5CH, apical 5 
chamber; Ao, aorta; AV, aortic valve; IAS, interatrial septum; LA, left atrium; LV, left ventricle; PLAX, parasternal long axis; PS, parasternal; 
PV, pulmonary valve; RA, right atrium; RV, right ventricle; TV, tricuspid valve.

associated video loops were extracted from Imperial 
College Healthcare NHS Trust’s echocardiogram database 
in DICOM format. Ethical approval was gained from the 
Health Regulatory Agency (Integrated Research Application 
System identifier 243023). Only studies with full patient 
demographic data and without intravenous contrast 
administration were included. All videos comprising at least 
40 frames were analysed. Automated anonymisation was 

performed by identifying the ultrasound machine model 
from the DICOM file meta-data and blanking the pixel 
range in which that model displays patient-identifiable 
information. Individual studies were randomised to the 
training or testing sets at a ratio of 3:1. 

An expert human classified each video from the training 
and test sets into one of 14 categories which are outlined 
in Figure 2. Videos thought to show no identifiable 
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echocardiographic features, or which depicted more than 
one view, were excluded. These classifications (labels) were 
used to train and assess the performance of the network. 
A second human classified each video from the test set, 
unaware of the other human’s classifications, so that inter-
expert agreement could be assessed.

The first 40 frames of each video were then extracted 
and resized to a resolution of either 299 by 299 or 224 
by 224 pixels, depending on the requirements of the 
network being trained. Optical flow frames were extracted 
from videos using denseflow (6) at a resolution of 224 by  
224 pixels. Images were normalised at training time to yield 
pixel values between 0 and 1. The effects of hyperparameter 
tuning and training progress were assessed during training 
using 20% of the training set as a ‘validation’ subset on 
which the network was not trained.

Detailed information regarding the neural network 
architectures, training and statistical analysis are available in 
Supplementary file.

Results

Dataset

Three hundred and seventy-four echocardiographic 
studies met the inclusion criteria for extraction. They were 
randomly split into the training (75%) and testing (25%) 
datasets. Together, they contained 9,098 echocardiographic 
videos. Of these, 8,732 (96.0%) videos could be classified 
as one of the 14 views by the first expert. The remaining  
366 videos were not classifiable as a single view, either 
because the view changed during the video loop, or because 
the images were completely unrecognisable. The study and 
video characteristics are shown in Table 1. 

Performance of the different architectures

The best-performing classical 2D CNN design (Table 2) was 
Xception, with an error rate of 8.1% (Cohen’s Kappa 0.910). 
The two distinctions that were most error-prone were (I) 
20 cases of confusing A4CH with A5CH and (II) 19 cases 
of confusing PLAX inflow versus parasternal aortic and 
pulmonary valves.

The time-distributed CNN performed better (P<0.0001) 
with an error rate of 4.7% (Cohen’s Kappa 0.947). 

The two 3D CNNs examined gave disparate results. 
The modified C3D network performed poorly (Table 2) and 
failed to provide any meaningful classification. However, 
the I3D network yielded an accuracy superior to that of 
the 2D CNN on which it was based (Inception 3D; 10.6% 
error versus 11.9% error). However, this network proved 
inferior to time-distributed CNNs (P<0.0001).

The two-stream networks demonstrated the highest 
accuracies, with the network based on the time-distributed 

Table 1 Baseline characteristics of study-level and video-level 
parameters

Characteristics Training set Testing set

Study characteristics n=282 n=92

Sex (male) 144 (51.1) 46 (50.0)

Age 61.7 (18.6) 61.8 (18.5)

Manufacturer

Philips 224 (79.4) 72 (78.3)

GE 58 (20.6) 20 (21.7)

Video characteristics n=6,592 n=2,140

Colour flow Doppler 718 (10.9) 234 (10.9)

Classes

Parasternal long axis 713 (10.8) 260 (12.2)

Parasternal long axis valves 426 (6.5) 123 (5.7)

Parasternal long axis RV inflow 207 (3.1) 63 (2.9)

Parasternal short axis LV 1,045 (15.9) 343 (16.0)

Parasternal aortic & pulmonary 874 (13.3) 291 (13.6)

Apical 2 chamber 534 (8.1) 152 (7.1)

Apical 3 chamber 503 (7.6) 145 (6.8)

Apical 4 chamber LV 829 (12.6) 289 (13.5)

Apical 4 chamber RV 222 (3.4) 79 (3.7)

Apical 5 chamber 295 (4.5) 84 (3.9)

Apical LA/MV focused 199 (3.0) 58 (2.7)

Apex 25 (0.4) 9 (0.4)

Subcostal 570 (8.6) 193 (9.0)

Suprasternal 150 (2.3) 51 (2.3)

Unclassifiable* 273 (NA) 93 (NA)

Categorical data is shown as numbers (%); continuous data are 
shown as mean (standard deviation). *, 273 and 93 videos from 
the training and testing sets, respectively, were unable to be 
classified, and do not contribute towards the class percentages; 
this is because they showed two or more views during the 
full video loop, or neither of the human operators were able 
to identify sufficient landmarks to classify the video. LV, left 
ventricle; RV, right ventricle.



Journal of Medical Artificial Intelligence, 2019 Page 5 of 9

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2019 | http://dx.doi.org/10.21037/jmai.2019.10.03

Table 2 Table demonstrating the total number of trainable 
parameters, accuracy on the test set, and associated Cohen’s kappa 
for each of the networks on the test set

Architecture
Trainable 

parameters (million)
% Error

Cohen’s 
kappa

Classical CNNs

VVGNet 16 14.7 86.4 0

Inception V3 21.9 11.9 0.868

Resnet 23.6 11.0 0.878

DenseNet 121 7.0 10.0 0.889

Xception 20.9 8.1 0.910

Time-distributed CNN

TD Xception 21.5 4.7 0.947

3D CNN

C3D 46.6 0 0

Inception3D 12.3 10.6 0.882

Two-stream networks

Temporal stream 
(optical flow)*

21.8 34.8 0.622

Two-stream 
(Inception3D)

34.1 9.6 0.901

Two-stream (TD 
Xception)

42.7 3.9 0.957

 *, these figures reflect the accuracy of the temporal network 
alone, which goes on to form one stream of each of the two-
stream networks assessed. CNN, convolutional neural network; 
3D, three-dimensional; TD, time-distributed.

CNN having an error rate of only 3.9% (Cohen’s Kappa 
0.957). This performance was superior to that of both the 
classical 2D CNNs and 3D CNNs (P<0.0001), though 
superiority versus the time-distributed CNN did not reach 
statistical significance (P=0.053). For this network, the 
two distinctions that remained most error-prone were (I)  
10 cases of confusing A4CH with A5CH and (II) 8 cases of 
confusing A2CH with A3CH.

Confusion matrices for each class of network are shown 
in Figure 3A,B,C,D. The changes in classifications associated 
with using the best performing model, rather than a classical 
2D CNN are shown in Figure 3E.

Inter-expert agreement

The results in Figure 3 show disagreement (or error) rates 

of only a few percent in the best performing networks, 
and these errors appear predominantly clustered between 
certain pairs of views which represent anatomically adjacent 
imaging planes. It was conceivable, therefore, that some of 
the residual apparent error was due to an inherent difficulty 
of deciding between views that are similar in appearance 
and are in spatial continuity.

To investigate this, the test set classifications of the 
second expert cardiologists were compared to those of the 
first expert.

Of the 2,140 test set videos, 74 (3.5%) were classified 
differently by the second expert (Figure 3F). The two 
distinctions that caused the most disagreement were (I)  
13 cases of A5CH versus A4CH and (II) 10 cases of A3CH 
versus A2CH.

When allowing either expert classification as correct, the 
error rate decreased further, to 2.6%.

Finally, addressing only the 2,064 test videos classified 
identically by the two cardiologists, the error rate of the 
two-stream network was only 2.2%, corresponding with  
45 videos “misclassified” by the network. 

For reference, the two-stream network’s error rate when 
judged solely against the second human’s classification was 
4.3%.

Discussion

This study shows that the application of new CNN 
architectures can reduce the error rate of echocardiographic 
video classification by more than two-fold. It further 
suggests the remaining error rate may contain a substantial 
element of “judgement calls”, where experts are uncertain 
and when forced to commit to a class independently, pick a 
different class from other experts.

Temporal neural networks achieve half the error rate of 
classical 2D CNNs

We had success with two approaches of integrating 
temporal information: time-distributed networks and two-
stream networks. The two-stream network had an error rate 
less than half that of the best classical 2D CNN. 

Much of this benefit appears to be through improved 
discrimination between certain pairs of views that classical 
CNNs find challenging. For example, 19 videos were 
misclassified by the 2D CNN, but only 2 by the two-stream 
network, when deciding between the ‘PLAX inflow’ and 
‘parasternal aortic and pulmonary valves’ views. On a single 
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Figure 3 Confusion matrices for the best-performing classical CNN model (A), time-distributed model (B), 3D CNN (C) and two-stream 
network (D). The improvement associated with using the two-stream network versus the classical CNN is shown in (E). The inter-human 
agreement confusion matrix is shown in (F). CNN, convolutional neural network; 3D, three-dimensional. 
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Spatial saliency map Temporal saliency map
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Figure 4 A comparison of a ‘PLAX inflow’ view of the tricuspid valve (A) and a ‘parasternal (aortic and) pulmonary valves’ (B) view of the 
pulmonary valve (also termed ‘RV outflow’). These views are almost indistinguishable in a still image. However, when viewed as a video, 
the echocardiograph on the left clearly demonstrates the valve opening upwards (inwards; see arrows), allowing blood flow into the heart 
through the tricuspid valve, whereas the echocardiogram on the left shows the valve leaflets opening downwards (outwards; see arrows) 
allowing flow out of the heart. Misclassifications of these classes were common using classical 2D CNNs, but are almost eliminated by 
employing temporal models such as the ‘two stream’ networks. Saliency mapping can be used to visualise how the features from the 
pulmonary valve video contribute towards the two-stream network’s decision. (C,D) The important features leading to the classification are 
highlighted in cyan; (C) shows the spatial arm of the network appears to use the anatomical borders of the major cardiac structures present 
(pulmonary artery and left ventricle); (D) however, shows the decision of the temporal arm of the network is overwhelmingly influenced by 
the optical flow data of the valve itself. CNN, convolutional neural network.

frame (Figure 4A,B) these videos are easily confused, even 
by a human expert. One clue to their correct classification is 
the direction of motion of the leaflets when the valve opens: 
upwards versus downwards. In most static images it is 
almost impossible to distinguish, and the true identity only 
emerges when a temporal sequence of images is examined. 
The resulting error rate for this ‘parasternal aortic and 

pulmonary valves’ view fell from 17.5% for the classical 2D 
CNN to just 3.4% for the two-stream network.

Figure 4C,D show saliency maps derived from the two-
stream network for this parasternal pulmonary valve 
example. Saliency maps highlight the features of the videos 
which are contributing most towards the neural network’s 
decision. Figure 4C appears to indicate the spatial arm of the 
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network’s decision is largely influenced by the anatomical 
borders of the major structures such as the pulmonary 
artery and left ventricle (highlighted in cyan). The temporal 
(optical flow) arm’s saliency map (Figure 4D), in contrast, 
shows intense focal activation over the pulmonary valve 
leaflets. These visualisations may support the theory that 
the two-stream network’s ability to discriminate between 
such classes may in part be due to their ability to track 
the movement of structures such as valves throughout the 
cardiac cycle.

Temporal neural networks show both a magnitude and 
distribution of errors comparable to humans

The time-distributed 2D CNN and two-stream network, 
which process each 2D image in a video sequentially, avoid 
the enormous resource consumption of 3D CNNs, which 
may be why they achieve such high accuracies.

Using one human expert as the reference, the best-
performing neural network agreed in 96.1% of cases (3.9% 
error), while the second expert agreed in 96.4% (3.6% 
error). If the dataset is restricted to only those images where 
the two humans agreed, the network was 97.8% accurate, 
with only 45 (2.1%) video loops classified differently by the 
network. 

Interestingly, the two views the network found most 
difficult to correctly categorise (Figure 3D) were the also the 
two views on which the two experts disagreed most often 
(Figure 3F): A4CH versus A5CH, and A2CH versus A3CH. 
The A4CH view is in an anatomical continuity with the 
A5CH view. The difference is whether the scanning plane 
has been tilted to bring the aortic valve into view, which 
would make it A5CH. When the valve is only partially in 
view, or only in view during part of the cardiac cycle, the 
decision becomes a judgement call and there is room for 
disagreement. Similarly, the A3CH view differs from the 
A2CH view only in a rotation of the probe anticlockwise, 
again to bring the aortic valve into view.

Study limitations

Interpreting the results of a neural network study alongside 
previous studies can prove difficult. There have been two 
previously published papers assessing the role of classical 2D 
CNNs for view classification, and they have published very 
different results, with accuracies of 84% (5) and 97.8% (4),  
respectively. There are several possible explanations for the 
wide range of reported accuracies.

First, the more numerous the view categories, the more 
difficult the task of the neural network, since if a group 
of videos are considered a single view in one study but 
multiple views in another, those multiple views are likely 
to be relatively similar in appearance. Moreover, one of 
the studies grouped all images possessing colour as a single 
category, regardless of the anatomical plane (5). Since 
identifying the presence of colour is simple, this increases 
the reported accuracy of any network.

Second, it is possible that previous studies included 
videos that were more easily differentiated as classical 
planes, which could explain complete lack of confusion 
in one study (4) between A2CH and A3CH, which are 
anatomically continuous. 

Third, studies sometimes show networks performing 
better than humans, but have trained and tested the network 
on reduced-resolution images such as 80-by-60 pixels  
and have accordingly tested the humans on such low-
resolution images, which they will not have had experience 
of distinguishing (4).

For these reasons, in this paper we have re-implemented 
5 different classic 2D CNN architectures, and it is against 
these which the novel architectures have been assessed. 
Furthermore, the human experts were provided with full-
resolution ultrasound videos, even though the networks 
were using reduced-resolution data.

Conclusions

In this study of over 8,000 echocardiographic videos, we 
have shown that switching to advanced neural network 
architectures can halve the error rate for view classification, 
reaching the concordance achieved by second opinions 
from blinded human experts. Moreover, the types of 
misclassification these advanced networks now make are 
very similar to the sources of differences of opinion between 
human experts. 
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Supplementary

Neural network details

For the c lass ica l  2D CNNs,  we invest igated the 
performance of 5 different neural network architectures: 
DenseNet, Inception V3, ResNet, VGGNet and Xception. 
Each network was initialised using weights derived from 
training on ImageNet, a large image database used for 
object recognition. The final convolutional layer of each 
network was fed into a global average pooling layer before 
the final output layer. During testing, 5 linearly spaced 
frames were chosen from each video and the modal answer 
was used when calculating accuracy. The best performing 
architecture (Xception) from this stage was used as the 
spatial convolutional base for the time-distributed and two 
stream networks.

The time-distributed 2D CNN comprised the trained 
Xception network which was fed the first 20 frames of 
each echocardiogram. The feature maps (from the global 
average pooling layer) for each frame were fed into three 
1-dimensional depthwise-separable convolutional layers 
comprising 256 kernels of filter size 3, separated by 
1-dimensional max pooling layers of pooling size 2. Finally, 
a 1-dimensional global average pooling layer interfaced with 
the final output layer. This architecture is similar to the 
“long-term recurrent convolutional networks” pioneered 
by Donahue et al. (7) but our design differs in several 
important respects. First, we used a series of depthwise-
separable convolutional layers instead of long-short term 
memory layers. Second, we used a 1-dimensional global 
average pooling layer with dropout before the final output 
layer. We found that these two design decisions drastically 
reduced the number of parameters in the model and aim to 
minimise over-fitting whilst not impacting on accuracy.

Two 3D CNN architectures were assessed. The first 
3D CNN was a modified form of the C3D architecture 
pioneered by Tran et al. (8) Given this architecture would 
require over 1 billion trainable parameters when passed 
images of the dimensions used in our study, we swapped the 
flattening layer for a 3D global average pooling layer which 
has since become the modern practice (9) and which also 
drastically reduces the number of parameters. The second 
3D CNN was created using the Inception 3D architecture 
as published by Carreira et al. (10) The network was 
pretrained on ImageNet and Kinetics using weights released 
by Deepmind (11). Model weights were frozen for the first 
epoch before unfreezing weights progressively frontwards 
over 5 epochs to minimise catastrophic forgetting of learned 
weights during early gradient updates. Both networks 

received the first 20 frames of each echocardiogram.
Finally, the two-stream networks comprised two distinct 

convolutional ‘streams’ (one ‘spatial’ stream, one ‘temporal’ 
stream), which process a video’s spatial and temporal 
features separately before the data are integrated and a final 
decision of the view is made. The spatial stream comprised 
either a time-distributed 2D CNN or a 3D CNN, and 
was fed the first 20 frames of each echocardiogram. The 
temporal stream comprised a separate classical CNN 
architecture which was trained to identify videos using 
only optical flow data, comprising greyscale heatmaps 
highlighting the movement of structures between two 
sequential frames in a video. A single data sample fed into 
the temporal network was made up of data describing the 
inter-frame optical flow from a series of 10 frames, with a 
separate frame for movements in the vertical and horizontal 
planes, resulting in a 20-channel input image of 224 by 
224 pixels for a 10 frame ‘chunk’. The temporal network 
was encapsulated in a time-distributed layer and followed 
by a 1-dimensional global average pooling layer, allowing 
4 sets of 10 frame chunks within a video to be processed. 
Finally, the spatial and temporal global average pooling 
layers were concatenated before the final output layer. This 
design is inspired by the two-stream networks pioneered by 
Feichtenhofer et al. (12), but differs in several key respects, 
most notably that our temporal stream comprises an 
untrained Inception V3 (13) model. Unlike Feichtenhofer’s 
implementation, this network contains no fully connected 
layers and uses global average pooling of feature maps 
which results in significantly fewer trainable parameters and 
we found led to much faster convergence with improved 
accuracy. 

Each network was trained until the validation loss 
plateaued. Models were saved after each epoch, and the 
model with the highest validation accuracy was used 
for the final assessment on the test set. The final output 
layer of every network comprised 14 densely-connected 
neurons (one for each view). Loss was calculated using the 
categorical cross entropy loss function and weights were 
updated using the Adam optimizer. The batch size for all 
networks was 20. 

Saliency maps were used to further investigate the 
relative focus of the two components of the two-stream 
networks (spatial features and temporal features). To allow 
pictorial visualisation of this, despite the networks receiving 
input in video format, the saliency patterns across each 
spatial frame were averaged and then normalised, before 
being super-imposed upon a single frame from the video.



Programming was  performed with the Python 
programming language, with the Tensorflow (14) and 
Keras (15) machine learning frameworks and the Keras-vis 
package (16).

Statistical analysis

The primary statistical endpoint was accuracy, defined as 
the proportion of videos correctly classified according to 
their view. Confidence intervals for accuracy were calculated 
using the “exact” binomial method. Significance testing 
between models was by McNemar’s test with P=0.05 as 
the threshold for statistical significance, with an exact test 
used for contingency tables including any counts below 25. 
Cohen’s kappa was calculated for each model to account for 
imbalanced class sizes. Statistical analysis was performed 
using the R programming language.
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