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ABSTRACT Early detection of esophageal abnormalities can help in preventing the progression of the
disease into later stages. During esophagus examination, abnormalities are often overlooked due to the
irregular shape, variable size and the complex surrounding area which requires a significant effort and
experience. In this paper, a novel deep learning model which is based on Faster Region-Based Convolution
Neural Network (Faster R-CNN) is presented to automatically detect abnormalities in the esophagus from
endoscopic images. The proposed detection system is based on a combination of Gabor handcrafted features
with CNN features. The Densely Connected Convolution Networks (DenseNets) architecture is embraced
to extract CNN features providing a strengthened feature propagation between the layers and allay the
vanishing gradient problem. To address the challenges of detecting abnormal complex regions, we propose
fusing extracted Gabor features with CNN features through concatenation to enhance texture details in the
detection stage. Our newly designed architecture is validated on two datasets (Kvasir and MICCAI 2015).
Regarding the Kvasir, the results show an outstanding performance with a recall of 90.2% and precision of
92.1% with a mean of average precision (mAP) of 75.9%. While for the Miccai 2015 dataset, the model is
able to surpass the state-of-the-art performance with 95% recall and 91% precision with mAP value of 84%.
Experimental results demonstrate that the system is able to detect abnormalities in endoscopic images with
good performance without any human intervention.

INDEX TERMS Detection, DenseNet, EAC, Esophagitis, Faster R-CNN, HD-WLE.

I. INTRODUCTION
Esophageal cancer (EC) is the 7th most common cancer in
adults worldwide [1] with a low survival rate on a 5-year
plan [2]. EC usually occurs in the cells that fill inside of
the esophagus and can appear anywhere along the esophagus
tube. It is classified according to the type of cells (gland
or squamous) into Esophageal Adenocarcinoma (EAC) and
Squamous Cell Carcinoma (SCC) [3]. Early esophageal can-
cer typically causes no symptoms and mainly arises from
untreated/unmonitored premalignant abnormalities. Any in-
flammation or a small change in the cells of the esoph-
agus tube is considered as a precancerous stage such as
Esophagitis and Barrett’s Esophagus (BE). Esophagitis is an
inflammation of the lining of the esophagus that may develop
into BE [4]. It usually occurs when either an infection or
irritation occurs in the esophagus tube. BE is the change of
the normal cells with metaplastic intestinal epithelium [5].

BE is considered the main precancerous condition affecting
the lower region esophagus tube. The detection and treatment
of esophageal abnormalities (precancerous and early cancer
stages) are essential as it can increase the survival rate from
19% to 80% [6].

Different endoscopy tools can be used to examine the gas-
trointestinal tract where the esophagus is located, the High-
Definition White Light Endoscopy (HD-WLE) and WLE are
considered the most used tools for examination to detect
abnormalities in the esophagus. The process of detection is
challenging as abnormalities (including early cancer stages)
can be located randomly throughout the esophagus tube with
various sizes and appearances which makes it difficult to
capture by unexperienced endoscopists [7]. Fig. 1 illustrates
examples from endoscopic images capturing different types
of abnormalities (Esophagitis, BE, EAC & SCC).

Computer Aided Detection (CAD) systems have been
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(a) Esophagitis (b) BE (c) EAC (d) SCC

FIGURE 1: Example of the endoscopic view for the four different abnormality types: (a) Esophagitis, (b) BE, (c) Esophageal
Adenocarcinoma (EAC), (d) Squamous cell carcinoma (SCC)

developed to assist physicians as a second opinion by ex-
tracting features from medical images to automatically detect
abnormalities. CAD systems that support the analysis of
esophageal abnormality have started to grab more attention
with the increase of the number of patients. In previous
studies [8], [9], handcrafted features such as color, texture
and shape were extracted from endoscopic images and used
in CAD models to find abnormalities. The selection of the
appropriate handcrafted features is challenging as it should
be chosen according to the characteristics of the image
in each application. Lately, deep learning has been widely
applied in medical image detection and classification field
by extracting features through convolutional neural networks
(CNNs) [10]. The CNN deep networks are able to generate
features from the images through learning from the dataset,
increasing its generalization and scalability for automatic
detection [11]. The standard CNN architecture for feature
extraction is composed of a series of convolutional filters
with reduction layers [12].

In literature, different CNN architectures are constructed
to learn and provide informative features for the detection and
classification methods such as: (AlexNet [13], VGG’16 [14],
ResNets [15], etc... ). The depth of the CNN network shows a
significant impact on the performance of the network but get-
ting deeper without changing in the structure can lead to poor
performance, loss of information and facing vanishing the
gradient parameter [16]. To overcome these problems, Huang
et al. [17] introduced the Densely Connected Convolution
Networks (DenseNet). The advantages of DenseNet architec-
ture is that it lowers the number of parameters, improves the
gradient and information flow throughout the network which
makes it easier to train. Also, DenseNet encourages feature
reuse by connecting the output of each layer to another layer.

Recently, the combination of handcrafted features with
CNN features showed that it can boost the performance of
the model [18]. Texture features such as Gabor features has
shown its effectiveness when merged with CNN features by
providing low-level texture information [19]. The advantage
of merging both sets of features have been confirmed in
different studies [20]–[23]. Gabor filters has been known
for strengthening the texture details provided through spatial
information. Additionally, concerning the esophageal abnor-
mality detection, the Gabor features have shown its efficiency

in detecting the intestinal juices [24].
There exists various object detection methods that rely on

CNN features for final detection, including Regional-Based
Convolution Neural Network (R-CNN) [25], Fast R-CNN
[26] and Faster R-CNN [27]. The R-CNN generates region
proposals by using selective search algorithm, then CNN
features are extracted from each proposal and classified using
support vector machine (SVM). The overhead of applying
CNN to each proposal caused the method to be too slow. The
Fast R-CNN solved this problem by applying the selective
search on the CNN feature map generated from input image.
Also, a region-of-interest pooling (ROI pool) layer has been
added to the end of the network to classify the features of
proposals using softmax. The time consumed for detection
was improved but the performance was still low because of
utilizing the selective search algorithm. Finally, the Faster
R-CNN suggested a region proposal network (RPN) that
generated proposals based on CNN features. The proposals
from RPN were then used to feed into the ROI pooling stages
as in Fast R-CNN. The Faster R-CNN is considered one of
the leading deep learning detection methods.

This paper presents a novel unified framework based on
hybrid features that combine information from deep learning
and handcrafted features to automatically detect esophageal
abnormalities from endoscopic images. The CNN features
are learned from the endoscopic image using a proposed
DenseNet architecture and are used to generate proposals in a
Faster R-CNN network. Our method integrates the DenseNet
features with Gabor handcrafted features into the final de-
tection stage of the Faster R-CNN. The contributions of this
paper are shown as follows:

• We introduce a novel framework for the detection
of esophageal abnormalities from endoscopic images
based on the Faster R-CNN. We designed a CNN back-
bone network based on the DenseNet architecture to
extract the CNN features.

• Gabor features are extracted from the endoscopic im-
ages and concatenated with CNN features for the ROI
pooling stages in the Faster R-CNN to improve detec-
tion performance. To the best of our knowledge, it is the
first-time Gabor filter responses are incorporated into
the Faster R-CNN.

• The proposed model is trained end-to-end and exten-
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sively evaluated on two different datasets with two types
of esophageal abnormalities (Esophagitis and EAC).
Our method achieved promising results on both datasets
and we demonstrate that a generalized high performance
can be achieved through the newly designed architecture
even when using limited training data (i.e. Miccai’15
dataset).

This paper is structured as follows: Section II, provides an
overview of the related state-of-the-art methods. Section III
describes the details of the implementation of our proposed
detection system. In Section IV, the dataset used in this study
and evaluation metrics are described. Then in Section V the
experimental results and discussion are presented. Finally, we
conclude this study in Section VI.

II. RELATED WORK
In literature, methods for automatic detection of esophageal
abnormalities are divided into two categories: Handcrafted
features based methods and CNN based methods. This sec-
tion briefly reviews methods based on HD-WLE/WLE im-
ages from both categories. More details about these meth-
ods and other techniques that utilize different examination
modalities are discussed in details in [28] and [29].

• Handcrafted Features: Previous EAC detection methods
are mostly based on handcrafted features. Sommen et al.
[30]–[33] proposed extracting texture and color features
from the original and Gabor filtered endoscopic images
to detect EAC. The extracted features were classified
using Support Vector Machine (SVM) achieving a sen-
sitivity of 0.86 and specificity of 0.87. Additionally,
the features were classified using Random Forest (RF)
[34], resulting in a recall of 0.90 and precision of 0.75.
Another study was proposed by Souza Jr. et al. [35] to
evaluate the classification of EAC regions using Speed-
Up Robust Features (SURF). The results using SVM
classifier achieved a 0.89 sensitivity and 0.95 specificity
on a patch-based classification. Subsequently, in [9], the
Optimum-Path Forest (OPF) classifier was suggested
to classify a bag-of-visual-words (BoW) designed us-
ing the SURF and Scale-Invariant Feature Transform
(SIFT). The accuracy of the classifier gained efficiency
of 73.8% (SURF) - 73.2% (SIFT). Later on, Souza Jr. et
al. [36] suggested using the Color Co-occurrence Metric
from a single channel as a texture descriptor of BE and
EAC images. Various classifiers such as OPF, SVM and
Bayesian classifiers were used for patch-based classifi-
cation. The OPF achieved the best performance with an
accuracy of 73.8% for (SURF) and 73.2% (SIFT).

• CNN based methods: Recently, CNN based methods
started to draw attention for EAC detection through
transfer learning. Mendel et al. [37] classified patches
from HD-WLE endoscopic images into EAC or not
using CNN. A 50-layer deep residual network (ResNet)
[15] was constructed and learned from the ImageNet
parameters to classify non-overlapping patches. The
CNN model achieved a sensitivity of 0.94 and speci-

ficity of 0.88 to classify non-overlapping patches from
a dataset of 100 images at a threshold 0.8. Furthermore,
Reil et al. [38] proposed an early EAC detection using
CNN transfer learning with standard classifiers (SVM
and RF). Different architecture, such as AlexNet [13],
VGG’16 [14] and GoogleNet [39] were evaluated with
the information transferred from the non-medical do-
main of ImageNet using both classifiers individually.
The best performance was achieved by AlexNet-SVM
0.92 area-under-the-curve (AUC) value.

Though there are various methods for esophageal abnor-
mality detection in literature, there exists some drawback
among these approaches. All the current methods investi-
gated the detection of only one type of abnormality "EAC"
by extracting features from non-overlapping patches/blocks
within the image. However, in our method, we not only inves-
tigate the detection of EAC (cancerous) regions but we also
examine the detection of Esophagitis (precancerous) regions.
Another main issue in the current methods is the limited size
of dataset used for training and testing the proposed methods.
In our work, we train and test the model on two different
datasets composed of 1000 images (Kvasir Dataset) and 100
images (Miccai’15 dataset). Furthermore, the current CNN
methods mainly rely on transfer learning which means that
the initial weights were learned from a non-medical domain.
In our proposed model, we train the model end-to-end by
learning features directly from the entire endoscopic image.

III. METHOD
In this section, we introduce our proposed esophageal abnor-
mality detection method. The entire proposed model is shown
in Fig. 2. The first step is to extract features from the input en-
doscopic images using the suggested DenseNet architecture.
Next, the RPN generates proposals for abnormality location
using the feature map generated by DenseNet. Afterward,
several Gabor filter responses are extracted and concatenated
with the CNN features from the DenseNet. The fused features
are then used as the input to the ROI pooling layer for final
classification of each proposal generated from the previous
RPN stage. The implementations details of each step will be
explained in the following subsections.

A. OVERVIEW OF THE FASTER R-CNN
The heart of our model is Faster R-CNN [27], which is
one of the state-of-the-art object detection frameworks based
on deep learning network. The Faster R-CNN is formed
of two main modules. The first module is the RPN that is
trained to propose windows for abnormal region candidates.
RPN generates K possible proposals for each location using
detection box called anchor boxes that has various sizes
and ratios. There are (W ∗ H ∗ K) possible proposals per
image where W and H represent the size of the feature
map output from the convolution network. The RPN network
layer has two output layers; the first is a classifier layer that
produces a probability if the proposed anchor box contains
an object or not. The other layer is a regression layer that
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FIGURE 2: The Faster R-CNN framework outline for esophageal abnormality detection in the endoscopic images using
DenseNet as a base CNN network and incorporating the Gabor features in the final detection stage. A sample of the densenet
architecture with one dense block and a transition layer is illustrated as an example. The denseblock shown demonstrates the
connectivity of the concatenated feature map with internal four layers.

adjusts the high probability boxes to better fit the detected
object. The boxes with the highest score are called region
proposals and they are sent to the next phase. During the
training phase the classification and regression output from
the RPN proposals rely on an Intersection-Over-Union (IoU)
threshold to measure the ratio of the overlapping and union
area between the ground truth and the predicted bounding
box area measured as follows:

IoU =
Agt ∩Ap
Agt ∪Ap

(1)

Here, Agt is the area of the ground truth bounding box and
Ap is the predicted bounding box from the regression layer.

The second module is the network that is trained to eval-
uate each proposal (abnormal candidates) from the RPN and
classify the region of interest into true or a false prediction
through Region-of-Interest Pooling (ROI pooling) layer. The
ROI pooling reduces the size of each feature map from nom-
inated proposal so all of them have the same size. Features
in this phase are reused from the same feature map used by
the RPN layer as they both share the same convolution layer.
Finally, these features are used for classification. Further

details about Faster R-CNN can be found in the original
paper [27].

The backbone CNN network used in the original Faster-
RCNN is the VGG’16 network [14], which is composed of
16 layers. It has been shown that the standard Faster R-CNN
when using the VGG’16 might fail in detecting small scale
objects due to information loss [40], therefore it might not be
able to successfully detect the small abnormal regions with
challenging appearance. In our model, we design a network
architecture based on the DenseNet as the CNN backbone
network for our Faster R-CNN model as illustrated in Fig.2.

B. DENSENET AS BASE NETWORK

DenseNets [17] has been introduced recently in literature. It
reduces the connection between the input and output which
helps in overcoming the vanishing gradient problem. Each
layer in the DenseNet has a reduced feature map size which
is important for training the CNN’s on a small dataset leading
to less probability of facing the over-fitting problems and
ensure that there is no loss in the transmitted information
[41]. Additionally, each layer receives supervision from the
loss function and a regularizing effect through shorter con-

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2925585, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3: General architecture of the proposed DenseNet. An initial convolutional filter of size 64 is first performed on the
input image before passing it to the first denseblock. Above each denseblock the feature map size is calculated using the number
of internal layers (M) and growth rate (G). A transition layer (TL) exists between each desneblock that changes the size of the
feature map.

nections leading to an easier training process. The DenseNet
is mainly composed of DenseBlock, Transition Layer and
Growth Rate:

• Dense Block:
Each DenseNet is composed of N Dense Blocks. Inside
each Dense Block there exists M layers where each
layer is connected to all the consecutive layers in a feed
forward manner. If xm is denoted as the output from the
mth layer then it is computed as:

xm = Hm([x1, x2, ..., xm−1]) (2)

where Hm represents the operation of the composite
function in this layer and a concatenation function is
processed between each feature layer inside it. The con-
catenated features are processed through a composite
function that consists of Batch Normalization (BN),
Relu and Convolution (3x3). An example of the internal
structure of denseblock that is passed on to the Transi-
tion layer is shown as a part in Fig. 2.

• Transition Layer:
Between each Dense Block, a layer is introduced to
decrease the spatial dimension of the features maps
called transition layer. It is composed of Convolution
(1x1) and Average Pooling (2x2).

• Growth Rate:
The output from each concatenation function in (2) is f
feature map. The size of the M th layers is f.(m-1)+f0,
where f0 is the number of channels of the original input
image. In order to improve the parameter efficiency
and control the growing of the network, the size of
f is limited to a growth rate G with a small integer
value. This variable helps regulate the amount of new
information each layer holds.

Fig. 3 illustrates a general outline of the DenseNet with a
description of the feature map size (based on M = 4 & G =
12) at each block based on the proposed implementation.

C. GABOR FEATURE
The Gabor filter is well known for texture feature representa-
tion by capturing frequency and orientation representation in
the spatial domain. Generally, a gabor filter is composed of

two parts (real and imaginary) representing the orthogonal
direction. The Gabor kernel is defined as follows:

G(x, y, θk, λ) = exp

[
−1

2

{
A2
θk

σ2
x

+
B2
θk

σ2
y

}]
exp

{
i
2πA

λ

}
(3)

where A = xcos(θk) + ysin(θk), B = −xcos(θk) +
ysin(θk), λ is the wavelength and i provides the central
frequency of the sinusoidal plane wave at an orientation θk.
The orientation of θk = π(k−1)

n where k = 1, 2, 3.., n and n
demonstrates the numbers of orientations. Finally, the σx and
σy denotes the standard deviations of the Gaussian envelope
along the x and y axis. Fig. 4 is an example of the Gabor
filter responses to endoscopic images from our dataset with
different θ = 16 orientations.

D. FEATURE MAP CONCATENATION FUSION
As explained earlier, to produce the output bounding box
prediction, the ROI-pooling is performed on the feature
map layer generated by the CNN network. In the proposed
model, a Gabor feature map is generated by convolving the
endoscopic image with a set of Gabor filters with different
orientations. This Gabor feature map is combined with the
final DenseNet feature map using concatenation fusion [42],
the fused features are then used by the ROI pooling stage.
The concatenation fusion takes place as:

Fmap = concatenate(fdense, fgabor) (4)

where, the two feature maps are stacked at the same spatial
location of (i, j). Therefore, more detailed information is
provided to the bounding box detection and classification
from the newly concatenated feature map.

E. IMPLEMENTATION SETUP FOR EAC DETECTION
In the RPN layer of the Faster-RCNN network we adjust
the anchor boxes number and sizes to the default setting as
proposed in [27]. There exists k=9 anchors at each location
with 3 scales (1282, 2562, and 5122 pixels) and 3 aspect ratio
(1:1, 1:2, and 2:1). Additionally, the loss function of the RPN
stage during training process is defined as:
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FIGURE 4: An example of Gabor Filter response with kernel
size =5 with 16 different orientations.

L(p̂i, t̂i) =
1

Nc

∑
i

Lc(p̂i, p̆i) + λ
1

Nr

∑
i

p̆iLr(t̂i, t̆i) (5)

where, the index of an anchor is denoted by i, p̂i and p̆i
respectively representing the predict and the ground-truth
of the anchor i, being an abnormal region in the image or
not. In the same manner, t̂i and t̆i denote the coordinates
of the predicted bounding box by RPN and the ground-
truth one. The total number of inputs are represented by Nc
for classification layer and Nr for regression layer that is
weighted by a balancing parameter λ. The Lc defines the
classification loss by taking the log loss function over two
classes (abnormal candidate or not) defined as:

Lc(p̂i, p̆i) = −p̆i log p̂i − (1− p̆i) log(1− p̂i) (6)

And, Lr represent the regression loss defined as:

Lr(t̂i, t̆i) = Lsmooth1 (t̂i − t̆i) (7)

The regression loss (Lr) is only active if the (p̂ = 1) which
means that the anchor boxes returned a positive candidate and
it is deactivated if (p̂ = 0).

The DenseNet in our model is formed of 5 dense blocks
with M = 4 internal number of layers, and a growth rate
G = 12 that limit the network from getting too wide as the
feature map will continue to grow after each dense_block.
Furthermore, the transition layer applied between each dense
block is made of (1x1) convolution layer and (2x2) average
pooling layer. An initial filter of size 64 is applied to the
endoscopic input image using a (3x3) convolution to create
a feature map for the first denseblock (as shown in Fig. 3).

The weights are initialized randomly with a gaussian dis-
tribution (µ = 0, σ = 0.01). The initial learning rate was set
to 0.0003 and drops by the factor 0.1 every 1000 iteration and
used a weight decay of 0.0004. The model is implemented
using Keras Libary (Tensorflow backend) on a desktop with
Intel Core i7 (3.6GHz processor) and an NVIDIA GeForce
GTX1080 Ti with 11GB on a single GPU memory.

IV. MATERIALS AND EVALUATION METRICS
In this section, we first give details about the dataset used to
evaluate the performance of the proposed model. Then the
measures used in the evaluation process are described.

A. DATASET
Extensive experiments were performed to investigate the
detection performance of the proposed DensNet Faster R-
CNN with Gabor features on two representative datasets that
include different types of esophagus abnormalities:

• The Kvasir Dataset:
The Kvisar Dataset [43] is an open-access dataset that
provides classified set of images inside the gastrointesti-
nal (GI) tract. In our evaluation, we used the Esophagitis
dataset that is composed of 1000 images obtained from
different patients with a resolution that varies from
720×576 to 1920×1072. An expert in the field has
manually annotated abnormalities in the images. Fig. 5
illustrates samples from the Kvasir dataset with the
annotation by the expert.

• EndoVis sub-challenge MICCAI’15 Dataset:
The dataset of the sub-challenge Early Barrett Cancer
detection from EndoVis MICCAI 2015 challenge [44] is
composed of total 100 HD-WLE images with resolution
of 1600×1200 gathered from 39 patients. The images
are divided into 50 images without any cancer signs
(Fig. 6a) obtained from 17 patients and the other 50 with
cancerous regions (Fig. 6b) from 22 patients diagnosed
with esophageal adenocarcinoma (EAC). Lesions found
in the abnormal images have been annotated by five
leading experts in the field to obtain gold standard as
shown in Fig. 6c. Due to the inevitable differences
between manual segmentation obtained from different
experts, we took into consideration only the intersection
region between the annotation from all experts for train-
ing purpose (known as sweet-spot region [45]).

Data Augmentation is introduced to the training data to
increase the dataset in order to achieve better performance.
It contains random rotation in different directions (45°, 135°,
225°), flipping, stretching vertically and horizontally for only
30% of the training dataset selected randomly. Therefore,
the Kvasir dataset after augmentation is increased to 1900
images while the Miccai’15 dataset to 280 images. The
augmented images are only included in the training phase.

B. EVALUATION MEASURES
To evaluate the performance of the proposed model, the
following assessment measures are employed:

Recall(Rec) =
TP

TP + FN
(8)

Precision(Pre) =
TP

TP + FP
(9)

F1− score =
2× Pre×Rec
Pre+Rec

(10)

6 VOLUME 4, 2016
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(a) Esophagitis abnormality (b) Annotation by an expert (c) Esophagitis abnormality (d) Annotation by an expert

FIGURE 5: Example from the Kvasir dataset showing images with Esophagitis abnormalities (a&c) with the annotation by the
expert (b&d).

(a) Normal Patient (b) EAC Patient (c) Annotation by experts

FIGURE 6: Example from the Miccai’15 dataset showing (a) Non-cancerous barrett’s patient, (b) Esophageal Adenocarcinoma
patient and (c) Annotation from five different experts.

where TP (True Positive) indicates the number of
bounding-boxes that has a correct prediction in abnormal
images, TN (True Negative) is the number of normal images
that has no bounding-box, FN (False Negative) represent
the number of abnormal images that has no prediction and
FP (False Positive) is number of bounding boxes generated
outside the abnormal ground-truth region. The bounding box
is defined as a TP if it has an IoU of 0.5 or more with the
ground-truth annotation and FP otherwise.

Additionally we include the following measure to evaluate
the performance of detection localization by the proposed
methods:

• Mean of Average Precision (mAP): that measures the
mean of Average Precision (AP) of the detection out-
put. The AP measures the precision at different recall
intervals where AP = 1

11

∑
recalli

Precision(Recalli).

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, experiments are carried out to evaluate the
performance of the proposed method using each dataset
separately. First, experiments are conducted to investigate
the effect of extracting features based on the implemented
DenseNet network connection. Then, we illustrate the effect
of concatenating the Gabor features with CNN features on the
detection performance. Moreover, we demonstrate different
visual examples of the detection output from the utilized
dataset using the proposed model. Finally, we compare the

performance of the method with state-of-the-art results.

A. EVALUATION OF ESOPHAGITIS DETECTION
In this section, we report the performance of our abnormality
detection method in locating Esophgities regions. The Kvasir
dataset was divided into 50% training, 10% validation and
40% testing by randomly selecting the images. First, to
identify the effect of extracting features using DenseNet,
we compare the detection results with the VGG’16 and
AlexNet when used as a CNN backbone network for the
Faster R-CNN. As mentioned earlier, the VGG’16 was used
as the CNN backbone in the original Faster R-CNN. Table 1
displays the detection recall, precision, F1-Score and mAP
values when extracting CNN feature with different CNN
networks. As shown, extracting features using DenseNet
improved the result of recall by 4.3% & 5.2% and precision
by 2.3% & 2.6% when compared to the other two networks.
This implies that utilizing the Densenet to extract features
enhances the information flow throughout the network with
dense connections leading to an improved performance.

Secondly, we compare the detection results after merging
the Gabor features with the CNN features for the three
networks. It can be seen from Table 2 that using the DenseNet
with Gabor features was able to maintain the highest detec-
tion performance. Additionally, when comparing the results
of Table 2 with Table 1, it can be concluded that adding the
Gabor filter responses to the feature map enhances the texture
information leading to an outstanding effect on the final
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TABLE 1: A comparison between different architectures as
a backbone for the Faster R-CNN DenseNet, VGG’16 and
AlexNet evaluated on the Kvasir dataset.

Methods Recall Precision F1-M mAP

DenseNet 0.879 0.884 0.882 0.716

VGG’16 0.836 0.861 0.848 0.689

AlexNet 0.827 0.858 0.842 0.672

results. As shown, the results of the detection were improved
from 87.9% to 90.2% in case of the DenseNet. Moreover, it
had a positive impact on the other networks where the results
in case of the VGG’16 were increased from 83.6% to 86.4%
and 82.7% to 86.1% for the AlexNet. Furthermore, there is
a 4.3% mAP improvement by the proposed model compared
to using the DenseNet only which indicates a strong overall
performance.

TABLE 2: A comparison of results after concatenation the
Gabor features with different CNN architectures as a back-
bone for the Faster R-CNN evaluated on the Kvasir dataset.

Methods Recall Precision F1-M mAP

Proposed Model 0.902 0.921 0.921 0.759

VGG’16 Gabor features 0.864 0.891 0.877 0.742

AlexNet Gabor features 0.861 0.903 0.881 0.736

Moreover, we also plot the AP measure as a function
of the IoU threshold in Figure 7. It can be observed that,
for Esophagitis detection, the CNN network with the Gabor
features outperform the network without the Gabor features.
Also, our proposed model obtains a higher AP in a wide
range of IoU threshold than the other methods confirming the
efficiency of our designed Densenet backbone network with
Gabor features in the detection process.

Furthermore, Fig. 8 provides qualitative examples of our
esophagitis detection results. Figures 8a through 8f display
samples of the images with correct detection. We find that
our model is able to successfully detect various esophagitis
regions of different sizes and appearances. The connection
between preceding layers in DenseNet provides richer pat-
terns, therefore, the proposed model was able to detect small
regions that were not detected by the other networks such
as Fig. 8a, Fig. 8e & Fig. 8f. Moreover, in this study, if
the generated bounding box has an intersection less than a
threshold of 0.5 with the ground-truth (as described earlier)
we consider the bounding box a false prediction, even though
it correctly detected an abnormality (i.e. if the threshold
was set lower, therefore, the region would be considered a
TP), Fig. 8g & Fig. 8h illustrate examples from these cases.
Moreover, Fig. 8i & Fig. 8j represent samples of the incorrect
prediction. Most of the false predictions made by the model
capture regions that have a difference in color/texture from

FIGURE 7: AP-IoU threshold curves using different CNN
network with and with Gabor features for Esophagitis detec-
tion in Kvasir dataset.

the surrounding area. Additionally, Fig. 8k & Fig. 8l present
negative outputs, as the detection model was not able to
detect an abnormality in the endoscopic image. Overall, our
model proved to have a strong performance in detecting
esophagitis regions.

B. EVALUATION OF EAC DETECTION

The performance of the proposed model in detecting the
EAC regions is reported in this section. For the Miccai’15
dataset, we train and validate the model on Leave-One-
Patient-Out cross-validation (LOPO-CV) approach as the
number of images from each patient is provided (i.e. LOPO-
CV has the advantage of estimating less bias results). For
the (LOPO-CV), that data is divided into N folds (N is the
number of patients) where each fold excludes the full images
of a single patient that is later used for testing and 10% of
the fold is set aside for validation. First, we compare the
proposed model with other CNN backbone networks for the
Faster R-CNN as described in the previous section. Table 3
represents the results of the different CNN networks without
Gabor features while Table 4 illustrate the results with Gabor
features. From both tables, the consequences of learning
features with the DenseNet is presented by increasing the
accuracy of detection by 5% & 7% with Gabor features and
by 2% & 4% without Gabor features when compared with
VGG’16 & AlexNet respectively.. Additionally, the Gabor
feature complements the feature map leading to a high recall
rate in detection of the EAC region correctly with less false
regions. The superior performance of the proposed model
is confirmed by comparing it with the other networks. As
illustrated, adding the Gabor features increased the recall
from 0.90 to 0.95, the precision from 0.88 to 0.91 and F-
measure from 0.89 to 0.93 when using DenseNet as the
backbone network. Also, in the case of using the VGG’16 as
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 8: Detection examples from Kvasir dataset. The gold-standard by the expert is outlined with green in all the images.
The generated bounding box by the model appears in the images with blue. From the first & second row, figures (a) to (f)
represents correct detection results. Figures (g) to (j) represents samples some false predictions where (g) & (h) have an IoU<0.5
while (i) & (j) wrong location. Figures (k) & (l) shows a false negative output where the model was not able to predict any
abnormality.

backbone network the recall increase from 0.88 to 0.90, the
precision from 0.86 to 0.87 and F-measure from 0.87 to 0.88.
And in the case of using the AlexNet as backbone network
the recall increase from 0.86 to 0.88, the precision from 0.87
to 0.88 and F-measure from 0.86 to 0.88.

TABLE 3: A comparison between different architectures as
a backbone for the Faster R-CNN DenseNet, VGG’16 and
AlexNet evaluated on the Miccai’15 dataset.

Methods Recall Precision F1-M mAP

DenseNet 0.90 0.88 0.89 0.81

VGG’16 0.88 0.86 0.87 0.78

AlexNet 0.86 0.87 0.86 0.78

Moreover, the mAP values has been increased from 0.81
to 0.84. Fig. 9 represents the AP measure as a function
of the IoU threshold for the Miccai’15 dataset. As shown
the proposed model achieved a high AP over different IoU

thresholds compared to other networks proving the effective-
ness of the model in find EAC regions.

TABLE 4: A comparison of results after concatenation the
Gabor features with different CNN architectures as a back-
bone for the Faster R-CNN evaluated on the Miccai’15
dataset based on a LOPO-CV

Methods Recall Precision F1-M mAP

Proposed Model 0.95 0.91 0.93 0.84

VGG’16 Gabor Feature 0.90 0.87 0.88 0.82

AlexNet Gabor Feature 0.88 0.88 0.88 0.80

To visualize the output from the proposed automatic de-
tection method, we show examples for the correctly detected
lesions, false positives and missed EAC lesions in Fig. 10.
As observed, the proposed method was able to successfully
locate tumor regions in several EAC images, examples for
correct detection with challenging cases are shown from
Fig. 10a through Fig. 10d. After inspecting the missed EAC
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FIGURE 9: AP-IoU threshold curves using different CNN
network with and with Gabor features for EAC detection in
Miccai’15 dataset.

lesions, we have found that most of the missed images are the
tumors that mainly have a flat surface with the esophagus (for
example: Fig. 10f). The false positive in our model are mainly
images with high barrett’s grade or have extreme change in
tissue color as shown in Fig. 10g & 10h.

C. COMPARISON WITH STATE-OF-THE-ART METHODS

To validate the effectiveness of the proposed method, we
compare the results of our detection method with the results
of two state-of-the-art methods reported in [30] and [37]
that use the same dataset of Miccai’15 to find EAC regions.
Moreover, for a fair comparison, the same validation method
(LOPO-CV) is adapted. As shown in Table 5, the results of
our detection methods outperformed against the state-of-the-
art results regarding all evaluation measures with a Recall:
95%, Precision: 91%, Specificity: 91% and F-measure: 93%.
Learning features using the proposed model achieved better
results with reduced trainable parameters than [30] and [37],
validating the effectiveness of reusing the features throughout
the network and enhancing the model performance on limited
training data.

TABLE 5: A comparison between the Proposed Model and
state-of-the-art methods Sommen et al. [30] and Mendel et
al. [37] on the Miccai’15 dataset based on a LOPO-CV

Methods Recall Precision F1-M

Proposed Model 0.95 0.91 0.93

Sommen et al. [30] 0.86 0.87 0.87

Mendel et al. [37] 0.94 0.88 0.91

D. ADDITIONAL MEASURES
The differences in recall and precision calculated using the
proposed model and using the DenseNet without the Gabor
features were statistically evaluated for both datasets, using
the paired t-test at a confidence level of 95%. The results of
the two-tailed p-value are shown in Table 6. As shown, for the
Kvasir dataset the difference between the recall and precision
values for the proposed model were found to be significantly
different when compared with the detection using features
extracted by the DenseNet only. On the other hand, the
Miccai’15 dataset showed to be significantly different only
for the recall results. Moreover, the detection time during
testing was also investigated. The average time to generate
detection bounding boxes using our proposed model was an
average of 2.34 seconds. We assume that the detection speed
could be improved when using a more powerful GPU.

TABLE 6: The p-value calculated using the paired t-test to
measure the difference of recall and specificity precision of
proposed model on the two datasets

Recall Precision

Kvasir dataset 0.0055 0.00023

Miccai’15 dataset 0.0447 0.10219

VI. CONCLUSION
In this study, we present a deep learning method to automat-
ically detect esophageal abnormalities. The Gabor filter re-
sponses calculated from endoscopic images are incorporated
into the Faster R-CNN while adopting the DenseNet as the
backbone network for CNN feature extraction. The dense
connectivity in DenseNet improves the flow of information
and the efficiency of parameters throughout the network by
reusing the learned features from previous layers. The Gabor
features extract local information which is fused with CNN
features, therefore improving the information used by Faster
R-CNN for abnormality detection. An additional advantage
of the proposed method is that it is trained using the full
image as an input instead of patches from the image as used
by other methods [37] in the literature. Currently, in our
work, we only investigated the detection of the abnormal
location by using the bounding box generated by the Faster-
RCNN. Future direction will include increasing the size of
the dataset with more types of abnormalities such as (BE and
SCC) and the investigation of segmenting abnormal regions.
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