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Abstract

Bayesian optimal design is considered for experiments where the response distribu-
tion depends on the solution to a system of non-linear ordinary differential equations.
The motivation is an experiment to estimate parameters in the equations governing
the transport of amino acids through cell membranes in human placentas. Decision-
theoretic Bayesian design of experiments for such nonlinear models is conceptually very
attractive, allowing the formal incorporation of prior knowledge to overcome the pa-
rameter dependence of frequentist design and being less reliant on asymptotic approx-
imations. However, the necessary approximation and maximization of the, typically
analytically intractable, expected utility results in a computationally challenging prob-
lem. These issues are further exacerbated if the solution to the differential equations
is not available in closed-form. This paper proposes a new combination of a proba-
bilistic solution to the equations embedded within a Monte Carlo approximation to
the expected utility with cyclic descent of a smooth approximation to find the optimal
design. A novel precomputation algorithm reduces the computational burden, mak-
ing the search for an optimal design feasible for bigger problems. The methods are
demonstrated by finding new designs for a number of common models derived from
differential equations, and by providing optimal designs for the placenta experiment.

Keywords: Approximate coordinate exchange algorithm; decision-theoretic design; Gaussian
process emulation; nonlinear design.
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1 Introduction

The dynamics behind a complex physical process can often be described by a set of non-linear

ordinary differential equations, where the solution to these equations represents the evolution

of system states with respect to time. It is common for the system of equations to depend on

some unknown physical properties (parameters) of the process in question and, potentially,

on some additional controllable variables. In this paper, new methods are presented for

designing experiments for the estimation of statistical models built on the solution to such a

system of equations; that is, choosing the most informative combinations of time points and

values of the controllable (design) variables at which observations of the physical process

should be made. A decision-theoretic approach is adopted, and hence the quality of a design

is measured via the expectation of a utility function chosen to encapsulate the aims of the

experiment.

We assume equations with s system states u(t; x,θ) = [u1(t;x,θ), . . . , us(t; x,θ)]T mod-

eled as a function of time t and v design variables with values held in the treatment vector

x ∈ X ⊂ Rv. The p-vector θ ∈ Θ ⊂ Rp holds the physical parameters requiring estimation.

For notational simplicity, the dependence of the system states on x and θ is usually sup-

pressed, with u(t) = u(t; x,θ), unless multiple treatments or parameter vectors are being

considered. We mostly find designs for initial value problems, with u(t) defined via equations u̇(t) = f (u(t), t,x; θ) for t ∈ T = [T0, T1]; 0 ≤ T0 < T1 ,

u(T0) = u0 ,
(1)

where u̇(t) is the gradient vector of u(t) with respect to time t, u0 = (u01, . . . , u0s)
T ∈ Rs

denotes initial conditions and, for given θ, f : Rs × T × X → Rs is a continuous function

satisfying the Lipschitz condition (see Iserles, 2009, p. 3). This latter assumption ensures

equation (1) has a unique solution.

Our research is motivated by experiments to study the transport of serine, an amino

acid, within a human placenta. Specifically, interest is in the movement of serine across a

placental cell membrane (called a vesicle). In the experiments, initial amounts (µl) of both

radioactive and non-radioactive serine are placed exterior and interior to the vesicle, and

then the amount of radioactive serine interior to the vesicle is measured at a series of time

points. The experimenters have control over initial amounts of both the interior and exterior
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non-radioactive serine for each experiment, and the times (in seconds) at which observations

are taken. The theoretical interior amounts of radioactive and non-radioactive serine at time

t form the s = 2 system states, u(t) = [u1(t), u2(t)]T, with the v = 2 design variables,

x = (x1, x2)T ∈ [0, 1000]2, being, respectively, the exterior amounts of radioactive and non-

radioactive serine at time t = 0. The equations governing the evolution of the system states

are

u̇1(t) = x1(u2(t)+θ2θ4)−u1(t)(x2+θ2θ3)
u?(u(t),t,θ,x)

,

u̇2(t) = x2(u1(t)+θ2θ4)−u2(t)(x1+θ2θ3)
u?(u(t),t,θ,x)

,

u1(0) = u01 ,

u2(0) = u02 ,


t ∈ [0, 600], (2)

where

u? (u(t), t,θ,x) =
1

θ1

{2x?12u
?
12(t) + (1 + θ2) [θ4x

?
12 + θ3u

?
12(t)] + 2θ3θ4} ,

u?12(t) = u1(t) + u2(t), x?12 = x1 + x2, and initial conditions u0 = (u01, u02)T ∈ [0, 1000]2 are

the amounts of radioactive and non-radioactive serine interior to the vesicle at time t = 0.

Here, the four physical parameters correspond to the maximum uptake (θ1), the proportion

of the reaction occurring through active transport (θ2) and two reaction rates (θ3 and θ4).

The values of these parameters are of scientific interest. See Panitchob et al. (2015) and

Widdows et al. (2017) for further details of the model and experiment.

To model experimental data from a physical process governed by (1), we build a statistical

model linking the physical parameters to noisy observations of the system states, or functions

thereof, via an assumed data-generating process dependent on the solution to the equations

(see, for example, Ramsay et al. 2007). We also assume that an experiment can be conducted

where these observations are collected at various different times and, possibly, from multiple

runs of the experiment with different combinations of values of the design variables. Let n

denote the number of runs in the experiment, with the jth run being made for treatment

xj = (x1j, . . . , xvj)
T and initial conditions u0j = (uj01, . . . , uj0s)

T, with observations being

made at time points tj = (tj1, . . . , tjnj
)T (j = 1, . . . , n). At each time point, observations

yjl ∈ Yjl ⊂ Rc are taken on c ≤ s different responses. Let yT
j = (yT

j1, . . . ,y
T
jnj

) be the cnj-

vector of observations from the jth run, and y =
(
yT

1 , . . . ,y
T
n

)T
be the vector of observations

from the whole experiment.
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We describe the experimental data y using statistical model

y|θ,γ,d ∼ F (θ,γ; d) , (3)

with F a specified probability distribution, γ ∈ Γ ⊂ Rq a q-vector of nuisance parameters,

and d ∈ D a vector specifying the design, chosen from the space of possible designs D.

The dependence of (3) on physical parameters θ and design d is through the solution to

equations (1). The most common form of this dependence, assumed in this paper, is via the

expected response,

E
(
yjl|θ,xj, tjl

)
= g (u(tjl),θ) ,

with g : Rs × Θ → Yjl an assumed function. However, the methodology developed here is

also immediately applicable to other types of dependency.

Here, we find designs for experiments where one or more of the treatments x1, . . . ,xn,

observation times tj1, . . . , tjnj
, for j = 1, . . . , n, and initial conditions u01, . . . ,u0n are under

the experimenters’ control. In practice, some of these may be fixed by the protocol of the

experiment. We also find designs where the initial conditions are unknown, and included in

the vector of parameters.

In the human placenta experiment, the initial quantities of non-radioactive serine interior

(u02) and exterior (x2) to the vesicle can be varied, with the initial quantities of radioac-

tive serine (u01 and x1) fixed by the experimental protocol. The c = 1 observed response,

yjl, is the amount of interior radioactive serine at time tjl (j = 1, . . . , n; l = 1, . . . , nj). A

statistical model is assumed where E (yjl|θ,xj, tjl) = u1(tjl; xj,θ). Hence, for this experi-

ment g(u,θ) = u1. The design consists of n combinations of initial quantities of exterior

and interior non-radioactive serine, x2j and u02j, along with corresponding observation times

tj1, . . . , tjnj
; that is, d = [(x21, u021)T, . . . , (x2n, u02n)T, tT1 , . . . , t

T
n ]T.

Previous research on optimal design for models formed as the solution of ordinary dif-

ferential equations has focussed on frequentist methods for models with additive normally

distributed errors, with a design selected that maximizes a function of the Fisher informa-

tion matrix for θ (e.g. Atkinson and Bogacka, 2002 and Rodŕıguez-Dı́az and Sánchez-León,

2014). The inverse of the Fisher information matrix provides an asymptotic approximation

to the variance-covariance matrix for maximum likelihood estimators of θ. As is usual for

nonlinear models, the information matrix depends on the value of θ, which is uncertain
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prior to the experiment. The most common methodology to overcome this dependence is

the adoption of pseudo-Bayesian techniques, where a design is found that maximizes the

expectation of the function of the information matrix with respect to a prior distribution

for θ. Numerical methods are used to obtain the derivatives of the expected response with

respect to θ that are necessary to obtain the information matrix. Most commonly, the “di-

rect method” (Valko and Vajda, 1984) is employed, with an additional set of differential

equations being defined that then also require numerical solution. Many developments in

this area have occurred in the chemical engineering literature, labeled “model-based design

of experiments”; see Franceschini and Macchietto (2008) for a review.

In contrast to the above approaches, in this paper, we present and apply the first methods

for decision-theoretic Bayesian optimal design for models formed from ordinary differential

equations. Although straightforward in principle, Bayesian optimal design faces a number of

practical difficulties. Firstly, assessment of a given design requires evaluation of an expected

utility depending on high-dimensional and typically intractable integrals. Secondly, max-

imization of the expected utility presents a high-dimensional and stochastic optimization

problem. See Ryan et al. (2016) and Woods et al. (2017) for recent reviews.

To address the high-dimensional optimization problem, we extend and apply the ap-

proximate coordinate exchange (ACE) algorithm recently proposed by Overstall and Woods

(2017). A brief description of the algorithm is provided in Section 4.1 and Appendix A.

The computational burden of optimal Bayesian design is exacerbated when the model

evaluations (systems states) are only available as the numerical solution to the differential

equations. In addition to increasing the computational expense of evaluating the expected

utility, numerical solutions introduce an additional source of uncertainty through the nu-

merical errors that result from finite discretization of the time interval T . We evaluate the

expected utility by embedding within a Monte Carlo approximation scheme an adaption of

the probabilistic solution to systems of differential equations proposed by Chkrebtii et al.

(2016); see Section 2. In essence, this approach accounts for uncertainty due to discretization

error by placing a joint Gaussian process prior on both the system states and time deriva-

tives, and predicts future system states by conditioning on the derivatives. In Section 3,

after introducing the foundations of Bayesian design, we propose innovative precomputation

of variance and covariance quantities that substantially reduces the computational burden of
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incorporating the probabilistic solution into a Bayesian design strategy. Our approach makes

it possible to search for multi-variable designs which would otherwise be computationally

infeasible.

We demonstrate the effectiveness for optimal design of the combination of Monte Carlo

approximation, probabilistic numerics and cyclic descent for a variety of exemplar models in

Section 4. The differing complexities of the problems addressed showcase the flexibility of

the methodology. In Section 5 we apply the methodology to a realistic statistical model for

the human placenta example, based on the solution to (2), and compare to designs proposed

by the experimenters. We find designs for the goals of parameter estimation and model

selection, where the aim is to determine if a simpler model with θ3 = θ4 (i.e. the two

reaction rates equal) is an adequate description for the data.

2 Probabilistic solutions to ordinary differential equations

When working with numerical models implemented via computer code, it has become stan-

dard to build statistical approximations, or emulators, by performing a computer experiment

to obtain model outputs at carefully selected input combinations. Most commonly, a Gaus-

sian process (GP) prior is assumed to describe the output from the model, with the emulator

formed from the updated posterior GP (conditioned on the model output from the computer

experiment); see Sacks et al. (1989) and Santner et al. (2003). In contrast, central to the

Chkrebtii et al. (2016) methodology is the adoption of a GP prior for the hth derivative

function u̇h(·), h = 1, . . . , s, defined via mean and covariance functions ṁ0h(·) and Ċ0(·, ·),

where we assume a common covariance function for each of the s derivatives. Such a prior

implies that for any finite collection of times t = (t1, . . . , tw)T, the joint distribution of

u̇h(t) = [u̇h(t1), . . . , u̇h(tw)]T will be multivariate normal N(ṁ0h(t), Ċ0(t, t)), with n-vector

ṁ0h(t) having lth entry ṁ0h(tl) and, for vector t′ = (t′1, . . . , t
′
w′)T, w × w′ matrix Ċ0(t, t′)

having lkth entry Ċ0(tl, t
′
k). A joint Gaussian process prior for both u̇h(·) and the solution

function uh(·) then follows directly, implying the joint distribution u̇h(t)

uh(t
′)

 ∼ N

 ṁ0h(t)

m0h(t
′)

 ,

 Ċ0(t, t) C̄0(t, t′)

C̄0(t′, t) C0(t′, t′)

 ,
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Figure 1: Plots showing 1000 draws from the probabilistic solution of u1(t) and u2(t) against

t for system of equations (2) that describe the transport of serine in a human placenta.

with w-vector m0h(t) having lth entry m0h(tl) =
∫ tl

0
ṁ0h(z) dz+u0h, w×w′ matrix C0(t, t′)

having lkth entry C0(tl, t
′
k) =

∫ tl
0

∫ t′k
0
Ċ0(z, z′) dzdz′, and w × w′ cross-covariance matrix

C̄0(t, t′) having lkth entry C̄0(tl, t
′
k) =

∫ t′k
0
Ċ0(tl, z) dz; see also Solak et al. (2003) and

Holsclaw et al. (2013). Hence, solution vector uh(t) = [uh(t1), . . . , uh(tn)]T follows the mul-

tivariate normal distribution N(m0h(t),C0(t, t′)). Note that definition of the covariance

function of uh(t) via integration ensures C0(0, 0) = 0 and hence enforces the boundary

condition uh(0) = u0h.

For a given x and θ, this prior distribution can be updated using derivative evaluations

on a grid τ = (τ1, . . . , τN)T of time points via Algorithm 1 by sequentially conditioning on

f(u, τr+1,x; θ) calculated for solution state uh sampled from the posterior distribution at

point τr. The final marginal Gaussian process for uh(t) has mean and covariance functions

given by

mNh(t) = u0h + C̄0(t, τ )BNFNeh , CN(t, t′) = C0(t, t′)− C̄0(t, τ )BNC̄0(τ , t′) ,

for h = 1, . . . , s, where eh is the hth unit vector, and theN×smatrix of derivative evaluations

FN and the updated N ×N derivative covariance matrix BN are defined as in Algorithm 1.

Chkrebtii et al. (2016) allowed covariance function Ċ0(t, t′) to depend on hyperparam-

eters controlling the scale and length of the covariances. Given experimental data, a joint

posterior distribution for the model parameters and hyperparameters can be sampled by

embedding the probabilistic solution to the differential equations within a Markov chain

Monte Carlo scheme. Chkrebtii et al. (2016) also suggested possible fixed values for the
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Algorithm 1: Sequential updating and sampling for time points t = (t1, . . . , tw)T

of the joint Gaussian process for the derivative and solution for the s system states
for initial values u0, treatment vector x, physical parameters θ and evaluation grid
τ = (τ1, . . . , τN)T, with τ1 = T0. (Adapted from Chkrebtii et al., 2016).

1 Set Λ1 = 0 and f 1 = f(u0, T0,x; θ)
2 for r = 1, . . . , N − 1 do

(a) Set τ r = (τ1, . . . , τr)
T

(b) Compute

Br = (Ċ0(τ r, τ r) + Λr)
−1

ar = BrC̄0(τ r, τr+1)

Cr = C0(τr, τr)− C̄0(τr+1τ r)BrC̄0(τ r, τr+1)

Ċr+1 = Ċ0(τr+1, τr+1)− Ċ0(τr+1, τ r)BrĊ0(τ r, τr+1)

Λr+1 = diag{Λr, Ċr+1}

(c) Compute

mr = u0 +F T
r ar , where F r is the r× s matrix with kth row fk (k = 1, . . . , N − 1)

(d) Sample

u(τr+1) ∼ N(mr, CrIS)

and compute

f r+1 = f(u(τr+1), τr+1,x; θ)

3 Compute

BN = (Ċ0(τN , τN) + ΛN)−1

AN(t) = BNC̄0(τ , t)

MN(t) = 1n ⊗ uT
0 +AT

N(t)FN , with 1n the n-vector with all entries equal to one and
FN the N × s matrix with kth row fk (k = 1, . . . , N)

CN(t, t) = C0(t)− C̄0(t, τ )BNC̄0(τ , t)

4 For h = 1, . . . , s, sample

uh(t1), . . . , uh(tn) ∼ N (MN(t)eh,CN(t, t)), where eh is the hth unit vector
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covariance hyperparameters. In Section 3.2 we demonstrate the computational savings that

can be achieved for optimal design via precomputing of various posterior quantities when

these parameters are fixed.

Figure 1 presents 1000 draws from probabilistic solutions for the placenta example fol-

lowing equations (2). Updated Gaussian processes for u1(t) and u2(t) were generated using

Algorithm 1 assuming a squared exponential covariance function for Ċ(t, t′) (see Rasmussen

and Williams, 2006, p. 83). An evaluation grid τ with N = 501 evenly spaced time points was

used, and the solution sampled for time t ∈ [T0, T1] = [0, 600] seconds with physical parame-

ters θ = (200, 0.05, 100, 100)T, initial values u0 = (0, 1000)T and treatment x = (7.5, 1000)T.

Note how the uncertainty in the solution increases as t increases away from t = T0 = 0 where

we know, in this example, the true value of u(t).

3 Bayesian design for ordinary differential equation models

3.1 Decision-theoretic Bayesian optimal design

Design of experiments fits naturally within a Bayesian framework, with the decision on what

design d to employ made before the data is collected. Hence it is natural to use available prior

information to inform this choice. This information includes the form of statistical model (3)

including any underpinning physical theory, for example, as encapsulated in equations such

as (1). It also includes any prior information on the values of the parameters θ,γ, captured

via a prior density π(θ,γ), which we assume is independent of the design.

A decision-theoretic Bayesian optimal design, d?, maximizes the expectation of a specified

utility function φ(θ,y,d) with respect to the unknowns prior to experimentation,

Φ(d?) = max
d∈D

E [φ(θ,y,d)|d]

= max
d∈D

∫
Θ.Y

φ(θ,y,d)π(θ,y|d) dθ dy ,

where the joint distribution of the unknown physical parameters and responses, conditional

on the design used for data collection, can be decomposed as

π(θ,y|d) =

∫
Γ

π(y|θ,γ,d)π(θ,γ) dγ ,
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and hence, when regarded as a function of θ alone, is proportional to the posterior density.

See the seminal review paper by Chaloner and Verdinelli (1995).

The function φ(θ,y,d) quantifies the utility, relative to the aims of the experiment, for

choosing design d when we obtain data y under physical parameters θ. Its choice should

reflect the goals of the experiment. Here, we apply the following exemplar utility functions:

1. Negative squared error loss (NSEL) for estimation of θ:

φ(θ,y,d) = −‖θ − E(θ|y,d)‖2
2 ,

with ‖·‖p denoting the lp-norm and E(θ|y,d) the posterior mean, where expectation

is taken with respect to the marginal density π(θ|y,d) =
∫

Γ
π(θ,γ|y,d) dγ. It can be

shown that the expected utility simplifies to

Φ(d) = −
∫
Y

tr {var(θ|y,d)} π(y|d) dy ,

the negative expected value of the posterior variance-covariance matrix for θ with

respect to the marginal distribution of the response.

2. Negative absolute error loss (NAEL) for estimation of θ:

φ(θ,y,d) = −‖θ −Med(θ|y,d)‖1 ,

with Med(θ|y,d) the vector of marginal posterior medians of the physical parameters.

3. Shannon information gain (SIG) for θ:

φ(θ,y,d) = log π(y|θ,d)− log π(y|d) , (4)

where

π(y|d) =

∫
Θ

π(y|θ,d)π(θ) dθ , π(y|θ,d) =

∫
Γ

π(y|θ,γ,d)π(γ) dγ .

Maximizing the expectation of (4) is equivalent to maximizing the expected Kullback-

Liebler divergence between the prior and posterior distributions (Chaloner and Verdinelli,

1995).

For the human placenta example, we also employ two bespoke utility functions tailored to

the problems of point estimation and model selection.
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4. 0-1 utility for estimation of θ:

φ(θ,y,d) = 1Θ̌ [E(θ|y,d)] ,

with 1Θ̌ the indicator function for the product set

Θ̌ =

p∏
i=1

Θ̌i =
{

(θ̌1, . . . , θ̌p) | θ̌i ∈ Θ̌i ∀i ∈ {1, . . . , p}
}
,

where Θ̌i =
{
θ̌ | θi − δi ≤ θ̌ ≤ θi + δi

}
, and δ = (δ1, . . . , δp)

T is a specified tolerance

vector. That is, the utility is equal to 1 if, for all i = 1, . . . , p, the ith element of the

posterior mean vector E(θ|y,d) lies within δi of the corresponding element of θ.

For the final utility function considered we redefine the utility as a function of the chosen

model m ∈M.

5. 0-1 utility for model selection:

φ(m,y,d) = 1m(m?) ,

where 1m is the indicator function for the singleton set with element m and m? ∈

arg maxm∈M π(m|y) is the model with maximum posterior probability. For this utility,

the expected utility is given by

Φ(d) =
∑
m∈M

π(m)

∫
Y
φ(m,y,d)π(y|m,d) dy ,

with π(y|m,d) =
∫

Θ(m)

∫
Γ(m) π(y|θ(m),γ(m),m,d)π(θ(m),γ(m)|m) dγ(m) dθ(m), and θ(m) ∈

Θ(m) and γ(m) ∈ Γ(m) physical and nuisance parameters, respectively, for model m.

A barrier to the application of Bayesian design for most nonlinear models, including those

considered in this paper, is the analytic intractability of both the utility function (which typi-

cally depends on posterior quantities) and expected utility. Numerical methods are therefore

required, with a double-loop Monte Carlo approximation being commonly employed (Ryan,

2003). Such an approach uses an “inner” Monte Carlo sample of size B̃ to approximate

any necessary posterior quantities, and then an “outer” Monte Carlo sample of size B to

approximate the expected utility with respect to the joint distribution of y and θ; see also

Overstall and Woods (2017).
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We use the approximation

Φ̂(d) =
1

B

B∑
b=1

φ̂(θb,yb,d) , (5)

with {θb,yb}Bb=1 a first (outer) sample from the joint distribution of the physical parameters

and response, and φ̂(θ,y,d) a further Monte Carlo approximation to the utility function.

Each of the utility functions above can be approximated using a second (inner) Monte

Carlo sample
{
θ̃b̃, γ̃ b̃

}B̃
b̃=1

from distribution with density π(θ,γ):

1. NSEL:

φ̂(θ,y,d) = −‖θ − Ê(θ|y,d)‖2
2 ,

for an importance sampling estimate of E(θ|y,d),

Ê(θ|y,d) =
B̃∑
b̃=1

wb̃θ̃b̃ , (6)

with

wb̃ =
π(y|θ̃b̃, γ̃ b̃,d)∑B̃
b̃=1 π(y|θ̃b̃, γ̃ b̃,d)

. (7)

See Ryan et al. (2016) and references therein.

2. NAEL:

φ̂(θ,y,d) = −‖θ − M̂ed(θ|y,d)‖1 ,

with vector M̂ed(θ|y,d) having ith entry M̂edi(θ|y,d) = (θ̃i(z) + θ̃i(z+1))/2 (i =

1, . . . , p), where θ̃i(1) ≤ · · · ≤ θ̃l(B̃) are the ordered values taken by the ith element

of the sample
{
θ̃b̃

}B̃
b̃=1

, z = max{l = 1, . . . , B̃|
∑l

b̃=1 wi(b̃) ≤ 0.5} and the wi(b̃) are the

weights (7) ordered according to θi(b̃).

3. SIG:

φ̂(θ,y,d) = log π̂(y|θ,d)− log π̂(y|d) ,

with

π̂(y|d) =
1

B̃

B̃∑
b̃=1

π(y|θ̃b̃, γ̃ b̃,d) , π̂(y|θ,d) =
1

B̃

B̃∑
b̃=1

π(y|θ, γ̃ b̃,d) .
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4. 0-1 estimation:

φ̂(θ,y,d) = 1Θ̌

[
Ê(θ|y,d)

]
,

for Ê(θ|y,d) once again the importance sampling estimate (6) of the posterior mean.

5. 0-1 model selection:

φ̂(m,y,d) = 1m(m̂?) ,

where m̂? ∈ arg maxm∈M π(m)
∑B̃

b̃=1 π(y|θ̃(m)

b̃ , γ̃
(m)

b̃
,m,d)/B̃ for

{
θ̃

(m)

b̃ , γ̃
(m)

b̃

}B̃
b̃=1

a sam-

ple from the prior distribution under model m with density π(θ(m),γ(m)|m).

The above Monte Carlo approximations φ̂ to the utility functions will introduce some

bias into the approximation of the expected utility, as the utilities are nonlinear functions

of posterior quantities. In general, this bias will be inversely proportional to the value of B̃,

and hence can be made negligible for large inner samples.

3.2 Extensions to ordinary differential equation models

To apply the methodology outlined in the previous section to models built from systems

of ordinary differential equations requires incorporation of further steps to account for dis-

cretization errors in the numerical solution to the equations, and to mitigate the additional

computational cost of multiple evaluations of the numerical solution. The approximations to

the expected utilities require repeated sampling of y from distribution (3), and evaluation of

the corresponding density function π(y|θ,γ,d). When the distribution of y depends on the

solution vector, the approximations require at least B+B̃ evaluations of a numerical solution

to u(tjl; xj,θ) for each j = 1, . . . , n and l = 1, . . . , nj. In addition to the computational cost

of these repeated evaluations, the necessary discretization of the time domain by a numerical

solver introduces an additional source of uncertainty that should be accounted for in both

the design of the experiment and the subsequent inference.

The probabilistic solution of Chkrebtii et al. (2016), outlined in Section 2, fits naturally

within a Monte Carlo approximation of the expected utility; for each generated value of

the physical parameters θ, a solution path for u(t) is generated from an updated Gaussian

process. The uncertainty introduced by the discretization of time is quantified, and updated,

via the joint Gaussian process prior for the time derivatives and solution. Algorithm 2

13



outlines the steps in generating an approximation to a general utility function φ using double

loop Monte Carlo. As given, Algorithms 1–2 depend on the initial values u0j for the jth

treatment, i.e. the initial values are assumed known. In some situations, learning unknown

initial values may be part of the inference problem, i.e. prior distributions are assumed and

updated to a posterior distribution in light of the experimental responses. This case can

be incorporated into these algorithms by replacing all occurrences of u0j by a value u0jb

generated from the prior distribution in Algorithm 2, in an analogy to how the physical

parameters θ are handled.

Algorithm 2: Evaluation of the approximate expected utility Φ̂(d) when the distribu-
tion of the response depends on the solution to a ordinary differential equation.

1 for b̃ = 1, . . . , B̃ do

Sample (θ̃
T

b̃ , γ̃
T
b̃

)T ∼ π(θ,γ) (the prior distribution)

for j = 1, . . . , n do
for l = 1, . . . , nj do

Sample us(tjl; xj, θ̃b̃) using Algorithm 1

2 for b = 1, . . . , B do
Sample (θT

b ,γ
T
b )T ∼ π(θ,γ) (the prior distribution)

for j = 1, . . . , n do
for l = 1, . . . , nj do

Sample us(tjl; xj,θb) using Algorithm 1

Sample yj|θb,γb, d ∼ F(θb,γb; d)

Calculate φ̂(θb,yb, d) using the inner sample generated in step 1

3 Calculate Φ̂(d) = 1
B

∑B
b=1 φ̂(θb,yb, d)

Naive implementation of Algorithm 2 for approximating the expected utility presents a

considerable computational challenge, with the matrix computations in steps 2(b) and 3 of

Algorithm 1 being undertaken ñ(B+ B̃) times, with ñ =
∑n

j=1 nj. In particular, calculation

of matrix BN requires inversion of an N × N matrix. This leads to an algorithm with

computational complexity O(ñN3(B + B̃)).

To reduce the computational cost of the algorithm, we can compromise on the choice

of covariance function Ċ0(t, t′). Rather than tune the covariance through the selection of

different parameter values for each choice of x and θ, we can fix these parameters (e.g. fol-
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lowing recommendations in Chkrebtii et al. (2016); see Section 4 for our choices). This allows

precomputation of various covariance matrices and vectors, see Algorithm 3. Such precom-

putation alleviates the need to invert BN when sampling u(t), reducing the computational

complexity of the approximation to O(N3 + ñN2(B + B̃)).

In fact, this precomputation can be performed just once, prior to any optimization routine

being called. Hence for large experiments and Monte Carlo sample sizes, the computational

complexity of the precomputation is essentially fixed, and the complexity of the approxima-

tion within the optimization becomes O(ñN2(B + B̃)). This computational savings makes

the optimization feasible for experiment sizes, evaluation grids and Monte Carlo sample sizes

for which designs could not otherwise be found.

Algorithm 3: Precomputation of variances Cr, Ċr+1, Br and covariances ar for eval-
uation grid τ = (τ1, . . . , τN)T

1 Set Λ1 = 0
2 for r = 1, . . . , N − 1 do

(a) Set τ r = (τ1, . . . , τr)
T

(b) Compute

Br = (Ċ0(τ r, τ r) + Λr)
−1

ar = BrC̄0(τ r, τr+1)

Cr = C0(τr, τr)− C̄0(τr+1, τ )BrC̄0(τ r, τr+1)

Ċr+1 = Ċ0(τr+1, τr+1)− Ċ0(τr+1, τ r)BrĊ0(τ r, τr+1)

Λr+1 = diag{Λr, Ċr+1}

3 Compute BN =
(
Ċ0(τN , τN) + ΛN

)−1

4 Examples

4.1 Preliminaries

In this section we demonstrate the Bayesian design methodology for three common examples

of models formed from the solution of ordinary differential equations:

1. a compartmental model (Section 4.2);

2. a model formed from the FitzHugh-Nagumo equations (Section 4.3);
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3. a model of the JAK-STAT mechanism (Section 4.4).

For each, we use the methodology in Section 3.2 to approximate expected utilities for

parameter estimation. Bayesian optimal (or near optimal) designs are found by embedding

these Monte Carlo approximations within the ACE algorithm (Overstall and Woods, 2017).

The ACE algorithm is a cyclic descent, or coordinate exchange, algorithm (see Meyer and

Nachtsheim, 1995 and Lange, 2013, p. 171) that performs a sequence of conditional maxi-

mizations for each element (coordinate) of d in turn, keeping all other elements fixed. Each

of these one-dimensional maximizations is performed by constructing a Gaussian process

smoother, or emulator, for the Monte Carlo approximation as a function of the coordinate.

Use of an emulator alleviates both the computational burden and lack of smoothness asso-

ciated with the Monte Carlo approximations. This algorithm extends the optimal design

via curve fitting methods originally presented by Müller and Parmigiani (1996) to high-

dimensional design problems. The ACE algorithm is outlined in Appendix A and imple-

mented in the acebayes R package (Overstall et al., 2018b, Overstall et al., 2018c), available

on CRAN.

To employ the probabilistic solution to the ordinary differential equations, a choice of

covariance function is required for the Gaussian process prior on the derivative functions.

The choice of covariance function should be determined by the assumed smoothness of the

solutions uh(t). Chkrebtii et al. (2016) suggested two covariance functions, the squared

exponential covariance

Ċ0(t, t′) =
√
πα−1λ exp

{
−(t− t′)2/4λ2

}
, (8)

which is infinitely differentiable and hence suitable for smooth solutions, and the piecewise

linear uniform covariance

Ċ0(t, t′) =

α
−1 {min(t, t′)−max(t, t′) + 2λ} for {max(t, t′)−min(t, t′)} /2 > λ ,

0 otherwise ,
(9)

where α, λ > 0. This latter function is non-differentiable and hence suited to non-smooth

solutions. We employ these two functions, with fixed values of α and λ to facilitate the

precomputation outlined in Section 3.2. Throughout, we assume the probabilistic solution is

calculated on a grid τ = (τ1, . . . , τN)T of equally-spaced points and, unless otherwise stated,

set α = N and λ = 4(τN − τ1)/N .
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The Supplementary Material contains an R package called aceodes and a vignette. The

vignette describes how aceodes can be used to reproduce the designs found in the remainder

of this section and in Section 5.

4.2 Compartmental model

In pharmacokinetics studies, compartmental models are used to describe the distribution of

a drug inside a living body. Such models have been routinely used to demonstrate optimal

experimental design methodology (see, for example, Atkinson et al., 1993, Ryan et al., 2014,

and Overstall and Woods 2017). To compare designs found using the probabilistic solution to

designs found using an exact solution, we use a simple example where an analytical solution

to the differential equations is available. An open one-compartment model is considered

with first-order absorption, described by the following system of s = 2 ordinary differential

equations for t ∈ [0, 24] hours:

u̇1(t) = −θ1u1(t) ,

u̇2(t) = (θ2/θ3)u1(t)− θ2u2(t) ,

u(0) = (D, 0)T ,

where u1(t) and u2(t) are respectively the amounts of drug outside and inside the body, D

is the known initial dose, and θ = (θ1, θ2, θ2)T are unknown parameters.

These equations define a homogeneous linear system with constant coefficients, resulting

in the analytical solution

u1(t) = D exp (−θ1t) ,

u2(t) =
Dθ2

θ3(θ2 − θ1)
(exp(−θ1t)− exp(−θ2t)) . (10)

Following Ryan et al. (2014), we assume D = 400 and log θi ∼ N(µi, 0.05), indepen-

dently, for l = 1, 2, 3, with (µ1, µ2, µ3)T = (log 0.1, log 1, log 20)T. The amount of drug

inside the body, yl, is observed at observation time tl, and is modeled through assuming

yl ∼ N (u2(tl), σ
2 + τ 2u2(tl)

2), independently, where σ2 = 0.1 and τ 2 = 0.01. The choice of

design here only involves selecting n = 15 observation times: t1, . . . , tn. We impose the prac-

tically realistic constraint that the observation times have to be at least 15 minutes apart.

Such a constraint is straightforward to incorporate into the ACE algorithm (see Overstall

and Woods, 2017).
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When applying the probabilistic solution, we assume squared exponential covariance (8)

as the functions u(t) are known to be smooth and a discrete evaluation grid, τ , with N = 501.

For each of the NSEL, NAEL and SIG utility functions from Section 3.1, we compare

designs found under the exact and probabilistic solutions using ACE to a uniform design

with n = 15 equally-spaced time points in [0, 24] hours. Figure 2 presents boxplots of

twenty evaluations of the Monte Carlo approximation to the expected utility for the uniform

design and the optimal design found for each utility. There is negligible difference between

the designs found under the exact and probabilistic solutions, and these designs are clearly

superior to the uniform design. Figure 2 also gives the observation time points from each

design being compared. The optimal designs appear to favor observation times near the

peak of u2(t), at t ≈ 2.5 hours, and then a series of observation times towards the end of the

time interval. The optimal design under SIG has two distinct sets of points just before and

after the maximum of u2(t), whereas the designs under NSEL and NAEL have just one set

of points, generally occurring just after the peak response.

4.3 FitzHugh-Nagumo equations

The FitzHugh-Nagumo equations (FitzHugh, 1961 and Nagumo et al., 1962) describe the

behavior of spike potential in the giant axon of squid neurons:

u̇1(t) = θ3 [u1(t)− u1(t)3/3 + u2(t)] ,

u̇2(t) = − [u1(t)− θ1 + θ2u2(t)] /θ3 ,

u(0) = (−1, 1)T ,

where u1(t) is the voltage across the axon membrane, u2(t) is the recovery variable giving a

summary of outward current, θ = (θ1, θ1, θ3)T, and t ∈ [0, 20]ms. These equations cannot be

solved analytically.

We assume an experiment that measures the voltage, yl, at time tl, for l = 1, . . . , n. Fol-

lowing Ramsay et al. (2007), yi ∼ N (u1(ti), σ
2), independently, where σ ∼ Uniform[1/2, 1].

A priori, we assume θ1, θ2 ∼ Uniform[0, 1] and θ3 ∼ Uniform[1, 5].

As noted by Ramsay et al. (2007), the solution to the FitzHugh-Nagumo equations can

alternate between smooth evolution and sharp changes of direction. Hence, we employ

uniform covariance (9) for the probabilistic solution. The evaluation grid has size N = 200.
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Figure 2: Results from the compartmental model in Section 4.2. Top row: boxplots of

20 evaluations of the Monte Carlo approximation to the expected utility for the uniform

design and the optimal designs (for the exact and probabilistic solution) found under three

different utility functions. Bottom plot: design points from each of the optimal designs and

the uniform design, along with 100 draws from the exact solution, u2(t), giving the amount

of drug at time t, for values drawn from the prior distribution of θ.
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Figure 3: Results from the FitzHugh-Nagumo equations in Section 4.3. Top row: boxplots

of 20 evaluations of the Monte Carlo approximation to the expected utility for the uniform

design and the optimal designs found under three different utility functions. Bottom plot:

design points from each of the optimal designs and the uniform design, along with 100 draws

from the probabilistic solution, u1(t), giving the voltage at time t, for values drawn from the

prior distribution of θ.
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The design consists of the n = 21 observation times, t1, . . . , tn. Similarly to Section 4.2,

we stipulate that the observation times must be at least 0.25ms apart, and find designs

under the NSEL, NAEL and SIG utility functions. We compare these optimal designs to

a uniform design with n equally spaced points in [0, 20]ms. Figure 3 presents boxplots of

twenty evaluations of the Monte Carlo approximation to the expected utility for the uniform

design and the optimal designs found via ACE under each utility function. In each case,

there is a clear improvement to be made over using the uniform design. Also shown in

Figure 3 are the four designs under comparison, along with realizations drawn from the

solution u1(t). Both the NSEL and NAEL optimal designs have a substantial number of

observations near the beginning of the experiment. Both these designs have around one-

third of their observation times before 2.5ms; the SIG and uniform designs only make three

observations before this time. A feature of all of the optimal designs is that they make no

observations between about 2.5 and 6ms, where the voltage is expected to rapidly decrease.

The remaining observation times are close to being evenly spaced. The initial phase of high

frequency observations provides information about the steep increase in voltage for small

t. The remaining observation times aid efficient parameter estimation, occurring within an

interval within which different parameter values can produce very different model solutions.

4.4 JAK-STAT mechanism

Chkrebtii et al. (2016), and authors referenced therein, considered Bayesian inference for the

JAK-STAT mechanism. A system of s = 4 equations describes changes in the biochemical

reaction states of STAT-5 transcription factors that occur in response to binding of the

Erythropoietin hormone to cell surface receptors (Pellegrini and Dusanter-Fourt, 1997):

u̇1(t) = −θ1u1(t)κ(t) + 2θ4u4(t− ω) ,


t ∈ [0, 60] seconds ,
u̇2(t) = θ1u1(t)κ(t)− θ2u2(t)2 ,

u̇3(t) = −θ3u3(t) + 1
2
θ2u2(t)2 ,

u̇4(t) = θ3u3(t)− θ4u4(t− ω) ,

u(t) = (u01, 0, 0, 0)T , t ∈ [−ω, 0] ,

with u01 ≥ 0 unknown and κ(t) an unknown forcing function. The transcription states return

to the initial state after gene activation in the cell nucleus, modeled via the unknown time

delay ω ≥ 0. This system is an example of a delay initial function problem.
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Swameye et al. (2003) conducted an experiment that made measurements on the nonlin-

ear transformation of the states given by

g(u,θ) =


θ5(u2 + 2u3)

θ6(u1 + u2 + 2u3)

u1

u3/(u2 + u3)

 =


g1(u,θ)

g2(u,θ)

g3(u,θ)

g4(u,θ)

 .

The experiment made n = 16 (noisy) observations on g1 and g2 at times t1, . . . , t16, one

observation on each of g3 and g4 at t = 0 and t = t?, respectively. The design (choices of

time points) used in the experiment reported by Swameye et al. (2003) are given in Figure 4.

The following statistical model is assumed

(y1l, y2l)
T ∼ N

(
[g1(u(tl),θ), g2(u(tl),θ)]T,Al

)
,

y3 ∼ N
(
g3(u(0),θ), σ2

3

)
, y4 ∼ N

(
g4(u(t?),θ), σ2

4

)
,

independently, for l = 1, . . . , n, where Al = diag {σ2
1l, σ

2
2l}.

We design a follow-up experiment using information from this previous study, and choose

values of t1, . . . , tn and t? to maximize different expected utilities assuming, for simplicity, a

single observation of y3 will also be made at t = 0 (as in the original experiment). We use the

posterior distributions from Chkrebtii et al. (2016) as priors for θ, ω and u01. These authors

assumed the variance parameters were fixed. Instead, we assume σ2
1l = σ2

1, σ2
2l = σ2

2, for

all l = 1, . . . , n, and σ1, σ2 ∼ Uniform[0, 0.1], σ3 ∼ Uniform[0, 20] and σ4 ∼ Uniform[0, 0.1].

These prior distributions are consistent with the experimentally determined values used for

previous analyses (see Raue et al., 2009). The forcing function κ(t) is assumed unknown but

has been measured at 16 time points. We follow Chkrebtii et al. (2016) and assume these

measurements are made without error and interpolate with a Gaussian process to allow a

probabilistic prediction of κ(t) for any t ∈ [0, 60].

The nature of the delay initial function problem introduces an added complexity to our

implementation of the probabilistic solution. At the end of step 2 of Algorithm 1, we compute

f r+1 = f(u(τr+1), τr+1,θb). For this example, to compute f r+1, we require u4(τr+1 − ωb),

where ωb is a value generated from the prior distribution of ω. If τr+1 − ωb ≤ 0, then

u4(τr+1 − ωb) = 0 as specified by the initial conditions of the system of equations. For

τr+1−ωb > 0, the conditional distribution of u4(τr+1−ωb) can be derived in the probabilistic
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solution of Chkrebtii et al. (2016) and a value for u4 generated. However, this will be

computationally expensive to incorporate in the implementation of the probabilistic solution

described in Section 3.2 and would prevent the precomputation in Algorithm 3. Hence, if

τr+1−ωb > 0, we replace u4(τr+1−ωb) by u4(τr̄), where r̄ = arg minr′=1,...,r+1 |τr+1−ωb− τr′ |,

i.e. from the series of u4(τ1), . . . , u4(τr+1) values generated in step 2 thus far, we choose the

value for the time τr̄ that is closest in absolute value to τr+1 − ωi.

We employ uniform covariance (9) as the time delay can cause discontinuities in the

derivative, as noted by Chkrebtii et al. (2016). The evaluation grid, τ , has size N = 500,

and the auxiliary parameters are set to λ = 0.085 and α = 8000, consistent with the posterior

distribution from the original analysis.

We use the methodology from Section 3.2 and the ACE algorithm to find designs that

maximize each of the NSEL, NAEL and SIG utilities. We compare these designs to the

original design used by Swameye et al. (2003). As in the previous examples, we introduce

the constraint that the observation times need to be at least 1 second apart, a requirement

also satisfied by the original experiment. Figure 4 presents boxplots of twenty evaluations

of the Monte Carlo approximation to the expected utility for the original design and the

optimal designs found under each utility function. Once again, in each case, the optimal

designs are considerably more efficient. Also shown in Figure 4 are the four designs under

comparison. The optimal designs favor having a dense set of points early in the observation

window, and then a smaller set of times near the end of the experiment. This is especially

true for the designs under NSEL and NAEL where 75% of the observation times occur before

t = 15 seconds, compared to about 60% for SIG design and 50% for the original design. Early

observation times provide information about the peak in g1 and the sharp decrease in g2 at

about 10 seconds. For the single observation time, t∗, on g4, the optimal designs clearly favor

making a very early observation. Note that t∗ for each of the optimal designs is between 1

and 2 seconds.

5 Application: transport of serine across human placenta

We now use the methodology in Section 3 to redesign the experiment for the human placenta

study introduced in Section 1. The experimental protocol specifies fixed initial amounts of
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Figure 4: Results from the JAK-STAT example in Section 4.4. Top row: boxplots of 20

evaluations of the Monte Carlo approximation to the expected utility for the original design

and the optimal designs found under three different utility functions. Bottom row: design

points from each of the optimal designs and the original design at which noisy observations

of g1 (left), g2 (center), g4 (right) are made, along with 100 draws from g1, g2 and g4, at time

t, for values drawn from the prior distribution of θ, u01 and ω.
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radioactive serine interior (u01) and exterior (x1) to the placenta (0 and 7.5µl, respectively).

The original design proposed by the experimenters used n = 7 placentas (runs) with differing

amounts of non-radioactive serine interior (u01) and exterior (x2) to the placenta, see Table 1.

Noisy observations on the amount of interior radioactive serine (u1) were made at eight times,

common to each of the seven placentas. The experimenters expected greater variability

in the concentration of interior radioactive serine near the start of the experiment, before

convergence to an equilibrium. Therefore, they choose a design containing a large number of

early time points. We broadly follow this protocol, but find optimal designs using n = 2, . . . , 7

placentas with each having nt = 8 observations taken at common times, t1, . . . , t8, chosen

from across the interval [0, 600].

A hierarchical statistical model is assumed for the observed responses:

yjl = u1(tl;xj,θj) + εjl , for j = 1, . . . , n; l = 1, . . . , nt ,

where xj = (x1, x2j)
T, εjl are independent and identically normally distributed with constant

variance σ2, and θj holds the p = 4 subject-specific parameters for the jth placenta with

elements assumed to follow independent uniform distributions

θji ∼ U [θi (1− ci) , θi (1 + ci)] , ci > 0 , i = 1, . . . , p .

The goal of the experiment is estimation of the population physical parameters θ = (θ1, . . . , θp)
T.

A priori, we assume ci ∼ Uniform [0, 0.05] and θi ∼ Tri[ai, bi], where Tri[a, b] denotes

the symmetric triangle distribution on the interval [a, b]. Reflecting prior knowledge from

previous experiments, we set a1 = a3 = a4 = 80, b1 = b3 = b4 = 120, a2 = 0.02, b2 = 0.08

and we assume σ2 ∼ U[0, 1] for the response variance.

We expect the solution to system of equations (2) to be smooth, and so use squared

exponential covariance (8) for the probabilistic solution. The evaluation grid, τ , has size

N = 601 and we set auxiliary correlation parameter α = 10N .

Specifying a design corresponds to specifying the n experimental conditions x21, . . . , x2n,

initial values u021, . . . , u02n, and the common nt = 8 observation times t1, . . . , tnt . Hence for

n = 2, . . . , 7, the design space has between 12 and 22 dimensions. As for the examples in

Section 4, we impose a constraint on the observation times and specify that they must be at

least 5 seconds apart.
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Table 1: Treatments from the optimal and original designs with n = 7 runs for the placenta

example in Section 5: initial concentrations (to nearest integer) of interior (u02 = u2(0)) and

exterior (x2) non-radioactive serine for each run (placenta).

NSEL NAEL Est01† MS01? Original

Placenta x2 u02 x2 u02 x2 u02 x2 u02 x2 u02

1 0 0 0 0 0 0 0 0 0 0

2 0 38 0 0 0 0 0 0 250 0

3 0 50 0 50 0 56 0 0 250 250

4 0 68 0 67 0 58 0 0 250 1000

5 182 1000 160 1000 177 1000 0 38 1000 0

6 185 1000 175 1000 196 1000 0 41 1000 250

7 206 1000 211 1000 210 1000 115 62 1000 1000

† 0-1 estimation utility; ? 0-1 model selection utility

We find designs for the NSEL, NAEL, 0-1 estimation and 0-1 model selection utility

functions defined in Section 3.1. For the 0-1 estimation utility, we set δ = (5, 5, 0.01, 5)T; for

utility φ(θ,y,d) to equal 1, the posterior mean for θ must lie in the box set
∏4

i=1[θi−δi, θi+δi],

which contains 0.5% of the volume of the prior support. For the model selection utility, we

suppose interest is in determining if the reaction rates are equal, i.e. does θ3 = θ4? To

answer this question, we define two models: m1 (where θ3 = θ4) and m2 (where θ3 6= θ4).

Figure 5 presents boxplots of twenty evaluations of the Monte Carlo approximation to the

expected utility for the optimal design found under each utility function for n = 2, . . . , 7. We

also present boxplots of the performance of the original design with n = 7. Unsurprisingly,

the expected utility increases with n, and the optimal designs are clearly superior to the

original design. For each utility function, the optimal design with n = 2 outperforms the

original design with n = 7 placentas, with substantial differences in expected utility.

Table 1 gives the treatments for each design found for n = 7. Figure 6 shows the

observation times for the optimal designs under NSEL, NAEL and 0-1 estimation utilities,

along with realizations from the solution to u1(t), for each run of each design. The designs

under NSEL and NAEL utilities have similar treatments and observation times. The initial

concentrations in Table 1 lead to three distinct profiles of u1(t) (labeled placentas 1 and 2; 3
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Figure 5: Results from the placenta example in Section 5. Boxplots of 20 evaluations of the

Monte Carlo approximation to the expected utility for the original design and the optimal

designs found under four different utility functions for n = 2, . . . , 7.
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and 4; 5, 6 and 7; note though that the placentas are exchangeble). The profile for placentas

1 and 2 has a slow steady increase in u1(t) with respect to t. Placentas 3 and 4 have a steep

initial increase and subsequent decrease in u1(t) with respect to t. Finally, placentas 5 to

7 have a steep initial increase in u1(t) with respect to t followed by a slow decrease. The

optimal observation times are predominantly at the beginning of the observation window,

where u1(t) is changing most quickly. The designs under the 0-1 estimation utility are also

similar, except a non-zero amount (35 µl) of the initial interior non-radioactive serine is

applied to placenta 2.

Figure 7 shows the designs from the 0-1 model selection utility, along with realizations of

the solutions u1(t) under models m1 and m2. The treatments for the optimal design under

the 0-1 utility result in two distinct profiles of u1(t). For placentas 1–5, u1(t) has a slow

steady increase in u1(t) with respect to t. Placentas 6 and 7 have a steep initial increase

and subsequent decrease in u1(t) with respect to t. Unlike the other optimal designs, the

observation times are predominantly towards the end of the observation window. The u1(t)

profiles are similar under both models, with the most substantial differences occurring in

the inter-profile variability towards the middle of the time interval. This region is where the

majority of observation times are located.

The original design proposed by the experimenters had an unequal spacing of observation

times across the entire interval [0, 600]. There are more observations taken near the start

of the interval, and the time points are not dissimilar to those in the optimal designs under

NSEL, NAEL and 0-1 estimation. However, the original design has treatments that are

very different from any of the optimal designs, with an almost factorial structure and some

treatments with high values of x2 (exterior initial concentration of non-radioactive serine).

None of the optimal designs include treatments with high x2, demonstrating how it is often

difficult to predict by intuition the treatments in a Bayesian optimal design for a complicated

nonlinear model. In addition, the designs for point estimation (under NSEL, NAEL and 0-1

estimation utilities) are quite different to the design for model selection.
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Figure 6: Results from the designs found under SIG, NSEL and NAEL utilities with n = 7

placentas in Section 5. Displayed are 100 draws from solution u1(t) plotted against t for

values drawn from the the prior distribution of θ, for each of the n = 7 placentas and

treatments given in Table 1.
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Figure 7: Results from the designs under the 0-1 model selection loss with n = 7 placentas

in Section 5. Displayed are 100 draws from solution u1(t) under model m1 (θ3 = θ4) and

model m2 (θ3 6= θ4) plotted against t for values drawn from the the prior distribution of θ,

for each of the n = 7 placentas and treatments given in Table 1.
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6 Concluding Remarks

This paper introduces and demonstrates the first practical methodology for Bayesian op-

timal design of experiments for statistically nonlinear models formed from the solution to

intractable ordinary differential equations. The work is motivated by a challenging design

problem from the biological sciences, which we address through a combination of proba-

bilistic solutions to the equations, simulation-based approximation to expected utilities and

optimization via smoothing and cyclic descent. Our novel adjustments to the Chkrebtii et al.

(2016) probabilistic algorithm are key to providing a computationally efficient solution to

the optimal design problem. Through demonstration on a number of examples, including

the motivating experiment on serine transport across placental membranes, we show the

efficiency gains that can be made by use of optimal designs over obvious, and proposed,

alternatives. We also show how it is often not possible to “second guess” via intuition the

solutions to optimal problems for nonlinear models.

We have adopted the nested integration and optimization methods from Overstall and

Woods (2017) to find optimal designs for the differential equation models in this paper

(namely the ACE algorithm). The Markov chain simulation schemes of Müller (1999) and

Müller et al. (2004), among other authors, would be an interesting alternative approach.

Extension and application of such methods to the problems in the current paper is an area

for future research.

One key issue not addressed is model discrepancy (see, e.g., Kennedy and O ’Hagan,

2001 and Plumlee, 2017); the systematic mis-match between the true physical process and

the solution to the ordinary differential equations. Not taking account of this error can

lead to significant bias in posterior estimates of the physical parameters (Brynjarsdottir and

O ’Hagan, 2014). Future work will focus on Bayesian optimal design for physical models

subject to model discrepancy.

Some limited insight into the impact of model mis-match can be gained from a simple

extension to the compartmental model in Section 4.2. For the purpose of finding designs,

we assume the model

u2(t) =
D

0.9θ3

(exp (−θ1t)− exp (−θ2t)) . (11)

That is, we simplify (10) by setting θ1 and θ2 equal to their prior means in the fraction that
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Figure 8: Results from the misspecified model example in Section 6. Boxplots of 20

evaluations of the Monte Carlo approximation to the expected utility for the optimal designs

found under the correct model (10) and the misspecified model (11) under the SIG, NSEL

and NAEL utility functions. In each case, the correct model is assumed for evaluating the

expected utility.

multiplies the exponential term. We still assume the exponential depends on unknown θ1, θ2,

and assume the same prior distributions for all parameters as in Section 4.2.

To assess the impact of model mis-match, we find optimal designs under the SIG, NSEL

and NAEL utilities assuming the misspecified model (11). We then assess these designs

under the correct, more complex, model (10) and compare them to designs found under the

correct model by evaluating the approximate expected utility under the correct model, see

Figure 8. Differences in approximate expected utility between the designs found under the

correct and misspecified models are comfortably within Monte Carlo error for SIG. However,

assuming a misspecified model under the NSEL utility results in a loss of expected utility of

around 6%; the differences are somewhat less for NAEL but still larger than Monte Carlo

error. Clearly, the reduction in expected utility from assuming a misspecified model will

depend on the models under consideration, the difference between the models and the choice

of prior distributions, in addition to the choice of utility function. This is an important area

for future research.
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A The ACE algorithm

In Algorithm 4, we outline the basic approximate coordinate exchange algorithm. For full

details, see Overstall and Woods (2017).

Let M be the total number of coordinates (values taken by each variable in each run)

of the design. That is, M is the dimension of the design. In step 9, the probability of the

suggested design having higher expected utility is calculated, a posteriori to two independent

Monte Carlo samples from the joint distributions of the data and parameters conditional

on the current and suggested designs. Calculation of this probability assumes the utility

evaluations are well described by a normal distribution. In the case of 0-1 utilities, a similar

test based on a Bernoulli likelihood and Beta prior is applied (see Overstall et al., 2018a for

details). Convergence in step 11 is assessed informally using trace plots of the evaluations

of either φ̄∗, if the proposed design was accepted, or φ̄C , otherwise, from step 9.

The ACE algorithm should be started from multiple different starting designs d0. From

the resulting designs, the one with the lowest value of Φ̂(d) should be returned.
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Algorithm 4: The approximate coordinate exchange (ACE) algorithm.

1 Choose an initial design d0 = (d0
1, . . . , d

0
M)

T
and set the current design to be

dC =
(
dC1 , . . . , d

C
M

)T
= d0

2 for i = 1 : M do
3 Generate a one-dimensional space-filling design ζi =

{
d1
i , . . . , d

R
i

}
in Di ⊂ R, the

set of possible values for the ith coordinate

4 Let dC(dri ) equal dC with ith coordinate replaced by dri
for r = 1 : R do

Evaluate Φ̂(dC(dri )), the approximation to the expected utility, i.e.
equation (5)

5 Fit a Gaussian process emulator Φ̃(d) using “data”
{
dri , Φ̂(dC(dri ))

}R
r=1

6 Set d? =
(
dC1 , . . . , d

C
i−1, d̃, d

C
i+1, . . . , d

C
M

)T

, where d̃ ∈ arg maxd∈Di
Φ̃(d)

for j = 1 : B do

7 Generate
[
(yCj )T, (θCj )T

]T ∼ π(θ,y|dC) and
[
(y?j)

T, (θ?j)
T
]T ∼ π(θ,y|d?)

8 Set φCj = φ(θj,yj,d
C) and φ?j = φ(θj,yj,d

?)

9 Calculate

p∗ = 1− Ft,2B−2

(
−
∑B

i=j φ
C
i −

∑B
i=1 φ

∗
j√

2Bv̂

)
,

where Ft,a(·) is the distribution function of the t-distribution with a degrees of
freedom,

v̂ =

∑B
j=1(φCj − φ̄C)2 +

∑B
j=1(φ∗j − φ̄∗)2

2B − 2
,

and φ̄C =
∑B

j=1 φ
C
j /B and φ̄? =

∑B
j=1 φ

?
j/B

10 Set dC = d? with probability p∗

11 Return to step 2 until convergence.
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