
UWL REPOSITORY

repository.uwl.ac.uk

Convolution-deconvolution word embedding: an end-to-end multi-prototype

fusion embedding method for natural language processing

Shuang, Kai, Zhang, Zhixuan, Loo, Jonathan ORCID: https://orcid.org/0000-0002-2197-8126 and Su,

Sen (2019) Convolution-deconvolution word embedding: an end-to-end multi-prototype fusion 

embedding method for natural language processing. Information Fusion, 53. pp. 112-122. ISSN 

1566-2535 

http://dx.doi.org/10.1016/j.inffus.2019.06.009

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/6104/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Convolution-deconvolution word embedding: an end-to-end
multi-prototype fusion embedding method for natural language

processing

Kai Shuanga, Zhixuan Zhanga,∗, Jonathan Loob, Sen Sua

aState Key Laboratory of Networking & Switching Technology, Beijing University of Posts and
Telecommunications, 100876, Beijing, P.R.China

bSchool of Computing and Engineering, University of West London, W5 5RF, UK

Abstract

Existing unsupervised word embedding methods have been proved to be effective to capture

latent semantic information on various tasks of Natural Language Processing (NLP). How-

ever, existing word representation methods are incapable of tackling both the polysemous-

unaware and task-unaware problems that are common phenomena in NLP tasks. In this

work, we present a novel Convolution-Deconvolution Word Embedding (CDWE), an end-

to-end multi-prototype fusion embedding that fuses context-specific information and task-

specific information. To the best of our knowledge, we are the first to extend deconvolution

(e.g. convolution transpose), which has been widely used in computer vision, to word em-

bedding generation. We empirically demonstrate the efficiency and generalization ability

of CDWE by applying it to two representative tasks in NLP: text classification and ma-

chine translation. The models of CDWE significantly outperform the baselines and achieve

state-of-the-art results on both tasks. To validate the efficiency of CDWE further, we

demonstrate how CDWE solves the polysemous-unaware and task-unaware problems via

analyzing the Text Deconvolution Saliency, which is an existing strategy for evaluating the

outputs of deconvolution.

Keywords: word embedding, multi-prototype, neural network, natural language

processing

∗Corresponding author
Email addresses: shuangk@bupt.edu.cn (Kai Shuang), yqzfm123@gmail.com (Zhixuan Zhang),

jonathan.loo@uwl.ac.uk (Jonathan Loo), susen@bupt.edu.cn (Sen Su)

Preprint submitted to Journal of LATEX Templates May 20, 2019



1. Introduction

Deep learning based neural network models have achieved great success in many Natural

Language Processing (NLP) tasks in the past few years, including learning distributed

word, sentence and document representation [32, 63, 62], parsing [24], abstract meaning

representation [11, 27], machine translation [46, 41, 12], text classification [22, 45, 37], [21],

aspect extraction and sentiment analysis [42, 4, 51, 16, 17, 30, 26], etc. The best results

obtained on supervised learning tasks involve an unsupervised learning phase, usually in

an unsupervised pre-training step to learn distributed word representations (also known

as word embeddings) [63]. Word embedding is a powerful approach to capture the latent

semantic information of language by capturing the co-occurrence patterns of words [32, 35],

which allows for reasoning about the usage and meaning of words.

Despite the impressive progress, previous methods on word embedding still have lim-

itations on word representation, due to the polysemes, lacking context and unsupervised

pre-training process. In embedding models, the object of interest is the conditional proba-

bility of a target given its context [28]. For instance, the target corresponds to a word in a

given position and the context refers to the words in a window around the target. However,

most of the existing methods create a single prototype embedding for each word which are

problematic, because many words are intrinsically polysemous. A single-prototype model

cannot capture the phenomena of polysemy and task variance, which makes it incapable of

dealing with the following problems:

• Polysemous-unaware: Single-prototype representation naturally cannot deal with the

phenomena of polysemy. For instance, the word “Hawk” in the sentence “Hawks

won the NBA Regular Season” is the name of a basketball team. However, the

existing methods will probably treat it as an animal according to the corpus for word

embedding.

• Task-unaware: The unsupervised process of existing methods misses the information

to distinguish the word with specific meaning contributing to different tasks. For

instance, the words “happy” and “sad” have completely contrary contribution in

tasks like sentiment analysis. However, in the question classification tasks, samples

containing any of these words may belong to the same “emotion” category.
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Such characteristics bring major challenges to many NLP tasks, such as text classifica-

tion, machine translation, etc. For example, misunderstanding the semantic meaning of a

key word (e.g. the word contains sentiment information in sentiment analysis) will directly

influence the text classification results. Meanwhile, misunderstanding the semantic mean-

ing of the source word in the encoder will influence the generation of target word for the

decoder in machine translation.

In order to overcome these issues, researchers need to capture more semantic as well as

syntax information. A crucial step to reach this goal is to utilize more advanced text repre-

sentation models. In this work, we propose a Convolution-Deconvolution Word Embedding

(CDWE), an end-to-end multi-prototype fusion embedding that fuses context-specific in-

formation and task-specific information to fill this gap. We utilize the deconvolution layer

to generate multiple prototypes and select the proper one according to different context

words and different tasks.

To the best of our knowledge, we are the first to extend deconvolution (i.e., transposed

convolution) to word embedding generation. The motivation of deconvolution neural net-

work comes from its usages in Computer Vision (CV). Deconvolution neural network has

been used in CV to capture mid and high level image structure [55] or to generate fea-

ture maps with high resolution [15, 36], which achieved remarkable performance during

the up-sampling process. In our work, as the polysemous-unaware problem exists in single-

prototype models, the up-sampling operation using the deconvolution layer can generate

multi-prototype word embeddings to deal with the problem. To be specific, we employed

the 2-dimension deconvolution layer after a 1-dimension convolution and pooling layer.

The spatial resolution of the embedding matrix gradually increases and a new axis of “pro-

totype” appears after deconvolution operation. In this way, each word corresponds to

multiple vectors. Finally, the proper multi-prototype fusion vector for each word is chosen

according to its context-specific information along the axis of “prototype’.

On the one hand, the CDWE can tackle the polysemous-unaware problems, because it is

designed to learning context-specific information during the generation and fusion process

of the multiple prototypes. On the other hand, the CDWE will be fed into a Convolution

Neural Network (CNN) [22] or a Bidirectional Long-Short Term Memory (BLSTM) [14,

40] to deal with various NLP tasks in this work. As the CDWE-CNN and the CDWE-

3



BLSTM are end-to-end models, the parameters in the CDWE are trained according to the

specific NLP task and learning task-specific information by transferring the unsupervised

representation into supervised model.

In general, the main contributions of this paper are summarized as follows:

• We generated the CDWE, which is a multi-prototype fusion embedding that can solve

the polysemous-unaware and task-unaware problems.

• We empirically demonstrate the efficiency of CDWE by applying it to two repre-

sentative tasks in NLP: text classification and machine translation. The models of

CDWE-CNN and CDWE-BLSTM have significantly outperformed the baselines on

both tasks.

• The proposed CDWE-BLSTM model with only one fully-connected layer outper-

forms the existing state-of-the-art methods for text classification on three widely-used

datasets.

• The proposed CDWE-BLSTM model with an asynchronous bidirectional decoding

strategy [59] outperforms state-of-the-art machine translation systems on NIST Chinese-

English datasets.

• We visualized the linguistic information detected by CDWE via an existing strategy,

Text Deconvolution Saliency (TDS) [45], and demonstrated how CDWE solved the

polysemous-unaware problems and task-unaware problems.

2. Related work

2.1. Word embedding

With the rapid development of distributed word representation, the Neural Language

Model (NLM) was proposed and solved the data sparsity problem [39, 47] by using dis-

tributed word representations, also known as word embedding [2, 32, 35, 53], which can

capture meaningful syntactic and semantic information of words.

Previous works have leveraged existing lexical resources to improve word embedding,

such as RCM [54], knowledge embedding [52], [10]� SensEmbed [18] and WordNet-based
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approaches [20] . Without additional resources, previous works have also utilized character-

level information to improve the word embedding, e.g., Santos and Zadrozny [38] and Chen

et al. [6]. Most recently there have been many studies on learning the representation of

texts on different aspects: Zheng et al. [63] focused on context-specific embedding and tried

to tackle the polysemous-unaware problems with larger number of parameters compared

with our proposed model. Jiang et al. [19] proposed a framework to measure text distance

with latent topics under the assumption that words on the same topic follow a Gaussian

distribution. We will compare our model with this framework in Section 4.1.

2.2. Text classification

Text classification is a crucial and fundamental task in many applications, such as web

searching, ads matching, sentiment analysis [47, 3, 42]. Previous studies on text classifi-

cation either rely on human designed features [50] or deep neural networks on distributed

representation of texts [32, 47]. Existing literature has demonstrated the potential benefits

of using CNN and Recurrent Neural Network (RNN) to extract structural information from

short texts. Collobert et al. [7] first used CNN with pre-trained word embedding for text

classification. Kim [22] further improved the performance by using multi-channel embed-

ding. Zhang et al. [60] proposed deep neural networks with only character-level information

as input. Chen et al. [5] proposed a sequence model to embed these user and product rela-

tions information so as to improve the performance of document-level sentiment analysis,

which relied on external information on users and products. While such methods work well

for large documents, they perform poorly on short texts due to the limited information pro-

vided by them. Wang et al. [47] proposed the WCCNN model associated relevant concepts

by leveraging explicit knowledge and generating the implicit representation of the short

text, which achieves the best performance compared with other existing models based on

CNNs, such as MGNC-CNN [61] and CNN-UNI [25]. Most recently, Ruder and Howard

[37] proposed the Universal Language Model Fine-tuning for Text classification (ULMFiT),

which achieved the best performance compared with other models based on RNNs, such as

RCNN [23], Tree-LSTM [43], SA-LSTM [8] and [58]. We will compare our model with the

existing state-of-the-art results above in Section 4.1.
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2.3. Machine translation

Neural Machine Translation (NMT) is a representative task. Many efficient sequence-

to-sequence models have been proposed for NMT in these years and can also be used on

other various tasks, such as image caption generation, summarization, question and answer-

ing, etc. NMT has shown remarkable progress in recent years compared with conventional

Statical Machine Translation (SMT), which needs to explicitly design features to capture

translation regularities. Currently, the dominant NMT model mainly consists of a neural

encoder and a neural decoder with an attention network [1, 46, 41, 12]. The structure

of encoder or decoder can be mainly divided into three types: the RNN, convolutional

structure and the transformer [12]. The RNN-based NMT-model achieve better perfor-

mances compared with other types of encoder or decoder structures based on previous

works [41, 59]. Generally, for RNN-based NMT models, the encoder is a bidirectional RNN

learning hidden representations of a source sentence in the forward and backward direc-

tions. The learned hidden states in two directions are then concatenated to form source

annotations. Likewise, the decoder is a forward RNN that adopts the nonlinear function

to sequentially generate the target words [1]. Su et al. [41] proposed a variational neural

decoder for Variational Recurrent Neural Machine Translation (VRNMT) model and im-

proved the results on NIST Chinese-English tasks 1 compared with other existing methods,

such as DL4MT [1], VNMT [56], ATNMT [29], etc. Meanwhile, Zhang et al. [59] proposed

an asynchronous bidirectional decoding strategy and achieved state-of-the-art performances

on NIST Chinese-English tasks. We will compare our model with the existing state-of-the-

art results above in Section 4.2.

2.4. Deconvolution neural network

Deconvolution (i.e., transposed convolution) neural networks have been widely-used in

generative models for CV [15, 36], but they have hardly ever been used in NLP. Extend-

ing deconvolution networks for text is not straightforward because it brings in an extra

dimension to the output compared to the input when applied it to NLP tasks. Zhang

et al. [62] proposed a powerful convolutional-deconvolution framework for learning sen-

1https://catalog.ldc.upenn.edu/organization/downloads
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tence representations, which is used for long paragraph representation learning. This work

has demonstrated the effectiveness of the deconvolution in long text representation, but it

cannot deal with the polysemous-unaware problem and the task-unaware problem in text

classification. Vanni et al. [45] proposed the TDS for visualizing linguistic information de-

tected by neural network. We utilize the TDS for demonstrating the information detected

by the CDWE and its ability of solving polysemous-unaware problems and task-unaware

problems.

3. Model

We will introduce the generation of CDWE and the overall structure of the models using

CDWE as inputs in the following subsection.

3.1. The generation process of CDWE

The broad intuition of tackling polysemy problems can be divided into four steps: First,

extract the semantic feature further from the Pre-trained Word Embedding (PWE) through

the convolution layer. Second, capture the most common features for each word through

the cross-channel pooling layer while reducing the feature redundancy. Third, as the decon-

volution operation can expand an extra dimension, it can be utilized to generate multiple

prototypes for each word and the new dimension carries the meaning of “prototype”. Fourth,

choose the proper prototype for each word according to different context and text informa-

tion along the “prototype” axis. The former three steps are illustrated as the flow above in

the structure of Figure 1. The context vectors are generated through the flow below in the

structure, consisting of the “Average of context vectors” and the “Broadcasting” in Figure

1, where the “Compute index” and “Selection” processes indicate the fourth step.

The generation of PWE. PWE is effective to capture the basic syntax and semantic

information of words, which has been proved in previous studies [2, 32, 35]. In our work,

the Continuous Bag-Of-Words (CBOW) [32], one of the main model families of unsupervised

pre-training models, is applied to generating PWE, kept static in the training process.

Convolution layer. The width of each filter is set to the same value as the dimension of

the PWE and the height of it as 1, which will not involve any interaction feature between
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Compute

index

Selection

PWE

CDWEConvolution layer

Average of context vectors

Pooling layer

Broadcasting

Deconvolution layer

Figure 1: The generation process of CDWE

words. More formally,

sji = ReLU(ω • vpi + b) (1)

Here, sji denotes the feature extracted from the pre-trained word vector of i-th word vpi

by the j-th filter. Besides, b is a bias and ReLU is used as the non-linear function for

convolution layers in this work.

Pooling layer. The max-pooling operation is applied across different channels, which

allows the layer to capture more complex and learnable interactions of cross channel infor-

mation. [47] More formally,

c
⌈ j
k ⌉

i = max{sji , s
j+1
i , ..., sj+k−1

i } (2)

Here, c⌈
j
k ⌉

i denotes the ⌈ j
k ⌉-th feature extracted from features generated by k convolutional

filters, where ⌈⌉ is the ceil operation. And the max-pooling word vector generated by

8



max-pooling layers is ĉi.

ĉi = c1i ⊕ c2i ⊕ ...⊕ c
n
k
i (3)

Here n denotes the number of convolution filters, which is set to the same value as the

PWE dimension.

Deconvolution layer. The 2-dimension deconvolution (i.e., convolutional transpose) is

applied with the window size of (1, k) and the stride of (1, k), to decode the latent represen-

tation ĉ. The intuition of using the deconvolution layer for CDWE generation is inspired

by its applications in the generative process of images [36]. As the deconvolution oper-

ation proceeds, the spatial resolution gradually increases and a new axis of “prototype”

appears as illustrated in Figure 1. Different prototypes for each word can learn different

context-specific information, which also contain the most common information captured

by the pooling layer during the training and generative process. The spatial dimension

is expanded from ĉ ∈ RT×n/k to Dj ∈ RT×n in order to match the spatial dimension

of the convolution layer of convolution, where T denotes the max length of a sentence.

The outputs of the deconvolution layer is D ∈ RT×n×d, where d denotes the number of

deconvolutional filters, indicating the number of prototypes for each word.

Multi-prototype selection. Di ∈ Rn×d denotes the multiple prototypes of the i-th word

generated by the deconvolution layer, which consists of d different word vectors eji . The

“winner-takes-all” principle is applied to selecting the proper prototypes with context-

specific information. That is, the prototype with highest similarity to the context repre-

sentation vector is selected accordingly. More formally,

idxi = Argmax
j=1,2,...,d

(Similarity(eji , ctxi))

vci = eidxi
i

(4)

Here, idxi denotes the index of selected prototype ei , vci ∈ Rn is the n-dimension selected

word vector of the i-th word and the ctxi denotes the context representation vector of the

i-the words. We utilize a window approach that assumes the meaning of a word depends

mainly on its context. More formally,

ctxi = (vpi−2 + vpi−1 + vpi + vpi+1 + vpi+2)/5 (5)
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For the Similarity function, cosine similarity is used as the measurement of the simi-

larity between the two vectors.

Similarity(eji , ctxi) = eji • ctxi∥∥∥eji∥∥∥ ∥ctxi∥
(6)

When a word appears in different contexts, it may carry different meanings. A number

of prototypes should be created for the word so that each prototype can carry a specific

meaning. Thus, in order to learn multiple prototypes, each word could be associated with

more than one prototypes eji . The network is trained to distinguish the selected word vector

from each other so that one of the word vectors eji is chosen in the inferring process by how

well the vector fits into the specific context.

3.2. The overall structure

The CNN and BLSTM using the CDWE as input to construct an end-to-end model are

shown in Figure 2 and Figure 3. The details of each layers are as follows:

Fully-connected

layer

Pooling layer

Convolution layer

Input layer

Figure 2: The overall structure of CDWE-CNN
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v2v1 vT
......

Input layer

h2h1 hT
......

......

Fully-connectedDecoder

Machine Translation Text classification

LSTM_BWLSTM_BW

LSTM_FW LSTM_FW

v1 v2

LSTM_FW

LSTM_BW

vT

BLSTM

Figure 3: The overall structure of CDWE-BLSTMs

Input layer. It transforms the input into a matrix of CDWE, denoted as W ∈ RT×n

, where T denotes the max length of a sentence. 2 If the length of a sentence is less

than T , 0 is used for padding. The dimension of word embedding of the CDWE is set

to n corresponding to the input dimension of PWE. The way to construct W is rather

straightforward: suppose vci ∈ Rn is the m-dimension context-task word vector of the i-th

word. W can be obtained by concatenating vci :

W = v1 ⊕ v2 ⊕ ...⊕ vT (7)

CNN layer. In the CDWE-CNN model, to get different kinds of features, convolutional

filters with three different window sizes are applied in this layer as is shown in Figure 2.

The widths of convolutional filters are set as n and the height h of them is treated as a

2In the following description of this work, a “sentence” can be an arbitrary span of contiguous text,

rather than an actual linguistic sentence. A “sentence” refers to the input token sequence the model, which

may be a single sentence or a small paragraph
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hyper-parameter. The number of filters with the same size is set to a, so the output of

a certain size of h in this layer is f ∈ R(T−h+1)×a. A max-over-time pooling operation

is applied over each feature map [22]. With pooling layers, a fixed-length vector can be

obtained from feature maps, which makes this pooling scheme able to deal with variable

sentence lengths naturally.

BLSTM layer. In the CDWE-BLSTM models, the CDWE is fed into a standard BLSTM

[14, 40], whose number of hidden units is the same as the number of convolutional filters of

the CNN layer in total. The BLSTM layer consists of a forward LSTM cell (“LSTM_FW”)

and a backward LSTM cell, whose inputs are the same at each time step and the results are

concatenated, as is shown in Figure 3. The output vectors at all the time step of BLSTM

are concatenated and fed into a fully-connected layer or a decoder for text classification or

machine translation, respectively. The decoder has the same structure as Zhang et al. [59],

which contains two asynchronous LSTMs of different directions with attention mechanism

for generating the target words.

Fully-connected layer. The non-linear fully-connected layer is applied to combining

different features extracted by the pooling layer (in Figure 2) or BLSTM layer (in Figure

3). The activation function to generate the conditional probability distribution for text

classification is Softmax. Formally,

pi =
exp(yi)
c∑

k=1

exp(yk)
(8)

Here, yk is the output of linear operation in fully-connected layer and c denotes the number

of classes.

4. Performance evaluations

To demonstrate the efficiency and generalization ability of the CDWE, we perform a se-

ries of experiments on two representative tasks: text classification and machine translation.

The experimental details and results are shown in the following subsection.
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4.1. Experiments on text classification

The experiments are conducted on three widely-used datasets: TREC [33], AG News [47]

and Movie Review [22]. Both the CDWE-CNN and the CDWE-BLSTM models significantly

outperform the baselines, and the CDWE-BLSTM achieves state-of-the-art performances.

4.1.1. Datasets

The details of the three widely-used datasets in our experiments are listed in Table 1.

Datasets #class Training set Test set

TREC 6 5,452 500

AG News 4 120,000 7,600

Movie Review 2 8,530 2,132

Table 1: A summary of datasets

TREC. This is a question answering dataset3. It involves 6 different types of questions,

such as whether the question is about a location.

AG News. This dataset is the same as that used in Wang et al. [47]. The data consists

of the title AG’s corpus of news of four classes, including Business, Sci / Tech, World and

Entertainment.

Movie Review. This dataset consists of one sentence per comment on movies. Classifi-

cation involves detecting positive/negative reviews [22]. The dataset is randomly split into

two parts, 80% as the training set and the remaining 20% as test set. In this process, we

keep a balanced number of items with each label in the training set.

4.1.2. Experiment settings

The publicly available word2vec4 tools are used to generate the PWE. Words not pre-

sented in the set of pre-trained words are initialized randomly. There are several hyper-

parameters in our model, which are set empirically and shown in Table 2.

3http://cogcomp.cs.illinois.edu/Data/QA/QC/
4https://code.google.com/archive/p/word2vec/
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Hyper parameter Values

number of filters of h = 4 in the CNN 100

number of filters of h = 5 in the CNN 100

number of filters of h = 6 in the CNN 100

number of hidden units in BLSTM layer 300

dropout rate 0.5

PWE dimension 300

pooling windows size in CDWE 10

deconvolution window size 10

number of deconvolution filters 100

batch size 50

learning rate 0.01

Table 2: Hyper parameters

All the trainable parameters in this work are set as Θ. The training target of the model

is to maximize the log-likelihood over the training set with respect to Θ:

Θ →
∑
x∈X

log(p(y|x,Θ)) (9)

Here X denotes the set of training data and Y denotes the set of class. For each x ∈ X, the

CNN model computes a score p(y;x,Θ), y ∈ Y for each class. The metric for evaluating

each model is the accuracy of prediction.

The Adagrad [9] optimizer is applied to optimizing the training process. At the t-th

epoch, the parameters are updated as:

Θt = Θt−1 −
α√∑t
i−1 gi

gt (10)

Here α is the learning rate and gt is the gradient at epoch t. All the parameters are

initialized from a uniform distribution, which is followed with the settings of many previous

studies [47].
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4.1.3. Baseline methods

We have compared the proposed model against the following state-of-the-art feature-

based methods and deep learning methods:

Word-Concept Embedding + LR. The baseline uses the weighted word embedding as

well as concept embedding to represent each sample. This method is applied according to

the process in Wang et al. [47].

BoW + SVM. The baseline is proposed by Wang and Manning [50]. The basic idea is

to use the traditional Support Vector Machine (SVM) algorithm to build a classifier. For

text classification, the unigrams are used as the feature and the weight of each feature is

the frequency of each unigram.

LTTR-kNN, LTTR+SVM These baselines represent text via Latent Topic Text Repre-

sentation (LTTR), which can be used for k-Nearest Neighbor (k-NN) and SVM to classify

text introduced in Jiang et al. [19].

CNN. The method utilizes a one-layer CNN for text classification [22]. It utilizes a

multi-channel architecture for text embedding. We obtain its source code from the author5

and use its default settings.

CharCNN. The baseline [60] utilizes a 12-layer convolutional neural network with only

character level features as the input. We obtain the source code from the author.6

DSCNN. The baseline [58] hierarchically builds textual representations by processing

pretrained word embeddings via Long Short-Term Memory networks and subsequently

extracting features with convolution operators. As its source code isn’t available, we directly

use the data results from the paper. Its experimental data didn’t contain the results on

AG News.

KPCNN, WCCNN These baselines [47] are based on a joint CNN that combines ex-

plicit and implicit representations for text classification, which aims to associate relevant

concepts with short texts by leveraging explicit knowledge and generating the implicit rep-

resentation of the short text. The KPCNN integrated the character-level features into the

joint embedding to capture fine-grained semantic information while the WCCNN did not.

5https://github.com/yoonkim/CNN sentence
6https://github.com/zhangxiangxiao/Crepe
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ULMFiT. This state-of-the-art method [37] can be used to achieve CV-like transfer

learning for any task for NLP. ULMFiT, consisting of three stages and multiple LSTM

layers, is now an end-to-end model for text classification. We obtain the source code from

the author.7

PWE-CNN, PWE-BLSTM These three baselines proposed in our work are presented to

demonstrate the efficiency of the proposed structure. We feed the PWE directly into the

CNN and BLSTM, respectively.

4.1.4. Results and discussion

The results on all the datasets are shown in Table 3. The CDWE-CNN model signifi-

cantly outperforms all the baselines in AG News dataset and Movie Review dataset, while

the CDWE-BLSTM achieves state-of-the-art in all three datasets. Although the accuracy

of CDWE-BLSTM only outperforms that of ULMFiT by 0.50% on TREC datasets, the

ULMFiT consists of more complex structures by using three layers of LSTM and three

training stages, which is not an end-to-end model. What’s more, the results of ULMFiT on

the Movie Review is 1.61% lower than CDWE-CNN and 3.16% lower than CDWE-BLSTM

due to the polysemous-unaware problem, which will be illustrated in Section 5.

Although character-level features are helpful, it is worth noticing that the CharCNN

model [60] does not perform well in our experiment. Due to the texts in these three datasets

are relative short, CharCNN is unable to capture enough features with only character-level

information. Moreover, WCCNN model integrates the character-level features with concept

vectors [47] and has better performances compared with other baseline methods, but it still

has polysemous-unaware and task-unaware problems.

We compare the proposed CDWE-CNN and CDWE-BLSTM model with the PWE-

CNN and PWE-BLSTM model respectively. The accuracy on three datasets of the layer

(the CNN or the BLSTM) with the CDWE as inputs can be promoted by about 3%-6%

compared with the original input of PWE, which directly demonstrate the efficiency of

CDWE for promoting the performance of existing models in text classification.

Moreover, we investigate the ability of the convolution-deconvolution structure in our

7http://nlp.fast.ai/ulmfit
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Model TREC AG News Movie Review

WC + LR 53.10% 61.16% 60.34%

BoW + SVM 85.44% 73.17% 77.49%

LTTR + kNN 91.55% 84.98% 81.35%

LTTR + SVM 90.22% 84.45% 82.17%

CNN 90.13% 85.89% 81.60%

CharCNN 76.23% 79.01% 78.53%

DSCNN 95.60% – 82.20%

KPCNN 93.33% 88.16% 83.11%

WCCNN 91.07% 85.77% 83.57%

ULMFiT 96.40% 88.35% 83.21%

PWE-CNN 89.45% 85.40% 81.20%

PWE-BLSTM 91.21% 86.09% 82.25%

CDWE-CNN 95.90% 89.38% 84.82%

CDWE-BLSTM 96.90% 89.43% 86.37%

Table 3: Comparison of results of different models
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model for capturing contextual information in further detail. On the one hand, the perfor-

mance of a deconvolution layer is influenced by the number of filters. As is illustrated in

Figure 4, the performances of both the CDWE-CNN and the CWE-BLSTM on the TREC

dataset decline when the number of filters is smaller than 100 or larger than 150. This is

because, different from previous word embedding approaches, the convolution filters and

deconvolution filters share the same parameters when generating the prototypes of different

words. As a result, the multi-prototypes cannot be distinguished by the specific meaning

for each word corresponding to different contexts when the number of deconvolution filters

goes too small. However, when the number of deconvolution filters goes too large, it is

difficult to train the all the deconvolution filters and generate proper context-specific vec-

tors. In this case, a certain prototype vector generated by the deconvolution layer cannot

represent a complete meaning, which will cause the information loss during the selection

process.

Figure 4: Results of different number of filters on TREC

On the other hand, the representation of context is directly influenced by the context

window size. A small window may result in a loss of some long-distance patterns, whereas

large windows will lead to ignoring the importance of the closest word. We consider all odd

window sizes from 1 to 9 on TREC dataset to train and test the influence on the proposed
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model, which is illustrated in Figure 5. The tendencies of the accuracy of the two models

are similar and reach the best results when the window size of context is set as 5.

Figure 5: Results of different context window sizes on TREC

4.2. Experiments on machine translation

In order to demonstrate the efficiency of CDWE further, and the generalization ability

to other NLP task (e.g. sequence to sequence tasks), the Chinese-English translation ex-

periments are performed. The experimental details and results are shown in the following

subsection.

4.2.1. Datasets

For Chinese-English translation, the training data consists of 1.25M bilingual sen-

tences with 27.9M Chinese words and 34.5M English words[41]. These sentence pairs

are mainly extracted from LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of

LDC2004T07, LDC2004T08 and LDC2005T06. We chose NIST 2002 (MT02) dataset as

our development set, and the NIST 2003 (MT03), 2004 (MT04), 2005 (MT05), and 2006

(MT06) datasets as our test sets. Finally, we evaluated the translations using BLEU [34].
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4.2.2. Experiment settings

To efficiently train NMT models, we trained each model with sentences of length up

to 50 words. In this way, 90.12% Chinese-English parallel sentences were covered in the

experiments. Besides, we set the vocabulary size to 30K for Chinese-English translation and

mapped all the out-of-vocabulary words in the Chinese-English corpus to a special token

UNK. Finally, such vocabularies contained 97.4% Chinese words and 99.3% English words

of the Chinese-English corpus. We applied RMSprop [13] to train models for 5 epochs and

selected the best model parameters according to the model performance on the development

set. There are several hyper-parameters in our model, which are set empirically and shown

in Table 4. All the other settings are the same as that in Bahdanau et al. [1].

Hyper parameter Values

hidden units of BLSTM in encoder 1000

hidden units of LSTMs in decoder 1000

dropout rate 0.3

PWE dimension 620

pooling windows size in CDWE 10

deconvolution window size 10

number of deconvolution filters 100

batch size 80

learning rate 5× 104

gradient norm 1.0

Table 4: Hyper parameters

4.2.3. Baseline methods

We have compared the proposed CDWE-BLSTM model against the following state-of-

the-art SMT and NMT systems:

Moses. This is an open source phrase-based SMT system 8 with default settings and a

4-gram language model trained on the target portion of the training data.

8http://www.statmt.org/moses/
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DL4MT. This is a re-implementation of the first successful RNN-based NMT system

with attention mechanism [1] with slight changes from dl4mt tutorial9.

ATNMT. This is an Attention-Based NMT (ATNMT) system with two directional de-

coders [29] which explores the agreement on target-bidirectional NMT.

VRNMT. This is a Variational Recurrent NMT (VRNMT) system that not only explores

the utilization of high-level latent random variables but also efficiently captures the strong

and complex dependencies between neighboring target words for NMT. [41]

ABDNMT. This Asynchronous Bidirectional Decoding NMT (ABDNMT) model equips

the conventional attentional encoder-decoder framework with a backward decoder [59], in

order to explore bidirectional decoding for NMT and achieves the state-of-the-art perfor-

mance in Chinese-English dataset currently. we obtain the source code from the author

website 10.

CDWE-BLSTM-DL. This proposed system is the CDWE-BLSTM model equipped with

the decoder of DL4MT. As a result, the CDWE of this system is the only component

different from the DL4MT.

CDWE-BLSTM-ABD. This proposed system is the CDWE-BLSTM model equipped

with the asynchronous bidirectional decoder of ABDNMT. The CDWE of this system is

the only component different from the ABDNMT.

In order to make the experimental results comparable, the amount of parameters in

the NMT models above are nearly the same and the encoder of all the NMT models are

constructed by one BLSTM layer only.

4.2.4. Results and discussion

The experimental results on Chinese-English translation are displayed in Table 5. We

also show the performances of some dominant individual models such as COVERAGE [44],

MemDec [48], DeepLAU [49] and DMAtten [57] on the dataset. Specifically, the proposed

CDWE-BLSTM-ABD model significantly outperforms all the baselines and achieve state-of-

the-art performances on all test datasets. By comparing the results between the ABDNMT

and CDWE-BLSTM-ABD, the only difference lies in the word embedding matrix. Simi-

9https://github.com/nyu-dl/dl4mt-tutorial
10https://github.com/DeepLearnXMU/ABDNMT
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Model MT03 MTO4 MT05 MT06 Average

COVERAGE 34.49 38.34 34.91 34.25 35.50

MemDec 36.16 39.81 35.91 35.98 36.97

DeepLAU 39.35 41.15 38.07 37.29 38.97

DMAtten 38.33 40.11 36.71 35.29 37.61

Moses 32.93 34.76 31.31 31.05 32.51

DL4MT 36.59 39.57 35.56 35.29 36.75

ATNMT 38.29 41.01 36.97 36.21 38.10

VRNMT 38.08 41.07 36.82 36.72 38.17

ABDNMT 40.02 42.32 38.84 38.38 39.89

CDWE-BLSTM-DL 40.14 42.11 37.92 38.33 39.64

CDWE-BLSTM-ABD 42.57 44.31 40.39 41.18 41.92

Table 5: Evaluation of the NIST Chinese-English translation task using BLEU scores. Here we displayed

the experimental results of the first four models (COVERAGE, MemDec, DeepLAU, DMAtten) reported

in [49, 57]

larly, the only difference between DL4MT and CDWE-BLSTM-DL is the word embedding

as well. The CDWE-BLSTM-DL can reach comparable results to the existing state-of-the-

art system (ABDNMT) though its decoder’s performance is not as good as that of the

other baselines. We can reach the conclusion that utilizing CDWE as the input of existing

NMT system can significantly improve the performance (e.g. more than 2 BLEU scores on

all test sets in our experiment). As the understanding of words in source language can di-

rectly influence the generation of words in target language, solving the polysemous-unaware

problems and task-unaware problems by CDWE will definitely improve the performances

of translation. We will introduce how CDWE solve these problems in Section 5.

5. Visualizing linguistic information

In order to visualize the linguistic information detected by CDWE, we choose two sam-

ples in Movie Review datasets and compute their z-test scores and TDS scores to demon-

strate CDWE’s ability to solve the polysemous-unaware problems. We choose a news title

in AG News dataset and feed it in the testing process of Movie Review dataset and AG
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News dataset, respectively, and compute the TDS scores to demonstrate CDWE’s ability

to solve the task-unaware problem.

Figure 6: Results of “A film that hews out a world and carries us effortlessly from darkness to light.”

Z-test is one of the standard metrics used in linguistic statistics, in particular to measure

the occurrences of word collocations. [31] The z-test provides a statistical score of the co-

occurrence of a sequence of words appearing more frequently than any other sequence of

words of the same length. This score results from the comparison between the frequency

of the observed word sequence with the frequency expected in the case of a “Normal”

distribution [37]. The TDS score for each word corresponds to the sum along the embedding

axis of CDWE. To make the two values comparable, we normalize them. We distinguish

between two thresholds for the z-test: over 2 a word is considered as specific and over 5 it is

strongly specific (and the opposite with negative values). For the TDS, it is just a matter

of activation strength. [37]

As is shown in Figure 6 and Figure 7, two sentences both contain the word “light”.

When the word “light” is used as a noun, it contains a positive emotion, which may directly

determine the classification result. On the contrary, when it is used as a verb or an adjective,

it probably contains no emotion information. Both z-test and TDS achieve the highest score

on “light” in Figure 6. However, the z-test “misunderstands” the meaning of “light” and

emphasizes the wrong part of the sentence, as is illustrated in Figure 7, because the word
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Figure 7: Results of “Two tedious acts light on great scares and a good surprise ending.”

”light” in Figure 7 is no longer a key word, which has different meanings. The CDWE

treats the same word differently in different samples according to their context-specific

information, which results in solving the polysemous-unaware problems. Besides, the word

“light” has three more different meanings and usages(e.g. as a verb, a noun or an adjective),

appearing 53 times, which is a considerable number, in the Movie Review dataset. There

are many other words that have two or more meanings presented in the datasets, such as

“bear”, “check”, “kind”, etc. As the proportion of polysemes in the Movie Review dataset

is much larger than that in the other datasets, the models utilizing CDWE as inputs obtain

more significant improvement of performances on this dataset.

In Figure 8, the word “wins” and the word “tournament” get the highest TDS scores

in sentiment classification and news classification, which illustrated that the CDWE can

emphasize the different task-specific key words in the testing process corresponding to the

positive emotion and the “Entertainment” news class, respectively, because the CDWE can

learn task-specific information in the training process of different datasets.

6. Conclusion and future work

We presented a novel CDWE, which is an end-to-end multi-prototype fusion embedding,

to tackle polysemous-unaware and task-unaware problems in NLP tasks. To the best of
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Figure 8: TDS of “Bovina wins Pilot Pen tournament.”

our knowledge, we are the first to extend deconvolution to word embedding generation. We

empirically demonstrated the efficiency and generalization ability of CDWE by applying

it to two representative tasks in NLP: text classification and machine translation. The

performances of models can be significant improved by utilizing CDWE as inputs and

achieve state-of-the-art results on both tasks. We visualized the linguistic information

detected by CDWE and illustrated how CDWE detected and fused context-specific and

task-specific information to solve the polysemous-unaware and task-unaware problems via

analyzing the TDS scores, which further demonstrated the efficiency of the end-to-end

multi-prototype fusion embedding.

In the future, we will explore generalization ability of CDWE by feeding it into other

tasks or models, such as language models, parsing, abstract meaning representation, etc.

When predicting words in these NLP tasks, the polysemous-unaware problems and task-

unaware problems may also influence the results significantly. On the other hand, apart

from demonstrating the efficiency of CDWE empirically, we will try figuring out how the

convolution-deconvolution structure work and how multiple prototypes fuse the information

during the training process theoretically.
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