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User Association for Backhaul Load Balancing with

Quality of Service Provisioning for Heterogeneous

Networks
Ying Loong Lee, Teong Chee Chuah, Ayman A. El-Saleh, and Jonathan Loo

Abstract—This paper addresses the user association problem
for quality of service (QoS) provisioning and backhaul load bal-
ancing (LB) in heterogeneous networks (HetNets). This problem
is exacerbated by base stations with different backhaul capacities
and users with diverse QoS requirements. A user association
scheme is proposed to achieve QoS provisioning and backhaul LB
for HetNets. Simulation results show that the proposed scheme
outperforms conventional user association schemes in terms of
call blocking probability, QoS, and backhaul LB.

Index Terms—Load balancing, quality of service, user associ-
ation, heterogeneous networks.

I. INTRODUCTION

H
ETEROGENEOUS networks (HetNets) have emerged as

a promising paradigm to boost user capacity and data

rates, thus regarded as one of the key architectures of fifth

generation (5G) systems. In HetNets, small-cell base stations

(BSs) are deployed within macrocells to improve the coverage

of the areas which are poorly served. However, challenges in

terms of interference, fairness and quality of service (QoS)

arise in HetNet deployment [1]. Many studies have been done

to tackle the challenges.

HetNets have received significant attention due to its ad-

vantages towards realizing smart cities and internet of things

(IoT) networks. In particular, multi-operator network sharing

and slicing has recently been considered as the key feature

of HetNets for supporting smart city and IoT applications.

Many researchers have delved into this research topic from the

resource allocation perspective, and proposed new resource al-

location architectures for HetNets to implement multi-operator

network sharing with the objective to support multimedia

applications [2]–[5]. Meanwhile, several researchers addressed

the technical challenges related to HetNets from the load

balancing (LB) perspective [6]–[10]. This research direction

has become increasingly important because user association,

which is the key LB mechanism, is usually performed be-

fore resource allocation and thus it can greatly affect the
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performance of the latter. Thus, improper user association not

only leads to load imbalance but inefficient resource allocation

among users, hence limiting QoS provisioning which is crucial

for IoT-based multimedia applications. Despite the existing

studies on load balancing for HetNets, some open issues

remain unresolved, thus motivating the current study.

In existing studies, the number of users served [6], or the

amount of resources consumed [6], [7] are often considered as

the load carried by each BS. However, the backhaul capacity,

which is in fact the bottleneck of the load that can be carried

by each BS, is not considered. Hence, the conventional LB

techniques in [6]–[9] cannot be directly applied for backhaul

LB. The backhaul LB problem becomes more challenging

when each BS in the HetNets has a different backhaul capacity.

Although [10] has addressed backhaul LB, the diverse QoS

requirements of users have not been considered. For instance,

users with high data rate requirements may experience starva-

tion if they are offloaded to a BS with low backhaul capacity.

The current study aims to investigate backhaul LB by taking

into account the diverse backhaul capacity of each small-cell

and users’ QoS requirements. This study focuses on downlink

backhaul LB and is based on 3GPP Long Term Evolution

(LTE). The contributions of this study are summarized as fol-

lows: 1) An optimization problem is formulated to maximize

a logarithmic utility function with respect to the backhaul

load efficiency of small-cells in order to achieve proportional

fairness, subject to the QoS requirements of each user and the

backhaul capacity of each small-cell; 2) two algorithms are

derived based on dual decomposition with one implemented

at the user side and another implemented at the BS side; 3) the

performance of the proposed scheme is compared with several

conventional LB schemes in terms of QoS provisioning and

fairness.

II. SYSTEM MODEL AND PROBLEM FORMULATION

An LTE-based HetNet consisting of a macrocell BS (MBS)

and several small-cell BSs as shown in Fig. 1 is considered.

S and U denote the sets of BSs (with s = 0 denoting the

MBS) and user equipment (UEs), respectively. The number

of available physical resource blocks (PRBs) in the HetNet is

denoted by K and full PRB reuse is allowed in the HetNet.

bsu is defined as the association indicator where bsu = 1 if

UE u associates with BS s, else bsu = 0. The data rate of

UE u achieved on a PRB by BS s is modeled as Shannon’s

capacity:



2

Fig. 1. System model of HetNet.

Rsu = B log(1 + Γsu) (1)

where B is the bandwidth of a PRB, and

Γsu =
PsGsu

∑

i∈S\{s } PiGiu + PAWGN

(2)

is the signal-to-interference-plus-noise-ratio (SINR) between

BS s and UE u. In (2), Ps is the transmission power of BS

s, Gsu is the downlink channel gain between BS s and UE u,

PAWGN is the additive white Gaussian noise power. Since user

association is assumed to be carried out in a larger time scale,

Gsu is assumed to have been averaged within the association

period and over all PRBs in the whole channel bandwidth, i.e.,

fast fading and frequency-selective fading are averaged out.

Therefore, Gsu is constant regardless of the dynamic channel

variations within the association period and the SINR between

BS s and UE u for each PRB is the same. Similar SINR

models have been adopted in [6]–[8], [11]. Each UE u needs

to achieve a target data rate Rreq,u to meet its QoS requirement.

The number of PRBs required by each UE u to meet its Rreq,u

if it is associated with BS s can be estimated as [7]

Nsu =

⌈
Rreq,u

Rsu

⌉
(3)

where ⌈.⌉ denotes the ceiling operator. The backhaul load can

be mathematically represented as the ratio of the data rate

carried by the backhaul link to the backhaul capacity:

ηs =

∑

u∈U bsuNsuRsu

Cbh,s
(4)

where Cbh,s is the backhaul capacity of BS s. Further, the total

number of PRBs required by BS s to serve its associated UEs

can be determined as

Ms =

∑

u∈U

bsuNsu . (5)

The backhaul LB problem can be formulated as a network

utility maximization problem whereby maximizing the utility

function would lead to fairness. A suitable utility function

is the logarithmic utility function with respect to ηs which

leads to diminishing returns and thus encourages LB [6].

However, a difficulty arises, where some UEs may associate

with BSs that provide low channel quality due to path loss

and fading. Therefore, it is imperative to associate UEs with

BSs that provide high channel quality. Thus, the logarithmic

utility function with respect to the backhaul load efficiency

is maximized, where the backhaul load efficiency of BS s is

defined as

γs =
ηs

Ms

. (6)

By maximizing the logarithmic utility function with respect to

γs, backhaul LB can be achieved while encouraging UEs to

associate with BSs that provide high channel quality. The user

association problem can be formulated as follows:

max
b

∑

s∈S

log γs (7)

subject to

ηs ≤ 1 ∀s ∈ S (7a)

Ms ≤ K ∀s ∈ S (7b)
∑

s∈S

bsu = 1 ∀u ∈ U (7c)

bsu ∈ {0, 1} ∀s ∈ S, u ∈ U (7d)

Constraint (7a) ensures that the total data rate achieved by

each BS does not exceed its backhaul capacity. Constraint (7b)

guarantees that the total number of PRBs allocated by each

BS to all its associated UEs does not exceed the maximum

number of available PRBs. Constraint (7c) ensures that each

UE can only associate with one BS.

III. PROPOSED BACKHAUL LOAD BALANCING SCHEME

The problem in (7) can be classified as a 0-1 integer

programming problem, which is generally difficult to solve.

Methods such as the branch-and-bound approach would take

exponential time complexity in the worst case to obtain the

optimal solution, which is impractical for modest or large

networks. To make (7) more tractable, constraint (7d) is

relaxed to continuous values: 0 ≤ bsu ≤ 1, which makes (7)

convex. Also, the objective function in (7) can be rewritten as

∑

s∈S

log γs =
∑

s∈S

log

(

ηs

Ms

)

=

∑

s∈S

log ηs −
∑

s∈S

log Ms .

Thus, with relaxation of (7d), (7) can be re-expressed as

max
b

*,
∑

s∈S

log ηs −
∑

s∈S

log Ms
+- (8)

subject to (7a)-(7c) and

0 ≤ bsu ≤ 1 ∀s ∈ S, u ∈ U . (8a)

To solve (8), two sets of new variables, i.e., x and y where

xs = ηs and ys = Ms . This allows (8) to be transformed into

max
b,x,y

*,
∑

s∈S

log xs −
∑

s∈S

log ys
+- (9)

subject to (7c), (8a), and

xs = ηs ∀s ∈ S (9a)

ys = Ms ∀s ∈ S (9b)

0 < xs ≤ 1 ∀s ∈ S (9c)

0 < ys ≤ K ∀s ∈ S. (9d)

Next, the problem in (9) can be solved by dual decomposition.

Firstly, the partial Lagrangian of (9) can be written as

L(b, x, y, α, β) =
∑

s∈S

log xs −
∑

s∈S

log ys

+

∑

s∈S

αs (ηs − xs ) +
∑

s∈S

βs (ys − Ms )
(10)
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where αs and βs are the Lagrange multipliers corresponding

to constraints (9a) and (9b), respectively. The corresponding

dual function can be expressed as

D(α, β) =


maxb,x,y L(b, x, y, α, β)

subject to (7c), (8a), (9c) and (9d).
(11)

In fact, the dual function in (11) can actually be written as

D(α, β) = D1(α) +D2(β) +D3(α, β) (12)

where

D1(α) = max
0<x≤1

∑

s∈S

(log xs − αs xs ), (13)

D2(β) = max
0<y≤K

∑

s∈S

(βsys − log ys), (14)

D3(α, β) =


maxb

∑

s∈S (αsηs − βsMs )

subject to (7c) and (8a).
(15)

The dual problem of (9) can be expressed as

min
α,β
D(α, β) (16)

where its solution is also the one to (9).

As the problems in (13) and (14) are convex, the solutions

can be obtained by setting their derivatives to zero:

xs = min

(

1,
1

αs

)

, ys = min

(

K,
1

βs

)

. (17)

The problem in (15) can be solved using the Karush-Kuhn-

Tucker (KKT) conditions [12], which can be obtained by

differentiating the partial Lagrangian of (15) with respect to

bsu . Then, the following solution can be obtained analytically

from the KKT conditions:

bsu =


1 s = arg maxi∈S Niu

(

αiRiu

Cbh, i
− βi

)

0 Otherwise
∀u ∈ U . (18)

It is noteworthy that (18) gives a binary solution of bsu , which

satisfies constraints (7c) and (7d), and thus no additional step is

needed to restore bsu to a binary value. Then, the dual problem

in (16) can be solved using the subgradient method [13]. Since

xs > 0 and ys > 0, αs and βs must be nonnegative for

the solutions in (17), thus the following projected subgradient

method is used to update αs and βs such that their values fall

within the range of nonnegative values:

α(t+1)
s =

[
α(t )
s − δ(ηs − xs )

]
+

, (19)

β(t+1)
s =

[
β(t )
s − δ(ys − Ms)

]
+

, (20)

where [z]+ = max(0, z), δ is the square summable but

nonsummable step size, and t is the iteration index. After the

subgradient updates, the process is repeated until convergence

or it reaches the maximum number of iterations Tmax.

The proposed solution can be implemented in a distributed

manner among UEs and BSs. The proposed scheme consists

of Algorithm 1, which is implemented at the UE side, and

Algorithm 2 which is implemented at the BS side. These

algorithms will be executed at the UE and BS sides until

αs and βs converge within a very small tolerance ǫ , or Tmax

Algorithm 1 Operation at UE side in each iteration

1: Initialize t = 0; each UE u measures the SINR based on the pilot
signal from each BS s, and estimates Rsu and Nsu with (1) and (3),
respectively.

2: Each UE u sends the information of Rsu and Nsu to each BS s.
3: repeat

4: Each UE u receives the values of αs , βs and Cbh,s from each BS s

via BS broadcast.
5: Each UE u determines the target BS s to be associated with according

to (18).
6: Each UE u sends the user association request to the chosen target BS

s.
7: t ← t + 1.
8: until UE u receives association confirmation from the target BS.

Algorithm 2 Operation at BS side in each iteration

1: Initialize t = 0; each BS s initializes αs and βs and broadcast αs , βs
and Cbh,s to the network.

2: Each BS s receives the values of Rsu and Nsu from each UE u.
3: repeat

4: Each BS s receives the user association requests from UEs and updates
the corresponding bsu from the request information.

5: Each BS s updates xs and ys using (17).
6: Each BS s updates αs and βs with (19) and (20) respectively.
7: Each BS s broadcast the updated αs and βs , as well as Cbh,s .
8: t ← t + 1.
9: until

���α(t+1)
s − α

(t )
s

��� < ǫ and
���β(t+1)

s − β
(t )
s

��� < ǫ , or t = Tmax.

10: Each BS s sends association confirmation to the requested UEs.

has been reached. Similar convergence conditions have been

used in [14] and [15]. In each iteration, the complexity of

Algorithm 1 and Algorithm 2 is both O( |S||U |), because

|S||U | calculations are needed to update b at the UE side

and |S||U | calculations are needed to update b, x and y at

the BS side. Thus, the total complexity of Algorithms 1 and 2

for the entire process is both O(Tmax |S||U |). It is noteworthy

that the solution obtained from Algorithms 1 and 2 is optimal

to (9) but it may not be optimal or even feasible to the original

user association problem in (7) due to the relaxation of bsu . To

ensure that the solution is feasible, especially the fulfillment

of constraints (7a) and (7b), a UE dropping mechanism is

introduced at the BS, whereby UEs with excessive resource

demands will first be dropped. If constraints (7a) and (7b)

are not satisfied at the BS, one or more random UEs will be

dropped until (7a) and (7b) are satisfied.

IV. NUMERICAL RESULTS AND DISCUSSION

A macrocell of 1 km radius that is overlaid with 20

randomly located small-cells is considered. The transmission

power of the MBS and SBSs are set to 43 dBm and 20 dBm

respectively. The backhaul capacity of the MBS is set to 50

Mb/s whereas that of the SBSs are randomly set within [1,

5] Mb/s. UEs are randomly distributed within the macrocell

and their required data rate are randomly set within [300,

500] kb/s. The channel consists of 100 PRBs with each

having 180 kHz bandwidth. The following path loss models:

128.1+37.6 log(d) (dB) and 127+30 log(d) (dB) are used for

the macrocell and small-cell, respectively, where d (km) is the

distance between the UE and the BS. A channel with zero-

mean unit-variance Rayleigh fading and zero-mean log-normal

shadowing with 10-dB standard deviation is considered. The

noise figure and noise spectral density are set to 9 dB and -174
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Fig. 2. (a) Call blocking probability; (b) percentage of QoS-satisfied UEs; (c) backhaul load balancing performance.

dBm/Hz, respectively. Also, the proposed scheme is compared

with the maximum SINR (max-SINR)-based user association

scheme with equal resource allocation, and the schemes in [6]

and [7]. The simulation results are averaged over 100 instances

with each having UEs being stationary but located at different

positions and experiencing different channel conditions.

The convergence behavior of the proposed scheme of up to

1000 iterations has been analyzed and it is observed that the

proposed scheme converges within 100 iterations at 50 UEs

and within 1000 iterations at 100 UEs. However, it does not

converge within 1000 iterations at 150 and 200 UEs due to the

increasing numbers of UEs which increases the problem size.

Nonetheless, the proposed scheme can still achieve substantial

performance gains compared to the existing schemes even

though the proposed scheme has not achieved convergence.

For the subsequent results, Tmax is set to 100.

In Fig. 2(a), the call blocking probability [7] defined as

the ratio of the number of dropped UEs to the total number

of UEs is evaluated. The proposed scheme achieves lower call

blocking probabilities than the schemes in [6] and [7], because

the proposed scheme has taken into account both the backhaul

capacity as well as QoS requirements of the UEs, unlike the

other two schemes. Notably, the max-SINR scheme achieves

lower blocking probabilities at 150 and 200 UEs than other

three schemes because it accepts UEs without considering

whether their QoS requirements can be satisfied.

Fig. 2(b) shows the percentage of QoS-satisfied UEs asso-

ciated with the BSs in the HetNet. The proposed scheme is

shown to allow more UEs to achieve their data rates compared

with the other three schemes, because the max-SINR scheme

does not take into account QoS requirements of the UEs

whereas the schemes in [6] and [7] have more UEs dropped

as shown in Fig. 2(a), resulting in fewer QoS-satisfied UEs.

In Fig. 2(c), Jain’s fairness index [16] defined as
(
∑

s∈S ηs )
2

|S |
∑

s∈S η
2
s

is used to evaluate the backhaul LB performance of the

HetNet. The proposed scheme is shown to outperform the

other schemes because the former takes into account the

limited backhaul capacity in the LB process.

V. CONCLUSION

A user association scheme for backhaul LB with QoS

provisioning in HetNets is presented. Simulation results show

that the proposed scheme outperforms the existing user asso-

ciation schemes in terms of call blocking probability, QoS and

fairness.
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