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ABSTRACT 

Early-age cracking is a major issue in design and construction of concrete pavements. 

This occurrence depends upon various factors i.e., design features, concrete mixture 

materials, jointing techniques and environmental circumstances. This may however 

occur despite adequate design, construction and jointing operations are correctly 

followed. Interactions of the above key factors are assessed using comprehensive 

analytical methods which are demanding in terms of data input and computational 

requirements. This research presents a streamlined probabilistic methodology for 

probabilistic risk assessment of early cracking in airfield concrete pavement design. 

The method provides a strength-to-stress ratio (SSR) index for identification of critical 

cracking conditions. A risk chart is presented with reference to the designed SSR 

value, and the required reliability level of the design process. 

Keywords: early cracking; concrete pavement design; probabilistic risk assessment; 

strength-to-stress ratio (SSR); airport apron. 

 

INTRODUCTION 

Thermal expansion and contraction affect deformation in concrete slabs due to 

temperature and moisture gradient between surface and bottom interfaces. Use of 

joints is crucial to regulate formation of cracks, as slab self-weight counteracting this 

process cause steady cracking in concrete. To this effect, contraction joints are 

specifically used (ACPA, 1991). Another important operation is the identification of 

the timing required to provide saw cuts. Saw cuts are used to create control joints in 

concrete, which help control where cracking occurs due to shrinkage. (ACPA, 1993; 

Okamoto et al, 1994) 

However, it is frequent to observe early distress at the construction stage of 

concrete pavements, despite a large availability of specialised survey equipment (FAA, 

2016; Voigt, 2002). To this effect, negligence at the construction stage process or 

poorly predicted information on environmental conditions may contribute to early 

cracking in slabs (Delatte, 2014). Early cracking or uncontrolled cracking in concrete 

is defined as the development of cracks throughout a concrete pavement, before this is 



opened to traffic/use (NCHRP, 1985). In more detail, major factors affecting the 

effective outcome of the paving activity must be sought in design features, jointing 

techniques, and environmental circumstances. 

Detection of the cause of early cracking is a challenging task. In maintenance 

practice, it is of vital importance to identify the most suitable repair action. In 

pavement design, it is crucial to mitigate risk of early cracking for future construction. 

Within this context, comprehensive analytical methods are available in the 

literature to assess interactions among the above key factors for risk assessment 

purposes. These methods allow for identification of high-risk conditions and critical 

design scenarios leading to early cracking. 

 

STATEMENT OF THE PROBLEM 

Early cracking in construction management is a topic of heated debate between 

contracting Authorities and contractors. Cracking may be caused by unsuitable 

construction practice and/or unfavourable climatic conditions during concrete pouring 

and hardening. In this regard, it is difficult to identify legal liability between parties 

when damage occurs. It is worth to mention that early cracking in concrete slabs has 

been also reported when all construction stages (e.g., saw-cutting at the joints or 

identification of the optimal time interval between crafting and laying out of concrete) 

were correctly performed. 

Within this framework, mitigating risk of early cracking by specifically-

addressed design solutions is an approach that is gaining momentum nowadays. To 

this effect, it is known that some of the testing methods and equipment, which are 

mostly focused on estimation of size of concrete slabs and stiffness of the base, may 

damage the pavement under investigation. 

However, a more comprehensive approach suggests that early cracking in rigid 

pavements is due by contribution of concurrent unfavourable conditions in terms of 

weather, pavement design, mix design and contruction (Fig. 1). In this regard, it is 

advised to account for all of these factors at the design stage in order to reduce 

likelihood of early cracking. 



 

Figure 1. Main factors contributing to early cracking in rigid pavements. 

Models currently applied for prediction of risk of cracking after concrete slab 

laying out require usually a number of detailed information. These include, among the 

others, actual weather and mix design conditions encountered at the concrete casting 

stage. Nevertheless, this level of detail cannot be reached at the design stage, as this 

may occur time before construction begins. In addition, mix design is usually deputed 

to the construction company rather than to the designer, and it must comply with 

specific performance requirements set by the contractor. 

Within this context, design solutions usually rely on averaged data input that 

may not reflect actual pavement requirements and environmental conditions. 

Assumption of average information may increase risk of early cracking. 

 

AIM & OBJECTIVES 

The aim of this study is to develop a probabilistic method for the assessing risk 

of early cracking in airfield concrete pavement design. 

To achieve this aim, the following objectives have been pursued: 

- to consider design and climatic parameters of the construction site as input 

data. Output of the model are trends of strength and stress after the laying 

out of concrete; 

- to provide a probabilistic risk assessment of early cracking for specific 

design solutions. 

 

METHODOLOGY 

The proposed approach relies on the use of the HIPERPAV software (FAA, 

2009).  



The strength-to-stress ratio (SRR, Lee et al, 2003) is used as a risk index for 

early cracking. It is defined as the minimum ratio between strength of the concrete and 

its internal stress at the initial setting stage (i.e., within the first 72 hours from casting). 

In case the SRR index is lower than one (i.e. stress is higher than strength), cracking 

patterns are triggered. 

The main principle followed in the pavement design is to ensure an SSR value 

the most similar to the average SSR likely to be found during construction. However, 

early cracking is a complex process involving several different variables unpredictable 

at the design stage. In view of this, it was decided to refer to a threshold value of risk 

for SRR rather than complying to the test condition SRR > 1. 

In more detail, several input information are required by the model to derive 

the SRR value of the designed pavement. Fig. 2 lists model input data sorted as 

“known” and “unknown” to the designer at the design stage. 

To set a methodology for probabilistic assessment of early cracking risk at the 

design stage, six major parameters among those reported in Fig. 1 were set to vary 

between fixed ranges. These ranges were representative of potential real case 

scenarios. Table 1 reports the values of the parameters used for the calculation of the 

SSR value. 

 

Figure 2. Input data required by HIPERPAV to perform an early cracking test. 

 

Table 1. Range of Tested Input Parameters. 

 

Parameter Latitude
Season of 

construction
Hour of casting

Slab 

thickness

Slab 

dimension

Base 

stiffness k

Tested values 46.6° Spring 9.00 am 0.30 m 3 m 229 pci

37.6° Summer 12.00 am 0.40 m 5 m 445 pci

33.6° Autumn 15.00 am 7 m 973 pci

Winter



Hence, a total population of 648 combinations were generated for the 

simulations in HIPERPAV. To identify the most viable inputs to use for design 

purposes, a random set of 30 combinations was extracted out of the overall 648. Hence, 

the variability of the two main unknown parameters, i.e., mix design and weather 

conditions was observed.  

Mix Design 

Concrete mixture main components and their proportion highly affect the 

thermal history of hours following the concrete casting. In more detail, the chemical 

composition of the cement, fineness, composition by weight of the mixture and the 

nature of aggregates affect the thermal behaviour of the concrete slab. 

HIPERPAV software requires to input a number of cement characteristics. 

These can be done by using standard Portland cements (ASTM, 2007), or by specifying 

cement features manually. The composition of the mixture can be defined to a similar 

extent. However, these information are most likely unknown to the designer during the 

design process. 

A population of 100 different concrete mixtures was statistically generated to 

select the most suitable mix design. Out of this, a random group of 10 samples was 

extracted. In addition, 30 further random combinations out of the total 648 initial input 

data were selected. Hence, the SSR was calculated for each of the overall 300 

combinations. 

Climatic Conditions 

Weather conditions at the casting of concrete are crucial to trigger early 

cracking. To this effect, HIPERPAV software requires various specific information on 

air temperature during the day, relative humidity, wind speed and cloud coverage. 

Hence, it is worthy to note that level of requested details is unlikely to be reached at 

the design phase. 

Within this context, use of streamlined equations was investigated to represent 

the above information. It is known that air temperature and relative humidity hold a 

quasi-sinusoidal behaviour. In addition, it has been demonstrated that use of theoretical 

sinusoidal functions slightly affect temperature distribution within a concrete slab. In 

more detail, the Sinusoidal-Approximated Air Temperature (SAAT) and the 

Sinusoidal-Approximated Relative Humidity (SARH) equations were used (Qin and 

Hiller, 2010): 

𝑆𝐴𝐴𝑇: 𝑇𝑎𝑖𝑟(ℎ) = 𝑇𝑎𝑖𝑟
̅̅ ̅̅ ̅ +

∆𝑇𝑎𝑖𝑟̅̅ ̅̅ ̅̅

2
∙ sin (

𝜋

2
⋅ (ℎ − 9))   (1) 

𝑆𝐴𝑅𝐻: 𝑅𝐻(ℎ) = 𝑅𝐻̅̅ ̅̅ +
∆𝑅𝐻̅̅ ̅̅

2
∙ sin (

𝜋

2
⋅ (ℎ − 21))   (2) 



where h is the hour within the day,  𝑻𝒂𝒊𝒓
̅̅ ̅̅ ̅̅ ̅ and 𝑹𝑯̅̅̅̅̅ are the average temperature 

of the air and the average relative humidity during the three days following the 

concrete casting, respectively; 𝑻𝒂𝒊𝒓
̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑯𝑹̅̅ ̅̅ ̅̅ ̅ are the maximum difference between 

average value of temperature and humidity in the same period. 

Among the “latitude” and “season of construction” values reported in Tab. 1, 

three random combinations were generated to test the viability of the proposed 

streamlined functions. 

As the wind speed has shown a more irregular behaviour, unlikely to be 

represented by a theoretical equation, it was decided to use the average value observed 

in the geographical area. 

RESULTS 

Mix Design 

For each of the 30 samples of input parameter, the frequency distribution of 

SSR was observed with regard to the various tested mix designs, for an overall amount 

of 300 combinations. Samples were found to follow a normal probability distribution, 

as reported in Fig. 3.  

 

Figure 3. Examples of probability distribution analysis of SSR for samples a) 28, 

b) 160, c) 427 and d) 548, randomly extracted among the combination input 

population. 



By assessing the mean value (SSRi) of each ith input combination, out of the 

tested 30, with respect to the result of the adoption of the jth mix design, it was possible 

to select the mix design combination with SSR value most similar to 𝑆𝑆𝑅̅̅ ̅̅ ̅. In more 

detail, the mix design MD4 was found to perform better, as shown in Fig. 4. The main 

properties of the mix design combination MD4 are reported in Tab. 2. 

 

Climatic Conditions 

To test the reliability of the proposed streamlined approach, the 30 input 

combinations were simulated in HIPERPAV, with climatic conditions varying among 

the three random scenarios reported in Tab. 3. 

 

Figure 4. Dispersion plot of SSRMD4. 

 

Table 2. Range of Tested Input Parameters. 

 

 

Blaine (m2/kg) 411 Temperature (°C) 12.1

SiO2 19.3 C3S 55.1 Cement (kg/m3) 373

Al2O3 4.9 C2S 14.3 Water (kg/m3) 142

Fe2O3 3.9 C3A 6.4 Coarse aggr. (kg/m3) 1166

CaO 60.9 C4AF 12 Fine aggr. (kg/m3) 720

SO3 2.6 MgO 3.2 Aggregate Granite

MgO 2.8 SO3 2.5 r  (kg/m3) 2401

Oxides (%) Bogue (%) Mixture 



Table 3. Seasonal Features of the Randomly-generated Climatic Scenarios. 

 

A comparison between theoretic and simulated 72 hours behavior of 

temperature and relative humidity is reported in Fig. 5. To this effect, a good fitting 

was observed between modelled data and data contained in the HIPERPAV database. 

 

Figure 5. Comparison between the HIPERPAV simulation and the (a) SAAT 

and (b) SAHR application to the Climatic Scenario 1. 

Examples of the outcomes from the stress/strength simulation in terms of 

evolution during the 72 hours of observation are instead shown in Fig. 6.  

 

Figure 6. Comparison between the HIPERPAV simulation and the SAAT and 

SAHR application to the stress/strength evolution of samples (a) 447 and (b) 

297. 

 

Climatic Scenario 1 2 3

Season Spring Summer Winter

Latitude (°) 37.6 46.6 33.6

      (°C)    13.05 23.55 12.65

      (°C)    11.9 13.7 12.9

      (%)    57 44.45 44.95

      (%)    36.4 36.5 34.5

𝑇𝑎𝑖𝑟

∆𝑇𝑎𝑖𝑟

𝑅𝐻

∆𝑅𝐻



Probabilistic Risk Assessment 

The “reliability” measure in HIPERPAV was taken into account for defining 

risk thresholds of early cracking (FAA, 2009). This parameter represents the design 

effectiveness against the potential variability of the input parameters. Using a certain 

value of reliability, confidence level of the assessment with an accepted level of risk 

are set. As an example, in case a reliability of 90% is set, then it is accepted that a 10% 

of probability from the HIPERPAV simulation will be outside the prediction scenario. 

Thereby, a value of SSR resulting from a pavement design may return different 

values of vulnerability to early cracking, according to the fixed reliability. 

To this purpose, 30 additional samples were randomly extracted out of 648 

input combinations. Trend of risk obtained by software was analysed with reference 

to the specific SSR. Therefore, a risk chart was produced with respect to the SSR given 

by the designed pavement (Fig. 7). Three levels of reliability were set for the 

simulations, namely, 50%, 75% and 90%, with returned critical SSR equal to, 

respectively, 1.0, 1.4 and 1.8. 

 

 

Figure 7. Chart identifying risk of early cracking for a designed pavement, as a 

function of SSR and required reliability. 

 

CONCLUSIONS  

This research presents a streamlined probabilistic methodology, based on the 

use of the HIPERPAV software, for risk assessment of early cracking in airfield 

concrete pavement design.  

The method provides a strength-to-stress ratio (SSR) index for identification of 

critical cracking conditions at the design stage. To that effect, six common input 

parameters for simulation purposes were set to vary between fixed ranges.  



A total amount of 648 combinations of these parameters was considered for 

simulation in HIPERPAV. This was done for investigating the sensitivity of SSR 

against single parameters. 

In more detail, the methodology provides information on the value to use for 

two major design input, i.e. mix design and climatic conditions during paving. These 

are usually unknown to the designer. 

As a result, a risk chart is presented with reference to the designed SSR value, 

and the required reliability level of the design process. 
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