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Abstract 

The Coupling Between Objects metric (CBO) is a widely-used metric but, in practice, ambiguities in its correct 

implementation have led to different values being computed by different metric tools and studies. CBO has 

often been shown to correlate with defect occurrence in software systems, but the use of different calculations is 

commonly overlooked. This paper investigates the varying interpretations of CBO used by those metrics tools 

and researchers and defines a set of metrics representing the different computational approaches used. These 

metrics are calculated for a large-scale Java system and logistic regression used to correlate them with defect 

data obtained by analysing the system’s version tracking records. The different variations of CBO are shown to 

have significantly different correlations to defects. Regarding results, a clear binary divide was found between 

CBO values which, on the one hand, predicted a defect and, on the other, those that did not. The results, 

therefore, show that a clarification or unambiguous re-definition of CBO is both desirable and essential for a 

general consensus on its use. Moreover, applications of the metric must pay close attention to the actual method 

of calculation being used and, conclusions and comparisons made as a result. 

 

1. Introduction 

The concept of coupling in software has been around since the mid-70’s [Stevens1974], and attempts 

to measure it have been part of most metric suites since. The Coupling Between Objects metric (CBO) 

is a member of the long-established and widely used Chidamber and Kemerer (C&K) object-oriented 

metric suite [Chidamber1991; Chidamber1994; Chidamber1998]. It measures the extent of coupling 

between two classes. Numerous studies have collected and used the metric and many have included 

CBO in multivariate models designed to identify defect-prone code [Sinh2009; Singh2010; 

Chhillar2011; English2009; Shatnawi2008; Zhou2006; Gyimothy2005; Ping2002; Briand2001; 

Briand2000; Chidamber1998; Basili1996]. Many of these studies have highlighted the importance of 

CBO as means of capturing the predictive ability of the same metric. Basili et al., [Basili1996] 

empirically validated the C&K suite of metrics in terms of their ability to identify defect-prone 

classes; seven C++ systems were examined and the CBO, as well as four of the remaining five C&K 

metrics, were found to correlate significantly with defects. Chidamber et al., [Chidamber1998] found 

associations between a high CBO metric value and lower productivity, more rework, and greater 
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design effort. The study by Gyimothy et al., [Gyimothy2005] collected the number of defects found 

and corrected in each class of the Bugzilla database and attempted to find associations with the C&K 

metrics. Many of the C&K metrics were found to be positively correlated with defects, but the CBO 

metric was the best at predicting the defect-proneness of classes. Wilkie et al., [Wilkie2000] identified 

CBO to be an accurate predictor of changes to classes through a study of commercial C++ application 

over a period of two and a half years.   

 

Despite these and many other studies, CBO’s definition still requires interpretation in to implement it 

practically, and this has resulted in different metrics tools producing different values in its calculation. 

We assess some of these tools in Section 3.1. While in themselves, most of these studies have 

contributed to a strong body of knowledge about coupling and systems in general, the implication of 

using different interpretations of the metric is that the results from those studies cannot simply be 

combined into a single body of evidence for a specific purpose. The study by Briand et al., 

[Briand1999] provided a detailed breakdown of the different ways in which coupling could be 

measured and interpreted (CBO featuring highly). The paper highlighted the need for consistency in 

empirical studies where CBO was used. Multiple variations in coupling metrics exist. From an 

academic stance, therefore, if inclusion or exclusion of certain program traits leads to different end 

values of the CBO, then we can no longer generalise our results concerning the link between CBO 

and software quality with total confidence. Furthermore, from a software developer perspective, 

metric tools to inspect the systems under development may each produce different results; the 

implication of this is that it is not feasible to make totally informed decisions on refactoring and re-

engineering, for example. This paper seeks to investigate the effects of this ambiguity in practice and, 

particularly, the impact it might have on CBO’s capacity for identifying defect-prone code. We use a 

set of collected metrics representing the different computational definitions of CBO in the literature as 

a basis of our study. These metrics were calculated for a single, large-scale Java system using a 

bespoke tool [Rosner2014] and logistic regression then used to correlate them with defect data 

obtained from the system’s version tracking records. Regarding results, the different variations of 

CBO were shown to have significantly different correlations to defects. In particular, the metrics can 

be divided into two groups: those that had a noticeably higher odds ratio and goodness of fit and those 

that had low values; put another way, there are those that exhibit a predictive property and those that 

do not.  

 

The study presented seeks to highlight the variations between the versions of CBO; further studies are 

needed to firstly, validate previous empirical studies using the CBO and secondly, assess the extent of 

the threat to external validity posed as a result. That the study of one system showed such variations in 

the CBO values returned is worrying, and, it is this concern that is the real message of the work. We 

also accept that the definition of CBO counts both forward and backward links as one value, thus 

making no distinction between links. The view of Kitchenham [Kitchenham2010] is that the CBO 

metric is flawed as a result because it treats backwards links in the same way as forward links; a 

backward link may be more harmful than a forward link or vice versa regarding its propensity for 

defects. We do not seek to explore that issue in this paper. We are merely trying to show that the 

CBO, as we understand it, gives different values depending on the definition used whatever view of 

those definitions you have. A large number of studies have used CBO in the past twenty-five years 

(too many to be included in the reference list of this paper). We therefore see our study as worthwhile, 

even if you do not agree with the definition of CBO as being valid theoretically. Finally, a systematic 

mapping study of coupling and cohesion metrics was recently provided by Tiwari et al., [Tiwari2018]. 

The aim of the work was to map current state-of-the-art in OO coupling and cohesion metrics. Results 

from 137 identified studies revealed an interesting trend in keeping with our work. Most studies of 

coupling and cohesion were found to be evaluations of existing metrics or proposals of new ones; 

very few were based on experience of using metrics or proper validation of the metrics proposed. The 

work highlighted a key issue in the empirical world: a proliferation of definitions which need proper 

evaluation and assessment. A quote taken from Tiwari et al., regarding the current state in cohesion 

and coupling metrics highlights this point: “.....some issues such as the lack of availability of 

information about the contextual usages of these metrics and their multiple interpretations by 

different researchers need to be resolved to establish the practical use of these metrics”. 
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In this paper, we explore variants in the CBO metric, but the same arguments could apply to all 

metrics. In fact, Landman et al. [Landman2014] explored the Cyclomatic Complexity metric 

[McCabe1976] and its perceived confounding relationship with lines of code; in a similar way, Arcelli 

et al., [Arcelli2011] undertook the same analysis for code smell detection tools and found that: 

“comparing the tools is very difficult, and in some cases also using them is not very easy and 

immediate”.  Finally, Jongeling et al. [Jongeling2017] carried out a study of sentiment analysis tools 

and found variations depending on the tool used. These studies demonstrate that we cannot make 

assumptions about two tools performing the same task providing consistent results; the question then 

arises “why would or should results be any different for CBO?” Of course, there is no reason why 

they should. Of the six C&K metrics, it is not unreasonable to suggest that CBO is more intuitively 

understood from a definition viewpoint than many of the other C&K metrics (e.g., the lack of 

cohesion in the methods of a class metric, (LCOM)); as such, it is at least therefore worthy of deeper 

study. The same could be said of many other OO metrics or indeed many other non-OO metrics.  

We see the contents of this paper as following two phases and addressing two research questions.  

Firstly, what are the different variants of CBO found in currently available tools and the literature - 

this is addressed in Section 3. The research question posed in this section essentially asks: ‘How do 

the different tools that collect CBO define the metric (Section 3.1) and how do prominent studies of 

the CBO report its measurement (Section 3.2)?’ This inevitably and through necessity leads to a 

statement of the different forms of coupling (Section 3.3) and, for the next stage of our analysis, a 

statement of the metric variations (Section 3.4) that we empirically evaluate (in Section 4). The means 

by which we answer the research question is from a thorough literature survey of the CBO of the tools 

used and studies reporting CBO results; it is the knowledge and understanding that this survey gives 

us which provides for the work described in Sections 3.3 and 3.4.  

Secondly, what is the impact of the identified CBO-variants on the previously reported relation 

between CBO and defects - this is addressed in Section 4). The research question posed in this section 

essentially asks: ‘How do the definitions of CBO established in Sections 3.3 and 3.4 perform in terms 

of their predictive capability when we collect those variations as an independent variable and defects 

as the dependent variable across an open-source system?’ Section 4 therefore comprises three 

essential sections: the systems under study (Section 4.1), the methodology adopted (Section 4.2) and 

the results generated (Section 4.3). This analysis allows us to draw conclusions and provide insights 

into these differences and the implications for differences in both the tools that collect CBO and the 

different ways of measuring CBO.  The remainder of the paper is arranged as follows. We first detail 

the research context for the paper (Section 2). In Section 3, we describe aspects of CBO’s definition 

that require interpretation, a survey of the definitions of CBO given in the documentation of Java 

metric tools and literature and a definition of the CBO variations we use. Section 4 provides study 

details including the system studied, the methodology adopted and the results of the study based on 

the Eclipse project and the defect prediction data. We raise a number of discussion points and threats 

to validity in Section 5, before concluding and pointing to future work (Section 6).   

 

2. Research context 

The CBO metric was proposed and defined in two revisions by C&K in 1991 and 1994 

[Chidamber1991; Chidamber1994], respectively. Essentially, it is a count of the number of unique 

classes that any given class is coupled to by at least one member access (e.g., a method call or a field 

access).  Although the C&K definitions state that classes are coupled only if they “affect the history” 

of one another, this is clarified as meaning the “usage history” and does not require that internal state 

is modified as a result of the access involved. The 1991 version of CBO, which, henceforward, we 

will refer to as CK1, excluded coupling within an inheritance hierarchy (i.e., couples to ancestor and 

descendent classes were excluded) while the 1994 revision (henceforward CK2) removed this rule. 
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Although the later paper is clearly intended to supersede the earlier, the original rule on inheritance 

has continued to be quoted in the literature [Zhou2006] and potentially to have been implemented in 

practical applications of the metric or metric tools [Borland2008]. According to C&K’s definition, 

CBO should be calculated for a given class as the union of incoming and outgoing couples, but a 

significant number of both studies and metric tool implementations exclude incoming couples. The 

reasons for this are not clear, but the existence of similar coupling metrics measuring afferent and 

efferent coupling which measure incoming and outgoing coupling (in the same way as fan-in and fan-

out [Martin1994]) might have been an influence in these decisions.   

 

In the same vein, a valid research line is to determine how the resolution of the destination of a 

member access affects the calculation of CBO. This relates to the location of the implementation of an 

accessed member vis-a-vis the location of its declaration and the reference type used to access it. The 

relevant three circumstances which need to be considered are as follows. Firstly, a member accessed 

on the reference type is not implemented in that type, but is inherited from an ancestor class (this 

applies to both member fields and methods). Secondly, a method invoked on the reference type is not 

implemented in that type, but is only an abstract stereotype and implemented in one or more 

descendent classes of the reference type (no equivalent circumstance for member fields exists). 

Thirdly, a method invoked on the reference type is implemented in that type but is also overridden by 

implementations in one or more descendent classes of the reference type (no equivalent circumstance 

for member fields exists). In each of these cases, both CK1 and CK2 definitions are ambiguous about 

which pairs of classes should actually be considered to be coupled. That is, whether the source of the 

access should be considered to be coupled to the reference type it uses or the class of the actual 

implementation of the member it is located in (which in practice might only be determined at runtime, 

due to late-binding). These ambiguities are investigated by Briand et al., [Briand1999].  

 

A further ambiguity concerns the invocation of constructors. C&K do not mention constructors in 

either of their definitions. In Java, constructors are not generally considered to be methods. Methods 

are offered by objects, while constructors are used to create objects. The Java Language Specification 

states that: “Constructors are not members” [Gosling2015]. In spite of this, Java metric tools do 

appear to count calls to constructors as couples. Part of the reason for this is that many tools appear to 

count any reference to a class as a couple to that class, even if no access to a member is ever made. 

The reasons for this are not clear, but may have been influenced by similar metrics based upon of 

compile-time dependencies [Martin1994]. In this paper, to define the different variants of CBO and 

make clear their differences, coupling cases are formally described and named. Variant metrics are 

then defined in terms of the treatment given to each coupling case.  

 

The terminology used to describe the different types of coupling in this paper is as follows. In each 

case, there is a source class that invokes some method on a target class type. The target class is the 

aforementioned reference type. The invoked method is declared in the target class or an ancestor of it, 

while implementations of it can be present in any of the classes in the same hierarchy as the target. 

Some of these coupling cases apply to variable (or field) access as well as method invocation, while 

some of them do not. This is noted in each description and, where field access is applicable, it is to be 

understood to be included in the counting of the coupling type.  

 

3. CBO variants 

3.1 Tool support 

We begin by surveying the tools that collect CBO and the variations in those metrics that they 

provide. The starting point for this survey consisted of a search for the terms ‘CBO and Coupling 

Between Objects’ in the IEEE and ACM digital libraries. A basic snowballing technique was then 

used to recursively follow both the citations and references given for, all the relevant papers identified 

[Wohlin2014; Brereton2007]. This process carried the survey beyond the initial repositories. Because 
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we were concerned specifically with identifying the tools and calculation methods for CBO, it was 

necessary to limit papers in the final set to those that explicitly made use of CBO to generate data. 

Different metrics tools have been shown to produce inconsistent results when calculating CBO. The 

study by Lincke et al., [Lincke2008] presents the results of a number of different tools to calculate 

metrics. Five of these tools calculate the CBO metric, but there are significant differences between 

them. Several give similar results, but none appear to be identical. The tools they compared 

concerning CBO were as follows: Analyst4j [CodeSWAT2013], CKJM [Spinellis2012], CCCC 

[Littlefair2006], Understand for Java [Scientific2013] and VizzAnalyzer [Arisa2005]. 

Whether the differences in the values are due to the interpretation of the metric the developers 

employed is unclear. All that we can surmise is that tools that produce different CBO values for the 

same system must be calculating it differently. Ultimately, the only way to know precisely how a 

given tool calculates any given metric would be to examine its source code, but this is impractical 

from a time perspective. Moreover, the documentation of metric tools often simply quotes a standard 

definition of each metric, with scant detail about how any ambiguities might have been handled in 

their implementations. We could also have carried out black box testing by providing the tool with 

example programs and observing the results similar to that used by Bowring [2004], but again this 

would have been a relatively time-consuming activity.  

The authors also analyzed the documentation of metrics tools that collect CBO. Six tools were 

examined: Analyst4j [CodeSWAT2013], Borland Together [Borland2008], CKJM 

[Spinellis2012], JHawk [Virtual2013], Understand for Java [Scientific2013] and Structure 

Analysis for Java (STAN) [Odysseus2011]. Four of these tools calculated CBO as import 

couples only and considered references to classes to constitute couples. This implies two things: four 

of the tools count only the import set of couples, not the union of import and export couples (as the 

C&K definition stipulates); and that these four tools also consider any reference to another class as 

being a couple even if there are no invocations of methods or accesses to fields of that class (e.g., 

declaring a variable as being of some class C is counted as a couple to C even if it is never used). Of 

the remaining two, one had no documented details of its implementation available. Only a single tool 

(Analyst4j) appears to define CBO in the same way as C&K's 1994 work. In surveying published 

research that uses CBO values, we found that several other tools were sometimes cited, when, 

according to their documentation, they do not actually calculate CBO; they calculate other coupling 

metrics. The tools concerned are C and C++ Code Counter (CCCC) [Littlefair2006, Eclipse Metric 

Plug-in [Sauer2011] and VizzAnalyzer [Arisa2005]. The study by [Cruz2009] gives no definition 

of CBO, while [Tang1999] does not indicate the tool used. Clearly, there is inconsistency in the way 

that tools have been implemented to calculate CBO as well as in the documentation of how the CBO 

was calculated. 

3.2 Empirical and theoretical study use 

We next explore the different variations of CBO used by key theoretical and empirical work. 

Regarding counting CBO as the import set or the union of the import and export set of couples, 

several authors specify that they count import coupling [Basili1996; Wilkie2000; Yu2002; 

Gyimothy2005; Zhou2006] while others do not specify this but use a tool which counts import 

coupling [Shatnawi2008; Raed2008; Cruz2009]. Some studies state that they used union counting, but 

the tool they used counted import coupling [English2009; Kalpani2012]. Others claim that they count 

coupling by union [Tang1999; Briand1999; ElEmam2001; English2009; Singh2010; Johari2012], but 

use a tool which does not [English2009; Johari2012]. With regard to the inclusion or exclusion of the 

inheritance hierarchy, most authors either state that they include it or can be assumed to on the basis 

that they cite the 1994 C&K paper and say no different; a few either state that they exclude it or use a 

tool which states that it excludes it [Ping2002; Yuming2006; Shatnawi2008]. With regard to counting 

references to classes as couples, the picture is also rather unclear. Some studies state that they do 

count references as couples [Wilkie2000; El Emam2001; Johari2012] while others state that they do 

not, but use a tool which says it does [Shatnawi2008; Cruz2009; English2009].  
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Published research has clearly used a variety of versions of CBO. In many cases, the studies do not 

appear to have been aware that the tools they were using were not measuring what they assumed they 

were. Coupled with the inconsistency of tool definitions, this lack of consistency makes the 

comparison of research results difficult and represents a general threat to internal, construct and 

external validity of conclusions across empirical studies.  

 

3.3 Coupling types 

 
To inform our analysis of the CBO and its variations, it is convenient to describe the different types of 

coupling and illustrate each, where appropriate, with a class diagram, as follows.   

3.3.1 Local Inheritance coupling 

Local Inheritance coupling (see Figure 1) differs from direct coupling in only one respect: the target 

class is an ancestor of the source class. This type of coupling is described by C&K and forms the basis 

of the difference between their two definitions of CBO.  

 

 

Local Inheritance coupling: 

The class Source calls a method belonging to one of its own 

ancestor classes. The CK1 definition of CBO excludes this 

invocation (the classes are not considered to be coupled) while 

the CK2 definition includes it. 

This kind of coupling applies to field access as well, where 

Target has an exposed field that Source reads or writes. 

Figure 1. Local Inheritance coupling 

Most authors make no mention of this CK1/CK2 issue with regard to the CBO statistics they present, 

but [Yuming2006] and [Kumari2011] state that they do not use inheritance when computing CBO. 

Some authors, such as [Kanman2004] and [Briand1999] explicitly use two versions of CBO, once 

including inheritance and once not, because of the ambiguity between the two papers. 

3.3.2 Foreign Inheritance coupling 

Foreign Inheritance coupling (see Figure 2) refers to the situation in which the target class does not 

implement the method being invoked, but inherits it from an ancestor class. In contrast to local 

inheritance coupling, there is no relationship between the source class and the target class. The 

question now arises as to whether a couple should be considered to exist between Source and Target 

or between Source and Ancestor. 
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Foreign Inheritance coupling: 

The class Source invokes a method on the class 

Target which it inherits from an ancestor. The CK 

definitions imply and Briand’s clarifications state 

that the couple here should be between Source 

and Ancestor, the site of the concrete 

implementation of the method. 

This kind of coupling applies to field access as 

well, where Ancestor has an exposed field that 

Source reads or writes via a reference to Target. 

Figure 2. Foreign Inheritance coupling 

As with local inheritance, this kind of coupling applies to field access as well, where Ancestor has an 

exposed field that Source reads or writes via a reference to Target. 

3.3.3 Abstract or Interface coupling 

Abstract coupling (see Figure 3) refers to the situation in which the target class only has (or inherits 

from) an abstract declaration of the method being invoked. An abstract method has no executable 

body and when called at runtime the object the target refers to must be an instance of some subclass of 

the target type which has a concrete implementation of the method. Any class can declare abstract 

methods. A class which only declares abstract methods is sometimes described as an interface and in 

some languages (such as Java) “interface” is a separate named language construct distinct from class. 

Thus, Interface coupling is essentially another name for Abstract coupling. 

  

 

Abstract coupling: 

The class Source invokes an abstract 

method on Target which is actually 

implemented in descendent classes. 

Overridden coupling: 

The same situation except that Target 

has a concrete implementation of 

method() which is overridden in 

descendent classes. 

Figure 3. Abstract coupling 

Again, there is an ambiguity as to which classes should be coupled: Source and Target or Source and 

one or both of the descendent classes. Because fields cannot be declared to be abstract, this kind of 

coupling is only applicable to method invocations. 

3.3.4 Overridden coupling 

Overridden coupling is similar to Abstract coupling in that subclasses may be the ultimate destination 

of the method invocation. The difference in this case is that the target class does provide a concrete 

implementation of the method being invoked, but it is also overridden in one or more subclasses of 

the target type. At runtime, the actual class of the object referred to by target will determine which of 
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the method implementations is actually invoked. Because fields cannot be overridden, this kind of 

coupling is only applicable to method invocations. 

3.3.5 Constructor coupling 

Constructor coupling (see Figure 4) refers to the invocation of a constructor rather than a method. 

Whether constructor calls should be considered to constitute a couple or not is ambiguous and 

depends on whether a constructor should be considered to be a special kind of method. 

 

 

Constructor Coupling: 

The class Source invokes a constructor of Target.  

 

Figure 4. Constructor coupling 

 

3.4 CBO subsets 

 
To assess the potential impact of the variations of CBO used and the potential impact that using 

different variations of the metric causes, we felt that a more in-depth analysis was required. Studying 

all possible combinations of CBO metrics is impractical because of the range of combinations 

generated, so a subset of specific variants was selected and a rationale defined for this to be achieved. 

We decided that a pragmatic selection of what we thought would be the most valuable and interesting 

combinations of parameters would be the best way to proceed based on our understanding of the 

CBO.  

 

As we have indicated, there are two sources for variations in CBO: those described by researchers and 

those implemented in tools. The originators of the CBO metric gave two slightly different definitions, 

and these were clarified and formalised in a wide-ranging review of metrics by Briand et al., 

[Briand99]. The formal definitions presented in that paper provide a suitable basis from which to 

classify other variations. Combining C&K’s 1991 and 1994 definitions (CK1 and CK2, respectively), 
Briand termed these CBO for the final 1994 definition and CBO' for the earlier 1991 definition. These 

are given names and described in the subsections below. They are constructed using the word ‘static’ 

to indicate that the metric treats abstract and interface coupling according to Briand’s static approach 

and ‘poly’ to indicate that Briand’s polymorphic approach is used. Finally, CK1 or CK2 is used to 

indicate whether the first or second revision of C&K’s definition is used with regard to couples within 

the inheritance hierarchy. The terms in the definitions used in the CBO variants that deviate from 

these categories (employing a ‘mixed and match approach’) are labelled accordingly. For example: 

 

a. Couples within the same inheritance hierarchy are not counted (Local inheritance coupling as 

per Figure 1). 

b. Couples to a method not implemented by the target class but inherited from one of its 

ancestors are counted as couples to the ancestor (Foreign inheritance coupling as per Figure 

2). 

c. Couples to abstract methods are not counted, and any classes implementing the methods are 

not counted (Abstract coupling as per Figure 3). 

d. Couples to classes overriding an invoked method are not counted (Overridden coupling as per 

Section 3.3.4). 
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e. Couples to constructors are not counted (Constructor coupling as per Figure 4). 

 

3.4.1 Static-CK1 

The 1991 C&K definition as clarified by Briand et al., [Briand2001] is as per the example in the 

previous section (Section 3.4) with identical Conditions a-e. 

3.4.2 Static-CK2 

This variation is the revised 1994 C&K definition, as clarified by Briand et al., [Briand2001] and 

defined in an identical way to Static-CK1, except that, concerning Condition ‘a’ in Section 3.4, 

couples within the same inheritance hierarchy are counted. 

3.4.3 Poly-CK1 

This variation is the 1991 C&K definition as clarified by Briand et al., [Briand2001], but including 

Briand's polymorphic couples. It is the same definition as Section 3.4 except for Conditions c-e, 

where:  

c. Couples to abstract methods are counted as couples to all classes implementing the method. 

d. Couples to all classes overriding an invoked method are counted. 

e. Couples to constructors are not counted. 

3.4.4 Poly-CK2 

The Poly-CK2 variation is the revised 1994 C&K definition, as clarified by Briand 2001, but 

including Briand's polymorphic couples. This is identical to Poly-CK1, except that couples within the 

same inheritance hierarchy are counted. 

All four of these variations of the CBO metric are defined to be calculated as the union of import and 

export coupling sets for each class. In the survey of previous work, it was found that six studies 

counted import-only coupling, four (notably including Briand) counted the union of import and export 

coupling and for the remainder it was unknown. In practice, most tools appear to calculate CBO for 

the import set only. Of the tools surveyed, only Analyst4j documented that it used a union 

implementation of one of these initial variations (Static-CK2). Because of this common practice, each 

of these metrics will therefore be additionally calculated for the import set only. 

3.5 Tools definition 

Judging from their documented behaviour, CKJM, JHawk and Understand for Java all appear to 

use the following definition, implemented for import couples only:  

a. Couples within the same inheritance hierarchy are counted. 

b. Couples to a method not implemented by the target class, but inherited from one of its 

ancestors are counted as couples to the target. 

c. Couples to abstract methods are counted as couples to the target.  

d. Couples to classes overriding an invoked method are not counted. 

e. Couples to constructors are counted. 

It is important to note that these three tools and Borland Together appear to accept any reference to a 

class type as a couple to that type (i.e., they use reference coupling). In fact, if a tool counts coupling 

using reference coupling and makes no special exceptions or provisions, Tools is the algorithm 

effectively being used. Borland Together differs from Tools only by excluding couples within the 

same inheritance hierarchy (as per C&K’s first definition [Chidamber1991]) and is also implemented 

as import coupling. JHawk's classic CBO would appear to be this algorithm extended to the 
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union set. Despite the stated behaviour of some of these tools being mostly identical, the results they 

yield have been shown to differ on the same systems. The conclusion we draw from this can only be 

that the stated behaviour is inaccurate or lacking in detail. Nonetheless, the most important 

distinguishing features (besides the use of import coupling) are evident: 

a. Couples to methods that have been inherited are not resolved to the concrete location of the 

method in an ancestor class, but instead counted against the target class.  

b. Couples to abstract methods are counted as if the destination were not abstract. 

c. Invocations of constructors are counted as couples. 

All of these three clearly conflict with the original definitions. To investigate the individual impact of 

these measures, three further metrics are defined to capture each of them. These metrics are each 

based on Static-CK2, as the Briand metric most closely approximating Tools when implemented for 

import coupling only. In each case, the point which differs is italicised.  

3.5.1 Tool-based ‘static-CK2-plus-abstract-targets’ 

This definition is a modification of Static-CK2 which additionally counts calls to abstract methods as 

calls to the class or interface declaring them. It is the same definition as for Static-CK2 except for 

Condition c.   

c. Couples to abstract methods are counted as couples to the target.  

3.5.2 Tool-based ‘static-CK2-wth-foreign-inh-targets’ 

This definition is a modification of Static-CK2 which counts calls to foreign inherited methods as 

couples to the target, not the implemented site in an ancestor. 

 

a. Couples within the same inheritance hierarchy are counted. 

b. Couples to a method not implemented by the target class but inherited from one of its 

ancestors are counted as couples to the target. 

c. Couples to abstract methods are not counted, and any classes implementing the methods are 

not counted. 

d. Couples to classes overriding an invoked method are not counted. 

e. Couples to constructors are not counted. 

 

3.5.3 Tool-based ‘static-CK2-plus-constructors’  

 

This definition is a modification of Static-CK2 which additionally counts calls to constructors. This is 

to quantify the impact of inclusion of constructors. 

a. Couples within the same inheritance hierarchy are counted. 

b. Couples to a method not implemented by the target class but inherited from one of its 

ancestors are counted as couples to the ancestor. 

c. Couples to abstract methods are not counted, and any classes implementing the methods are 

not counted. 

d. Couples to classes overriding an invoked method are not counted. 

e. Couples to constructors are counted. 

 

To summarise, the metrics selected for this study based on the descriptions just provided are listed in 

Table 1. See Section 3.4.4 (last paragraph) for a description of the “Applied as” column. Table 2 

provides the CBO variants used by each of the considered tools. 
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Base metric Applied as Remarks 

Static-CK1, Static-CK2,  

Poly-CK1, Poly-CK2 
UNION 

These are the two original CK definitions, as clarified by Briand and 

each applied with and without Briand's polymorphic modification. 

Static-CK1, Static-CK2,  

Poly-CK1, Poly-CK2 
IMPORT 

As tools widely implement CBO by counting only import couples, 

the same four metrics will be used again on the import set. 

Static-CK2-plus-abstract-targets 

Static-CK2-with-foreign-inh-

targets 

Static-CK2-plus-constructors 

IMPORT 

The three main inconsistencies found in tools, each applied 

independently to Static-CK2 and applied as import as tools typically 

do. 

Tools IMPORT 

Effectively the combination of all three inconsistencies, 

representative of the kinds of implementation apparently present in 

tools. 

Table 1. CBO variants studied 

Tool Variant metric 

used (according to 

documentation) 

Applied as Remarks 

Analyst4j Static-CK2  UNION   

CKJM, JHawk, 

Understand for 

Java,  

Borland Together 

Tools  IMPORT JHawk also offers the option of “classic CBO”, which is 

the same variant but using union coupling. 

Borland Together differs slightly from this variant by 

excluding inheritance couples within the class hierarchy. 

STAN, CCCC 

VizzAnalyzer 

Unknown Unknown The documentation does not give details and whether the 

tools support CBO is unclear in some cases. 

 

Table 2. Variants of CBO used by the tools 

 

4. Case-study detail  

Demonstrating a relationship between CBO and defect-proneness of classes can be achieved through 

either linear or logistic regression on the CBO value and defect status of classes in a given system. 

Logistic regression is the more commonly used approach [Cox1958] and, for that reason, was selected 

for this study. To perform regression, data indicating which classes in a system are defective is 

required. The data for this study was obtained by combining the information stored in a version 

control system with the accompanied issue tracking system (in this case, Git and Bugzilla, 

respectively). Other approaches that have been used include using data provided by the professional 

developers of a system or using students to develop a system and then test it for defects [Basili1996; 

Briand1999; Briand2000; Briand2001]. A fundamental pre-requisite for this approach is that the 

system selected for study must have version control and issue tracking data available. It is also 

necessary that the data contained in these systems is of relatively high quality so that it can be used 

effectively. This means that the project should, ideally, have strong conventions for commenting 

version commits and documenting development issues.  

4.1 System under study  

The Eclipse Java Development Tools (JDT) Core project was selected [Eclipse2013], since it is a 

large, mature open-source project with all sources available in the Git version control system and full, 

online access to the Bugzilla issue tracking system. As a subproject within a larger project, defects are 

discovered and reported by members of other teams resulting in high-quality issue reports and proper 

use of the issue tracking system. We also need to consider how the time interval over which defects 

are identified is defined. There are various ways of doing this, such as using all defects reported 

between two distinct versions of the system or examining the dates at which a defect was reported and 

subsequently fixed with regard to the date of the release of the system being analysed. This study used 

the simple method of including defects from the version of the system against which the defect was 

reported. 
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A previous study by [English2009] also used the JDT system and reported finding a comparatively 

strong correlation between CBO and defects along with Lines of Code (LOC) and the Response For a 

Class metric of C&K. The work drew comparisons and found better predictive capability than the 

earlier work of Gyimothy et al., [Gyimothy2005] where CBO was also found to be the best metric 

(along with LOC) for predicting the defect-proneness of classes.  English et al., did not provide a 

detailed description or breakdown of CBO and cited a later definition of the metric provided 

according C&K as a basis of their empirical study [Chidamber1994]. However, the results resonate 

strongly with the work in this paper and motivate the importance of scrutinising CBO. One interesting 

conclusion made by English et al., further illustrates the importance of studying variations in the 

definition of the CBO. They suggest that differences in results between studies where CBO is 

evaluated may be as much to do with variations in the systems under study than with the metric itself. 

Variations in the definition of CBO imply that differently composed systems (comprising different 

emphases on coupling types) will produce different results when empirically evaluated for defect-

prediction effectiveness.        

4.2 Study methodology 

Defects reported against versions 2.1 and 3.1 of the JDT system were used and defective classes 

identified then correlated with the CBO variant metrics calculated from the corresponding system 

releases. Version control commit operations were searched to identify a specific bug-id from the issue 

tracking system. However, in practice, some interpretation was required. Studies are not always 

explicit in describing this process, despite having a potentially critical impact on their results. Two 

general approaches have been used: a non-discriminatory assumption that all classes changed in 

relation to a defect report are considered defective and a discriminatory assessment of which classes 

should be considered to be at defect. These approaches will be referred to as assumed defect location 

and assessed defect location. Assumed defect location is easy to accomplish since the classes are 

listed as changed in the relevant version control commit records, and it is unambiguous since no 

subjective judgement needs to be made. Nevertheless, it is also likely that it will overestimate the 

number of defective classes. There are two reasons why this may happen. Firstly, the commits can 

contain changes unrelated to the defect and which happen to have been made at the same time. In the 

course of this study, we observed that a refactoring operation such as a variable renaming or 

correcting a spelling mistake in comments in the source code may have been carried out by a 

developer in the course of their work. A commit may, therefore contain ten changed classes for 

reasons such as these, while only one of them actually contains any meaningful corrective changes. 

The topic of ‘tangled code’ in which: “all changes to all modules appear related, possibly 

compromising the resulting analyses through noise and bias” was studied by Herzig et al., 

[Herzig2015]. In the same study of five open-source projects, up to 15% of defect fixes comprised of 

tangled changes. Secondly, the changes required to fix a defect are not necessarily confined to the 

actual site of the defect. Supporting changes are often required in other classes, not at defect in or of 

themselves. The disadvantage of assumed defect location is therefore that it inevitably over-estimates 

the number of defective classes. It is also reasonable to point out that not all issues reported in 

Bugzilla are actual defects. Issue reporters could misclassify feature requests and refactoring 

suggestions as defects.  This could have a significant effect on the defect prediction process. In our 

defence, this was dealt with as ‘part and parcel’ of the assessment of individual issue reports. We did 

not filter on the issue classification field (so we inspected reports labelled ‘enhancement’ as well as all 

levels of severity) but we did classify issues as enhancements and eliminated them where it was 

deemed appropriate. This is an additional reason for using the assessed defect location approach, 

because, in assessing the issue, enhancements that had not been labelled as such were eliminated 

(instead of relying on the labels in the database). 

 

Some studies report inspecting the classes to identify those at defect or as input to a defect prediction 

model [Briand1999; Elberzhager2014]. This process is referred to as ‘assessed’ defect location. For 

our study, the individual classes changed in the commits were examined together with the developer 

commentary to try and identify the true location of the defect. In practice, this was not always 

possible, and where it was not possible to make a reasonable judgement, no classes were marked as 
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defective. We believe that this process more accurately identified the defective classes. Once defect 

data was acquired, the CBO variant metrics were calculated for every class in the target version of the 

system and logistic regression performed for each metric individually against the defect data. The 

strength of the relationship was judged through the use of the odds ratios (confirmed by goodness-of-

fit) measures and the difference between the variants quantified. The methodology can therefore be 

summarised as follows. The Eclipse Java Development Tools (JDT) Core project was used to acquire 

defect data and defects identified according to the version of the system they were reported against. 

For each set of defects, the defective classes were identified using the assessed defect location 

approach. Each of the CBO variant metrics was then calculated for every class of the target version(s) 

of the system. Logistic regression was performed for each metric using each of the four sets of 

defective classes. In each case, the relative strengths of the metrics as defect predictors were 

compared and the differences between the results sets noted. Table 3 gives the summary data from the 

two releases of the JDT studied.  

 

 
Statistic version 2.1 version 3.1 

Issues reported 461 1104 

No. of classes in system 685 873 

No. of classes assessed as being defective 148 (22%) 262 (30%) 

No. of classes assumed defective 369 (54%) 529 (61%) 

 
Table 3. Summary statistics for the two releases 

 

It is interesting to note that the proportion of classes in the system assessed as defective are 

comparable with 22% and 30%. The last row in the table shows the resulting number of defective 

classes when no discrimination is made and all classes changed in a commit matched to a defect-fix 

are assumed to be defective. As we might expect, more classes are considered defective; in each case 

approximately twice as many classes are getting marked as defective using this method than when 

judgement was exercised. 

4.3 Results  

In the results tables which follow, the intercept, coefficient and error of the regression model are 

given, together with the odds ratio and the likelihood ratio pseudo-R
2
 goodness-of-fit measure. We 

make the following observations about the values in those tables  

1. The p-value has been omitted as it is less than 0.0001 in every case.  

2. The odds ratio and pseudo-R
2
 are the most appropriate values for comparison of the metrics, 

and their values are illustrated by bars to make this comparison visually easier.  

a. An odds ratio of one suggests that there is essentially no relationship between the 

variables. The magnitude of the difference with one indicates the strength of the 

influence exerted. Although a stronger influence indicates that the metric is a better 

predictor of defect-proneness, it must be accompanied by a reasonable model fit to be 

given any credibility.  

b. The pseudo-R
2
 provides a measure of goodness-of-fit. According to [Louviere2000], 

a rule of thumb for this value is that between 0.2 and 0.4 is considered a good fit. 

Higher values would be even better, but are not considered to be common for this 

measure.  

3. Both the odds ratio and pseudo-R
2
 columns are scaled to be directly comparable across all the 

result tables.  

a. In the case of the odds ratio, the data bar ranges from 1.0 to 1.5, values chosen simply 

for visual clarity.  
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b. In the case of the pseudo-R
2 

column, the data bar ranges from 0 to 0.5. As an 

additional aid to comprehension, where the value fails to reach the 0.2 threshold for 

acceptability, the figure is shown in fainter text.  

4. For a metric to be considered a valid defect predictor, it should have both a strong odds ratio 

and a pseudo-R
2
 of at least 0.2. 

 

4.3.1 Logistic regression  

Tables 4 and 5 show the results for versions 2.1 and 3.1 of the JDT Core system, respectively. One 

interesting observation is that the pairs of metrics that differ only by their use of the CK1 or CK2 rules 

for coupling within the inheritance hierarchy exhibit near identical results. For example, IMPORT-

Poly-CK1 and IMPORT-Poly-CK2 have identical values in the results for version 2.1 and almost 

identical values in the results for version 3.1. The same is true for IMPORT-Static-CK1 with 

IMPORT-Static-CK2, UNION-Poly-CK1 with UNION-Poly-CK2 and UNION-Static-CK1 with 

UNION-Static-CK2. This indicates that, at least in this particular system, it is very rare for a couple 

within the inheritance hierarchy to significantly contribute to the net coupling of any class. It might 

even be that in version 2.1 of the system, there is no significant coupling of this type, while the small 

differences in values in the results for Version 3.1 indicates that there cannot be much. We conclude 

that the difference in the first and second revisions of the C&K definitions of CBO is likely to be of 

little consequence in practice, unless the system under analysis here is atypical and systems with a 

higher proportional occurrence of coupling within the inheritance hierarchy are common.  

The next observation is that the metrics can be divided into two groups: those that have noticeably 

higher odds ratios and goodness of fit and those that have low values. In other words, there are those 

that exhibit a predictive property and those that do not. 

 
Table 4. Results for issues reported against version 2.1 using the assessed defect location technique 

 
Table 5. Results for issues reported against version 3.1 using the assessed defect location technique 
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The metrics which include polymorphism
1
 all display an odds ratio close to one and a pseudo-R

2
 

value which falls short of acceptable. The same is true of the metrics which use union counting
2
 (two 

of which also use polymorphism). For all these metrics, IMPORT-Poly-CK1, IMPORT-Poly-CK2, 

UNION-Poly-CK1, UNION-Poly-CK2, UNION-Static-CK1 and UNION-Static-CK2, the relationship 

to defects is shown to be weak statistically. According to these results, the system we studied and the 

methodology we used, these metrics have no practical application to the prediction of defects. 

(Appendix B provides data and analysis on the predictive value of each variation of CBO.)  

The remaining metrics, IMPORT-Static-CK1, IMPORT-Static-CK2 and its variations (including 

Tools) all have an odds ratio greater than one as well as respectable pseudo-R
2
 values, indicating that 

the relationship could be considered sound. The odds ratio does not represent a strong relationship for 

any metric, but the pseudo-R
2
 value supports the relationship’s existence. The metrics which do show 

a predictive property differ from each another in only subtle ways. They are all import metrics 

(counting couples to other classes and not from other classes). IMPORT-Static-CK1 and IMPORT-

Static-CK2 are Briand’s clarifications of the two definitions published by C&K and as discussed, 

show minimal differences. Then there are the three modifications of the CK2 metric using abstract 

targets, constructors and foreign inheritance targets and, finally, the Tools metric which combines all 

three modifications. Given that these metrics are closely related, it is not surprising that they display 

similar performances as predictors. In one case in version 2.1, IMPORT-Static-CK2-With-Foreign-

Inh-Targets produces identical values to IMPORT-Static-CK1 and IMPORT-Static-CK2 (already 

noted to be identical to each other). This may be because the classes in the system do not exhibit the 

kinds of coupling the metrics treat differently. Again, this suggests that the differences in calculation 

method are inconsequential in practice. To confirm that this is not anecdotal it would be necessary to 

widen the study across multiple systems of different types. The difference in the odds ratios of these 

metrics is not large, but a pattern is identifiable in both versions presented. The variants which count 

constructors and abstract targets show a slightly weaker relationship than the others; the Tools metric 

which counts both constructors and abstract targets is the weakest in both cases. This is interesting 

because Tools is the variant closest to what most metrics tools appear to do. These results suggest, 

very tentatively, that including accesses to constructors and abstract method sites decreases the 

effectiveness of coupling as a predictor of defects.  

We also created a logistic model based on size alone, then created classification tables for CBO only, 

CBO and size and size-only models. In both releases, the combined model performed best and the 

CBO-only model performed slightly better than the size-only model.  Clearly it is possible to predict 

defective classes almost as well using size as it is using CBO. But using both is better than using 

either one; this implies that they both must be contributing unique information to the predicted value. 

 

5. Discussion  

5.1 Issues Raised 

The preceding analysis also raises a number of issues for research studies. The first issue relates to the 

implications of the results for both past and future empirical studies of the CBO metric. While we 

have only studied two versions of one system as our basis, it is clear that, even if only one study 

shows significant differences between CBO values, then other systems may exhibit similar or even 

more pronounced differences. Put another way, comparison of studies where CBO was used would be 

highly problematic, unless those studies used identical definitions of CBO. It is well-known that 

excessive coupling is positively correlated with defects; consequently, if the independent variable has 

multiple interpretations, then no real sense of the extent of the overall correlation can be made. 

                                            
1
 These are the variants in which couples are counted to all possible destination classes for abstract and 

overridden methods. 
2
 These variants treat couples as bi-directional, so if class A uses class B, both A and B count it as a couple, 

instead of only A counting it as a couple. 
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Secondly, the study demonstrates, in a clear way, that making the assumptions explicit about what 

data is being collected is crucial to the conclusions that can be drawn. In our study, the choice of tool 

seems to determine what variety of CBO is collected; however, a developer or researcher should be 

able to use any tool available and be confident that the same data is being collected (or at the very 

least that there is an explanation of any variation from a standard definition) [Lincke2008]. At the 

moment, this is not the case. It is evident that a set of standards needs to be agreed on a core definition 

of CBO that all tools abide by, even at this stage in the lifetime of the CBO. There are also issues 

related to how easy it would be to replicate any study of coupling; any researchers would need to use 

the same tool as the original study and this is not always possible. Replication is difficult enough 

without the additional burden of interpreting the semantics of the metrics used. Some further 

interesting parallels and differences with the work of English et al., [English2009] can be shown from 

our results and these also point to important and potential areas of study. In their paper, CBO 

consistently showed itself to be a better predictor of defective or non-defective classes than other 

metrics (it performed even better than LOC and WMC as measures); however, no metric was found to 

be particularly good at predicting ‘highly’ defect-prone classes. In our paper, we only considered the 

former i.e., the relationship between CBO and whether a class was either ‘defective’ or ‘not defective’ 

(a binary distinction). This limits a comparison between our work and the work of English et al., to a 

certain extent, since only one of their four research questions maps to our study. However, it would be 

interesting to explore the extent of class defect-proneness and the relationship that such classes have 

with CBO in the two systems as further study. To do this would require both CBO and defects to be 

tracked across multiple versions of systems over time and this is a major empirical undertaking. In the 

work of English et al., C&K’s Response for a Class (RFC) metric, essentially a coupling metric, also 

showed itself to be a good predictor of defect-prone classes. In this paper, we did not consider the 

relationship between CBO and RFC. To do so would have required an in-depth dissection of the RFC 

metric and then a comparison with CBO. The RFC metric is one of the C&K metrics that remains 

highly utilised in empirical studies yet difficult to understand. Interpreting the values it gives is also 

problematic and this rendered the metric less useful than the CBO. In their concluding remarks, 

English et al., also allude to further work examining the ‘severity’ of a defect and its relationship with 

CBO and this is an aspect that might also inform the results or our study. The problem of course is 

that defect severity is subjective only. Finally, we found that a combination of predictors performed 

better than any single metric (i.e., LOC and CBO rather than CBO by itself). In this sense, it would be 

interesting and informative to replicate our study using this result with the same data used by English 

et al. Overall, the results of English et al., justify the extensive use of CBO in empirical studies since 

there can be little doubt of the link between CBO  and defects. In effect, our study reflects how careful 

we need to be in defining and interpreting coupling-based metrics, despite acknowledging that fact.      

It is important to note that class size has intuitive relationships with both measures of coupling such as 

CBO and the propensity for defects [McIntosh2016; Koru2009]. A larger class contains more code 

and thus more opportunities for both couples to other classes and defective code to be present. CBO is 

therefore unlikely to be independent of class size and this is commonly measured by means of 

Pearson or Spearman correlations (Pearson’s is a parametric measure making assumptions about the 

distribution, while Spearman’s is non-parametric). Our tool for calculating the various CBO values 

operates on Java byte-code rather than the source code and therefore LOC values were not readily 

available. Instead, we followed the practice of Briand et al., [Briand1999] and measured class size as 

a count of the number of methods implemented in the class. We included constructors in this count as 

the aim was to approximate the amount of code the class consisted of. This was then correlated to the 

variant CBO metrics using Spearman’s rho. The results are shown in Appendix A. The correlation 

values range between 0.36 and 0.54 for version 2.1 and 0.45 and 0.65 for version 3.1. These results 

confirm that all the variants of CBO have some overlap with class size (an effect that is slightly more 

pronounced in version 3.1 of the system). In most cases, the values are around 0.5 and could be 

described as only moderately positive [Briand1999]. Whilst this suggests that class size might also 

display a relationship with defects, we did not model this by regression as our aim was to compare 

variations of CBO with each other, rather than different metrics altogether. Since multiple correlations 

have been computed the p-values were adjusted to control for the false discovery rate. We therefore 

checked for the adjustment using the Benjamini-Hochberg False Discovery Rate (BHFDR) 
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[Benjamini1995] test. The test is designed to control for the expected proportion of incorrectly 

rejected observations (i.e., Type I errors). We found from the analysis that all p-values were all at 

least eleven places below the point. So, this would not affect the validity of the conclusions we have 

drawn.  Table 6 shows the computed values.  

 

 

 

version 2.1 version 3.1 

Metric p-value BH FDR p-value BH FDR 

IMPORT_POLY_CK1 2.43E-11 2.43E-11 8.26E-19 9.01E-19 

IMPORT_POLY_CK2 2.43E-11 2.43E-11 1.17E-18 1.17E-18 

IMPORT_STATIC_CK1 1.20E-21 2.40E-21 2.89E-32 1.73E-31 

IMPORT_STATIC_CK2 1.20E-21 2.40E-21 7.00E-32 2.41E-31 

IMPORT_STATIC_CK2_PLUS_ABSTRACT_TARGETS 3.66E-25 4.39E-24 1.11E-32 1.33E-31 

IMPORT_STATIC_CK2_PLUS_CONSTRUCTORS 2.48E-22 9.90E-22 4.23E-31 8.47E-31 

IMPORT_STATIC_CK2_WITH_FOREIGN_INH_TARGETS 1.20E-21 2.40E-21 8.02E-32 2.41E-31 

IMPORT_TOOLS 1.21E-24 7.27E-24 3.75E-31 8.47E-31 

UNION_POLY_CK1 5.56E-12 6.67E-12 7.19E-22 1.08E-21 

UNION_POLY_CK2 5.56E-12 6.67E-12 1.09E-21 1.45E-21 

UNION_STATIC_CK1 4.60E-15 6.89E-15 5.32E-22 9.12E-22 

UNION_STATIC_CK2 4.60E-15 6.89E-15 1.25E-21 1.50E-21 

Table 6. Benjamini-Hochberg False Discovery Rate analysis 

 

5.2 Threats to validity 

We also need to be mindful of a number of threats to the validity of the study presented. Firstly, we 

only studied two versions of one system, severely limiting the external validity of the study. However, 

we did not embark on this study with the intention of providing a large number of systems as an 

empirical basis. The aim of the study was to demonstrate, even for just a single system how varied (or 

otherwise) the CBO data could be. In that sense, the paper is different from an empirical study where 

we would try to analyse as many systems as possible to limit the external threat posed 

[Easterbrook2008].    

Secondly, the basis of our study is that collecting coupling data accurately is of critical importance to 

understanding systems and drawing conclusions. However, it may be that in industry all that is usually 

required is a rough estimate of how much coupling there is in a class as a guide to re-engineering and 

similar activities. In that case, the differences may not be as relevant or as important as we portray. 

Thirdly, the use in the study of two subsequent versions of the same system (JDT Core 2.1 and 3.1) 

suggests that there might be defects reported only against version 3.1 (but already present in version 

2.1) or reported against both versions. In defence of this threat, version 2.1 (March 2003) was 

followed by three maintenance releases and a major release 3.0 (June 2004) with two subsequent 

maintenance releases of its own. Version 3.1 came after that in June 2005. We feel that the presence 

of a major release between the two studied systems to a certain extent minimises the carry-over of 

issues. Moreover, while version 2.1 was receiving maintenance releases, version 3.0 development was 

taking place on a separate branch. Finally, we have only studied certain combinations of CBO variants 

in this paper. Other variants might have illustrated or uncovered other interesting traits. However, we 

made a conscious decision to include what we understood to be the key combinations and those most 

likely to illustrate the point we were trying to make.  
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6. Conclusions and further work  

In this paper, we used a set of collected metrics representing the different computational definitions of 

CBO as a basis of a study of its variations. The metrics were calculated for a single, large-scale Java 

system using a bespoke tool and logistic regression then used to correlate them with defect data 

obtained from the system’s version tracking records. In terms of results, the different variations of 

CBO showed significantly different correlations to defects. In particular, we found that the metrics 

could be divided into two groups: those that exhibit a predictive property and those that do not. It is 

clear from the study that clarification or unambiguous re-definition of CBO is both desirable and 

essential for a general consensus on its use and application. Otherwise, it will become impossible to 

compare the results of empirical studies where CBO is used. Researchers need to be aware of the 

different applications of the metric and the actual method of calculation being used if conclusions and 

comparisons can be made as a result.  

In terms of further work, we would like to run the collection tool on more systems and from different 

application domains. This might inform the results presented in this paper. It would also be useful to 

re-visit some past empirical studies to see whether different results would have been reported had 

different calculations of the CBO been used. Of course, the problem with this sort of study is that it 

relies on having the original data available and the problems that inevitably arise when conducting a 

replication. The tool and data used in this paper are available freely for other researchers to use; the 

data especially is available on request of the lead author. Finally, it would be interesting to undertake 

a similar study but using incoming and outgoing coupling metrics (i.e., by decomposing CBO into its 

two constituent parts).   
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Appendix A – Size Correlations (v2.1 and v3.1 – Spearman’s rho) 

 
Metric (v2.1) NUM_METHODS 

IMPORT POLY CK1 0.36 

IMPORT POLY CK2 0.36 

IMPORT STATIC CK1 0.42 

IMPORT STATIC CK2 0.42 

IMPORT STATIC CK2 PLUS ABSTRACT TARGETS 0.44 

IMPORT STATIC CK2 PLUS CONSTRUCTORS 0.44 

IMPORT STATIC CK2 WITH FOREIGN INH TARGETS 0.42 

IMPORT TOOLS 0.45 

UNION POLY CK1 0.38 

UNION POLY CK2 0.38 

UNION STATIC CK1 0.54 

UNION STATIC CK2 0.54 

 

Metric (v3.1) NUM_METHODS 

IMPORT POLY CK1 0.49 

IMPORT POLY CK2 0.47 

IMPORT STATIC CK1 0.54 

IMPORT STATIC CK2 0.49 

IMPORT STATIC CK2 PLUS ABSTRACT TARGETS 0.50 

IMPORT STATIC CK2 PLUS CONSTRUCTORS 0.53 

IMPORT STATIC CK2 WITH FOREIGN INH TARGETS 0.50 

IMPORT TOOLS 0.54 

UNION POLY CK1 0.46 

UNION POLY CK2 0.45 

UNION STATIC CK1 0.65 

UNION STATIC CK2 0.63 
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Appendix B – CBO as a predictor (v2.1 and v3.1) 
 
To assess the effectiveness of the CBO metrics at defect prediction the regression model was used to 

build classification tables comparing the classes predicted as being defective to those recorded as 

being defective. Where the regression model gave a probability of 0.5 or more it was interpreted as a 

prediction of a defective class; Tables B.1 and B.2 show the results for versions 2.1 and 3.1 of the 

system. It can be observed that the various metrics display differing predictive properties. Those that 

achieve at least a 25% improvement over the results expected for proportional by-chance predictions 

are indicated as significant. It can be noted that even the best of these metrics incorrectly identify 

defective classes as non-defective more often than they correctly identify defective classes, however, 

given that metrics such as CBO are usually used along with other metrics in multivariate models and 

that our aim is to compare versions of CBO rather than establish it as a defect predictor per se, these 

flaws have little impact on this study. 

 

Cases: 685 of which 148 true (t) and 537 false (f). Proportional By-Chance-Accuracy Rate: 66.12% 

Metric Correct Incorrect % Correct % Improved Sig? 

IMPORT POLY CK1 543 (20t, 523f) 142 (128t, 14f) 79.27% 19.88% FALSE 

IMPORT POLY CK2 543 (20t, 523f) 142 (128t, 14f) 79.27% 19.88% FALSE 

IMPORT STATIC CK1 575 (52t, 523f) 110 (96t, 14f) 83.94% 26.94% TRUE 

IMPORT STATIC CK2 575 (52t, 523f) 110 (96t, 14f) 83.94% 26.94% TRUE 

IMPORT STATIC CK2 

PLUS ABSTRACT 

TARGETS 

574 (58t, 516f) 111 (90t, 21f) 83.80% 26.72% TRUE 

IMPORT STATIC CK2 

PLUS 

CONSTRUCTORS 

573 (53t, 520f) 112 (95t, 17f) 83.65% 26.50% TRUE 

IMPORT STATIC CK2 

WITH FOREIGN INH 

TARGETS 

575 (52t, 523f) 110 (96t, 14f) 83.94% 26.94% TRUE 

IMPORT TOOLS1 578 (58t, 520f) 107 (90t, 17f) 84.38% 27.61% TRUE 

UNION POLY CK1 545 (20t, 525f) 140 (128t, 12f) 79.56% 20.32% FALSE 

UNION POLY CK2 545 (20t, 525f) 140 (128t, 12f) 79.56% 20.32% FALSE 

UNION STATIC CK1 548 (28t, 520f) 137 (120t, 17f) 80.00% 20.98% FALSE 

UNION STATIC CK2 548 (28t, 520f) 137 (120t, 17f) 80.00% 20.98% FALSE 

Table B.1 Defect prediction performance in version 2.1 
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Cases: 873 of which 262 true (t) and 611 false (f). Proportional By-Chance-Accuracy Rate: 57.99% 

Metric Correct Incorrect % Correct % Improved Sig? 

IMPORT POLY CK1 617 (52t, 565f) 256 (210t, 46f) 70.68% 21.87% FALSE 

IMPORT POLY CK2 617 (52t, 565f) 256 (210t, 46f) 70.68% 21.87% FALSE 

IMPORT STATIC CK1 709 (125t, 584f) 164 (137t, 27f) 81.21% 40.05% TRUE 

IMPORT STATIC CK2 706 (120t, 586f) 167 (142t, 25f) 80.87% 39.45% TRUE 

IMPORT STATIC CK2 

PLUS ABSTRACT 

TARGETS 

711 (129t, 582f) 162 (133t, 29f) 81.44% 40.44% TRUE 

IMPORT STATIC CK2 

PLUS 

CONSTRUCTORS 

706 (120t, 586f) 167 (142t, 25f) 80.87% 39.45% TRUE 

IMPORT STATIC CK2 

WITH FOREIGN INH 

TARGETS 

707 (126t, 581f) 166 (136t, 30f) 80.99% 39.65% TRUE 

IMPORT TOOLS1 706 (121t, 585f) 167 (141t, 26f) 80.87% 39.45% TRUE 

UNION POLY CK1 648 (78t, 570f) 225 (184t, 41f) 74.23% 28.00% TRUE 

UNION POLY CK2 647 (76t, 571f) 226 (186t, 40f) 74.11% 27.80% TRUE 

UNION STATIC CK1 683 (94t, 589f) 190 (168t, 22f) 78.24% 34.91% TRUE 

UNION STATIC CK2 683 (94t, 589f) 190 (168t, 22f) 78.24% 34.91% TRUE 

Table B.2 Defect prediction performance in version 3.1 

 


