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Abstract

A modular Bayesian method is applied for structural identification of a reduced-
scale aluminium bridge model subject to thermal loading. The deformation and
temperature variations of the structure were measured using strain gauges and
thermocouples. Feasibility of a practical, temperature-based, Bayesian struc-
tural identification is highlighted. This methodology used multiple responses to
identify existent discrepancies of a model, calibrate the stiffness of the bridge
support and establish uncertainty of a predicted response. Results show that
the inference of a structural parameter is successful even in the presence of sub-
stantial modelling discrepancies, converging to its true physical value. However
measurements should have a high dependency on the calibration parameters.
Usage of temperature variations to perform structural identification is high-
lighted.

Keywords: Bayesian inference, model calibration, structural-identification,
identifiability, temperature variation

1. Introduction

The capability of a structural health monitoring (SHM) system to interpret
monitored data is the main factor that dictates its performance and its usefulness
to owners and local authorities.

Interpretation of the data using a physics-based model is advantageous be-
cause its development and usage as a predictive tool agrees with engineering
knowledge, making it more understandable. However the main disadvantage is
that the model has to be calibrated, before it can be used as a predictive tool.
Moreover, using a deterministic model, i.e. a model where input parameters and
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response outputs are deterministic, rarely correlates well with real data, due to
the complexity and inherent uncertainties of this latter one. Hence in most sit-
uations a probabilistic approach is more realistic [1] and methods such as model
falsification [2], fuzzy numbers [3], Kalman filters [4], sampling methods [5],
Markov processes [6] amongst others [7] have been developed for this purpose.

Bayesian inference is the basis of a class of well known methods which also
allow to perform structural identification. Beck [8, 9] is known as one of the pio-
neers of the application of Bayesian methods in SHM. Numerous research works
have been conducted on the basis of this initial framework [10, 11]. Based on this
research, two fundamental problems might be thought as to why Bayesian meth-
ods were not widely applied in SHM practice. Firstly, the model parameters to
be calibrated are often assumed as fixed physical properties of the infrastructure,
while in reality these properties change due to external factors such as traffic
and environmental variations [12], e.g. stiffness of the structure. Secondly, un-
certainties due to modelling errors are only partially considered, despite being
ubiquitous. They can be caused by: (a) discrepancy between the behaviour of
a physics-based model and that of the real structure; and (b) numerical error in
solving the partial differential equations (e.g. finite element method and mesh
discretization). Component (a) is extremely difficult to quantify. Most of the
present research [13, 14] usually disregard this form of uncertainty or consider it
as zero mean Gaussian distributed [6]. Only a limited number of authors in the
SHM community, namely Higdon [15] and Simoen [16] have applied Bayesian
methodologies under this scope. Model-based Bayesian structural identification
with temperature variations is also considerably scarce in the literature [17, 12].

Higdon applied a comprehensive modular Bayesian method originally devel-
oped by Kennedy and O’Hagan (KOH) [18, 19], which was not widely accepted,
presumably because of a lack of identifiability [20, 21]. Identifiability is un-
derstood as the capability of inferring the true value of model parameters that
represent a physical property, e.g. Young modulus, based on available data.
Arendt et al. [22] suggested an improvement to the KOH original formulation
to solve the identifiability problem, by using monitored data with diversified
responses. This approach was validated on a simulated simply supported beam.
We believe that this formulation is very comprehensive to quantify existent
uncertainties and superior in some aspects to the ones used in previous works.

Based on this resurgent interest of the modular Bayesian method, the present
work focus on its practical application for structural identification using thermal
variations. Studies on advantages of using temperature loading for structural
identification can be found in the works of Laory [23, 24] and Yarnold [25].
The objective at hand is to test the performance of the improved algorithm
on a scale aluminium bridge model subject to thermal loading. To the best of
our knowledge this test is the first practical application of this methodology,
particularly for temperature based structural identification.

Some of the advantages of using a scale model case study are: more re-
alistic conditions, e.g. noise, inherent randomness and residual deformation of
temperature loading; known structural parameters can be used to test the re-
liability of the methodology; possibility of easily testing different measurement
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scenarios; damaging the structure is permissible and allows to easily test damage
identification methodologies.

This paper is organised as follows: In section 2, a description of the model
calibration formulation is given; section 3 describes the aluminium bridge and
its finite element (FE) model, presents a sensor placement analysis, application
of the method and its results, and finally, section 4 highlights the conclusions
of the present work.

2. Model calibration formulation

This section describes the model calibration approach. A more detailed
description can be found in [22]. An introduction to Gaussian process emulation
is presented in Appendix A. An outline of the general formulation is given
in the next subsection followed by a brief overview of the algorithm and of
the numerical approach. To a more in depth description of the uncertainties
considered by this methodology see Section 2 of [20].

2.1. Observation and numerical model equations

Let us now assume that a given continuous process ξ has n observations
of q responses Y e and is dependent on d design variables Xe. Its observation
equation can be written as

Y e(Xe) = ξ(Xe) + ε (1)

where εT = [ε1, . . . , εn] is an observation error that is assumed to follow a
Gaussian distribution N (O,Λ). On the other hand the unobservable process
ξ(Xe) is described using a numerical model Y m as follows

ξ(Xe) = Y m(Xe,θ∗) + δ(Xe) (2)

where δ(Xe) is a discrepancy function that translates the difference between
the model and the true process, Y m(Xe,θ∗) is the model output and θ∗ are a
r-dimensional vector of structural parameters. This equation is an ideal state of
the model (i.e. the model is successfully calibrated) when the model parameters
θ take the values θ∗. Although our example updates only one parameter, the
methodology can also consider multiple parameters, which is a common scenario
in civil infrastructures [26, 27, 13].

It is important to mention that the discrepancy function is independent of
the model output and is an unknown of the problem as well as the structural
parameters. Now substituting equation number 2 in equation number 1 results
in

Y e(Xe) = Y m(Xe,θ∗) + δ(Xe) + ε (3)

which is the fundamental equation of the model calibration. Equation number 3
represents the process output to an input Xe within a domain of a calibrated
status θ = θ∗, representing the best fit with the observed data.
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The numerical model and the discrepancy function shall now be replaced
by multiple response Gaussian processes (mrGp), whose hyperparameters have
to be determined (see the Appendix for a definition and details). These hy-
perparameters characterise the mrGps and account for an approximation of its
associated uncertainties, such as: variability of the numerical model; modelling
discrepancies and observation error.

One way of determining the hyperparameters is by applying a Bayesian ap-
proach, which fully accounts for all the considered uncertainties and determines
all the hyperparameters at the same time. However this implies a significant
computational effort and is not recommended [28]. Instead a modular Bayesian
approach shall be used, and is described in the following section.

2.2. Modular Bayesian approach

A modular Bayesian approach (MBA) separates the calibration process into
four modules, on which the mrGp hyperparameters are estimated separately
and progressively [29] as detailed in Fig. 1 (based on Fig. 5 from [20]).

Fixing the hyperparameters at an estimated value reduces the degree of
approximation of the uncertainties covered by the mrGp. By doing so, the
‘second order’ effect of those uncertainties is being neglected. This means that
preference has been given to recognise all of these sources of uncertainty, to a
certain extent at a lower computational cost, rather than fully accounting for
the uncertainties, with a considerable increase of computational effort.

Module 1: Gaussian Process for numerical model
Replace the numerical model with a mrGp model

Simulation Data
(Xm,Θm), Ym

Output: Hyperparameters φm

Module 2: Gaussian Process for discrepancy
function. Replace the discrepancy function with a

Module 3: Posterior of the calibration parameters
Use Bayes theorem to calculate the posterior

p(θ|d, φ̂) = p(d|θ, φ̂)p(θ)/
∫
p(d|θ, φ̂)p(θ)dθ

Output: Posterior of θ

distribution for the calibration parameters

Measurements Xe, Y e

Module 4: Prediction of the experimental response
and discrepancy function
ye(x)|θ, φ̂ ∼ mrGp(me(·), V e(·, ·))

Output: Prediction of experimental

Output: Hyperparameters φδ

response and discrepancy function

Prior of the calibration
parameters p(θ)

mrGp model.

Figure 1: Flowchart of the modular Bayesian algorithm, source [20].
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This act of estimating and fixing the hyperparameters is applied progres-
sively, when moving from module 1 to module 2 and from module 2 to module
3. Estimation is done with numerical optimisation methods by maximising the
likelihood between the mrGp and the available data.

In our case we used a matlab genetic algorithm (GA) routine. An initial
population of size 40 was generated in the [0–1] range, with default values for
Gaussian mutation function (mean 0, standard deviation 1 and shrinkage of the
standard deviation as generations go by 1) and scattered crossover function (0.8
fraction of the population at the each next generation). Convergence criteria
are set as either a maximum number of 100 generations or an average change
in the fitness value less than 1× 10−6.

It is important to stress that the discrepancy function is not being updated
i.e. it is not the same as a GA fitness function. Instead the GA in module 2
(see Fig. 1) aims to estimate the parameters of a statistical model (a Gaussian
process), that approximates the discrepancy function. This is done through
maximum likelihood estimation (MLE), which implies that the fitness function
of the GA is the likelihood function.

In module 3, Bayes’ theorem is used for approximating the posterior distri-
bution of θ. In contrast to other approaches mentioned in the introduction, its
likelihood function contains the two mrGp approximated in modules 1 and 2,
now with its hyperparameters fixed.

3. Aluminium bridge subjected to thermal loading

In this case-study a reduced-scale laboratory aluminium bridge inspired by
the New Joban Line Arakawa (Japan) railway bridge, was built at the War-
wick Civil Engineering Laboratory and subjected to thermal loading due to
infrared heaters. Typical daily ambient temperature in the laboratory ranged
from 291.15 K up to 294.15 K. A numerical model of the structure was also
developed to study the phenomena. The stiffness of a pair of springs located
at one of the ends of the bridge will be considered as a model parameter to be
calibrated. Subsection 3.3 details a combinatorial analysis to select the best out
of a set of available inputs, to maximise the performance of the method, which
is subsequently applied and results are shown in subsection 3.4.

3.1. Experiment

The truss structure in Fig. 2(a) is simply supported at its ends, being con-
strained on one of them by two linear springs Fig. 2(b) (supplier reference value
is K = 552.26 N/mm).

Geometrical information and the measurement setup of the bridge are dis-
played in Fig. 3. Material properties of the bridge are: aluminium alloys of
grading 1050AH14 and 6082T6 for the gusset plates and for the box section
beams, respectively. Stainless steel M6 8.8 bolts connect the multiple mem-
bers of the bridge. Eleven strain measurements and four thermocouple readings
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(a)

(b)

Figure 2: Aluminium bridge subjected to thermal loading (a) and detail - springs constraint
(top view) (b).
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Figure 3: Aluminium bridge measurements diagram (dimensions in mm) - thermocouples
TA-TD and strain gauges SA-SK. Placement of labels above/below bar reflects the sensor
position.
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were made during the experiment, at a sampling rate of 1 Hz. A proportional-
integral-derivative (PID) controller on a Labview routine was used to control
the infrared heaters.

Temperature and strain readings during the main experiment, which took
approximately half an hour, are displayed in Figs. 4(a) and 4(b). The reason
why the strain even at the top is in compression, is that all the strain gauges
have been placed on the bottom side of the bars. Therefore, despite the global
bending of the structure that leaves the top bars in traction there is a localised
bending at the top bars, which is measured as a compression on their bottom
side.

The temperature-strain relation visible on Fig. 4(b) is not linear, because
the measurements are performed on the surface of a squared hollow section,
which cools down faster than the internal cross section and will, therefore, still
have some residual thermal deformation when cooling down.
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Figure 4: Aluminium bridge heating/cooling cycle - Temperature readings (a) and strain
measurements (b), see Fig. 3 for reference.

Although the strain gauges are thermally compensated for aluminium, the
data from the strain gauges has been post-processed to remove the remnant
thermal output effect, which is related to the natural thermal expansion of the
gauge.

3.2. Finite Element model

In this section a FE model of the scale aluminium bridge is presented. The
model was developed on ANSYS and coded with APDL (ANSYS parametric
design language) [30]. Beam elements with rotational stiffness were used to
represent the bars of the bridge. The material model is isotropic, linear-elastic
with Young modulus E = 70 × 106 kPa, Poisson coefficient ν = 0.35 and
coefficient of thermal expansion α = 23.1× 10−6 K−1, as standard aluminium.
Reference temperature was set as T0 = 293.15 K. A uniform distribution of
temperature was applied through all the bar elements, and is based on the mean
of the thermocouple measurements at the top of the bridge seen in Figure 4(a).
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Essentially nine linearly spaced points of thermal loading from 293.34 K to
318.64 K were simulated as a quasi-static analysis, with different values of the
spring stiffness. Each analysis took approximately 0.128 seconds.

Figure 5: FE model with linear springs at support, maximum temperature of heating cycle.

Figure 5 shows the strain output of the bridge model for this loading con-
dition. It is considerably easier to model the infrastructure behaviour with a
uniform temperature gradient on all of its elements, but obviously this is a
model discrepancy, since in the laboratory experiment the top of the bridge is
much hotter than the bottom side, as seen in Figure 4(a). Since the strain of
the FE model is being sampled at the bottom side of the top bars the effect of
the localised bending should be relatively small on the results.

3.3. Sensor location combinatorial analysis

This section presents a study of the influence of sensor location on the ca-
pability of inferring the spring stiffness true value.

The modular Bayesian approach was applied to infer this parameter, based
on all possible combinations of two out of eleven strain measurements available
from the laboratory experiment. Only the first three modules of the algorithm
are necessary for this combinatorial analysis. The resulting posterior distribu-
tion is a Gaussian-shaped distribution whose moments (mean value and stan-
dard deviation) estimate the stiffness value. Therefore of the C11

2 = 55 possible
combinations, the ones with minimum standard deviation σ[θ] and expected
value E[θ] closer to the spring stiffness real value were selected. This is pos-
sible only because in this example the true value is known, and ε(%) can be
determined.

Input data is given in Table 1 and the output are the moments from the
posterior distribution of the spring stiffness. Table 2 displays the results with

a relative error ε = |K−E[θ]|
K ≤ 10 %. The successful convergence by change in

the fitness value (Yes or No in the right column) of the genetic algorithms for
the maximum likelihood optimisation of module 2 is also shown. On the other
hand Table 3 shows the results obtained for standard deviations σ ≤ 70 N/mm.
Finally the worst values of metrics for σ and ε were 171.87 N/mm and 43.18 %,
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Parameter Description
Xe 13 readings of temperature at the top of the bridge (mean of

TC and TD, Fig. 4(a)) from the beginning of the heating cycle
until its maximum

Y e strain measurements at points B and G (Fig. 3) for each of the
temperature readings

θ spring stiffness with θ∗ = 552.26 N/mm
[Xm,Θ] combination set of each temperature reading with possible

spring stiffness values on a 9 × 9 input grid space with K[300;
1000] N/mm and T [293.3; 319.9] K

Y m simulations from the numerical model for [Xm,Θ]

Table 1: Dataset for aluminium bridge.

S1 S2 E[θ] ε(%) σ[θ] GA S1 S2 E[θ] ε(%) σ[θ] GA
A H 605.04 9.56 171.87 Y D H 520.64 5.72 147.19 Y
A I 596.49 8.01 169.60 Y H I 603.12 9.21 169.62 Y
A J 602.45 9.09 171.56 N H J 599.60 8.57 170.28 Y
A K 603.98 9.37 170.29 Y H K 603.99 9.37 161.07 Y
B G 532.03 3.66 47.72 Y I J 598.17 8.31 169.46 Y
C E 547.31 0.90 102.21 Y I K 604.15 9.40 168.44 Y
D G 533.90 3.33 126.47 Y J K 599.37 8.53 169.94 Y

Table 2: Results of inference of the spring stiffness for different measurement combinations
and ε ≤ 10%.

S1 S2 E[θ] ε(%) σ[θ] GA S1 S2 E[θ] ε(%) σ[θ] GA
A C 430.84 21.99 58.79 N D F 433.96 21.42 65.98 Y
A F 444.54 19.51 68.20 N F G 640.50 15.98 67.50 Y
A G 687.24 24.44 47.97 N F I 439.67 20.39 65.44 Y
B D 394.75 28.52 68.56 Y G H 681.50 23.40 52.91 Y
B G 532.03 3.66 47.72 Y G I 684.32 23.91 50.80 Y
C G 608.89 10.25 58.89 Y G J 676.23 22.45 55.87 Y
C I 437.85 20.72 56.95 Y

Table 3: Results of inference of the spring stiffness for different measurement combinations
and σ ≤ 70 N/mm

respectively. The results show that:

• the combination of responses measured at point B and G provide the
lowest error and variance on the inference of the spring stiffness;

• typically combinations involving measurements near bridge ends (A and
E) either present a high variance (notice that no combination with E is
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present on Table 3), or the genetic algorithm optimisations do not con-
verge (see the N on the GA column of Table 3). This indicates that
measurements near model singularities such as supports tend to present
poor identifiability;

• in general combining one measurement from the bridge bottom with one of
the middle or top gives the lowest error and variances, which indicates that
combining locations with a different loading range enhances identifiability.

To further support this interpretation, a comparison between an identifiability
metric applied by Arendt [22] in his simulation, against our example shall be
carried out in the following section.

3.4. Model calibration results and discussion

Considering the above results, the FE model was calibrated against the
laboratory scale aluminium bridge. The design variable, response outputs and
structural parameter are similar to what was presented for the combinatorial
analysis in Table 1. The polynomial regression functions are set as H(•) = 1
and the prior of θ as a uniform probability density function (PDF). For this
example the computational effort took 16.50 s on an Intel i7 quadcore 2.2 GHz,
6 GB of RAM and an SSD drive.

A mrGp of the model is presented in Figs. 6(a) and 6(b), for the response
surface of the strain at locations B and G. Hyperparameters are shown in Ap-
pendix B. Notice how the uncertainty shrinks and increases relatively to the
distance to the input dataset, to account for the uncertainty of the numerical
model.
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Figure 6: 95 % prediction interval of the posterior multiple response Gaussian process - 40×40
grid with 9× 9 grid input set (black dots) of strain at B 6(a) and G 6(b).

The result of the identification task (i.e. inference of the spring stiffness) is
shown in Figure 7. A deterministic model identification approach, based on the
minimum value of the sum of root mean squared errors of the two signals, leads
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to a stiffness value of K = 661.5 N/mm with an error of 15.16 µε. This error
is more than five times larger than that of MBA (i.e. 2.82 µε). Furthermore as
seen in Figure 7(b), the stiffness value resulting from MBA, 532.03 N/mm, is
closer to the real value of stiffness given by the supplier 552.26 N/mm compared
to the stiffness identified using the deterministic model identification. These
results demonstrate the superior performance of MBA not only in terms of
identifiability but also in the ability to predict structural responses. Despite
the fact that the responses used for identification have the same characteristic
nature (i.e. strain) the mean value and the variance closely approximate the
real stiffness value. It is expected that if other responses such as displacements
were given as input this uncertainty would be further improved.
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Figure 7: Inference of the stiffness of linear springs at aluminium bridge end, against reference
value (vertical dashed line).

In comparison to the hierarchical Bayesian framework from Behmanesh [12]
which had an estimation of model parameters with modelling errors at almost
20 % deviation from the true values (see Table 3 for clarification), our estimate
deviated only by 3.66 %.

Also to further justify that the improvement on identifiability was achieved,
mainly due to the sensor position and not the nature of the measured responses,
a comparison between Arendt’s metric in his simulated example and our analysis
was applied here. Essentially an improvement of identifiability by using multiple
responses should be quantifiable through the posterior standard deviation of
the model parameter that is being calibrated, following the formula (σSR

i,j,min −
σMR
i,j,post)/σ

SR
i,j,min where σSR

ij,min = min(σi,post, σj,post) is the minimum posterior
standard deviation of the calibrated parameter with individual responses and
σMR
i,j,post is the posterior standard deviation with multiple responses. In our case

an improvement of 10.1 % was observed which is similar to that of 14 % obtained
by Arendt (see Table 3 of [22]), on his simply supported beam for responses with
similar nature.

Based on the inference of the spring stiffness the mrGp metamodel predic-
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tions for strain B and G are shown in Figure 8 and 9, respectively. Notice
how the strain at B is positive for the model while negative in the experiment,
and how the considerable discrepancy was predicted accurately on Figure 8(b).
The solid lines with diamond markers represent the measured response, which
is within the uncertainty region. Since this region accounts for: uncertainty
of the spring stiffness; model discrepancy; noise and the fact that the model
response is known only at a set of discrete points (code uncertainty), the true
undisturbed process should also fall within that limit with a 95 % accuracy.
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Figure 8: Strain at position B - Prediction interval 95 % confidence for numerical model 8(a),
discrepancy function 8(b) and experimental response 8(c).
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Figure 9: Strain at G aluminium bridge - Prediction interval 95 % confidence for numerical
model 9(a), discrepancy function 9(b) and experimental response 9(c).

4. Conclusions

This work applies a modular Bayesian approach on a structural identification
framework. A combinatorial analysis to determine the best choice of a set of
available sensors which maximises the identifiability of the problem was also per-
formed. Afterwards, with these measurements a simplified model was calibrated
against a reduced scale aluminium bridge experiment.

Based on the results the following conclusions can be inferred:

• The methodology is able to identify the true value of a structural parame-
ter and predict responses, while considering uncertainties due to paramet-
ric variability, observation error, residual variability, code variability and
model discrepancy for an experimental setup;
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• It is possible to infer a fixed structural parameter with only two mea-
surements of a single characteristic nature, even in the presence of high
discrepancies as shown by the comparative study. This could be fur-
ther improved by adding additional responses (three, four) with a more
diversified nature (acceleration, displacement, etc.);

• Identifiability is influenced by the dependency of calibration parameters
on measured responses. This is shown by measurements near singularities,
such as supports of the bridge, which present poor identifiability relatively
to measurements at the middle of the bridge. This is so because the
dependency of the spring on the strain is smaller near supports;

• Temperature variations can be used to perform structural identification
and establish uncertainty response baselines;

The methodology can also be expanded to consider multiple parameters,
which is a common scenario on civil infrastructures [26, 27, 13].

Only two responses with the same nature have been used, which highlights
the relevance of sensor placement. It could be relevant to compare the results
of this work with an optimal measurement system design methodology, such as
described in [31].

Appendix A. Emulation of numerical models with a Gaussian process

Since a numerical model is typically deterministic in nature and can take
hours to compute it is useful to replace it with a probabilistic surrogate model.
This current practice is known as metamodelling, or emulation [32]. Examples
of this practice in SHM can be found on [27, 26]. Also, applying a metamodel
establishes a comprehensive framework for uncertainty analysis which eases the
Bayesian inference process.
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Figure A.10: Prediction interval (grey cloud) and mean function (black line). As more data
is being given (from 10(a) to 10(c)) the Gp model interpolates perfectly the input dataset.

In the present work a multiple response Gaussian process (mrGp) [33, 34]
shall be used, under the assumption that the response surface of the model y(x)
is a single realisation of a spatial random process with a certain prior mean and
covariance function. The main requirements for this mrGp are: at a design input
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point the mean function should be present and there should be no uncertainty;
otherwise the mrGp should reflect a plausible interpolation or extrapolation of
the available data, see Fig. A.10.

It is conventioned that in order to approximate the response surface, a
dataset of [X,Y ] with dimensions [N×d,N×q] shall be given as input. Dimen-
sions d and q represent the number of input design variables [x1 x2 . . .xd] and
responses [y1 y2 . . .yq], while N is the number of combinations of the whole in-
put spaceX and associated Y . The prior mean function of the mrGp is assumed
to belong to a hierarchical structure of linear functions, that in a generalised
form can be written as M(X) = H(X)β, with matrix H(X) containing N
polynomial linear functions fj−1(x) : j = 1, . . . , p + 1 of degree p (selected by
the user) and matrix of regression coefficients β, for each of the terms contained
in matrix H(X) and each of the q fitted responses Y .

A typical choice for the prior covariance function which shall also be em-
ployed here is the Gaussian form [34]

r(x, x′) = σ2
m exp

{
−
∑d
i=1 ωi(xi − x′i)2

}
(A.1)

where σ2
m is the variance of the response and ωi i = 1, . . . , d are called roughness

parameters or length scales ranges [35] and they represent how roughly the
response changes from each training data point to the next.

As proposed by Conti et al.[36] this structure can be generalised to an entire
dataset by combining a spatial correlation function and a covariance between
responses with the Kronecker product as

R(X,X ′) = Σ⊗ Γ(X,X ′) (A.2)

with q× q covariance matrix Σ and a N ×N correlation matrix Γ that contains
the squared exponential function of equation A.1 for all the (X,X’) inputs.

After having supplied a certain amount of data [X,Y ] to the mrGp (assumed
a non-informative prior for β and given ω and Σ) the posterior distribution of
the response at x0 is given by

y(x0)|Σ,ω,Y ∼ N (m∗(xo),Σ⊗ γ∗(xo,xo)) (A.3)

with

m∗(xo) = h(x0)β̂ + γ(x0)TΓ−1(Y −Hβ̂) (A.4)

γ∗(xo,xo) = γ(xo,xo)− γ(xo)
TΓ−1γ(xo) + (A.5)

[h(x0)T −HTΓ−1γ(x0)]T [HTΓ−1H]−1[h(x0)T −HTΓ−1γ(x0)],

γ(x0)T = [γ(x0,x1), . . . , γ(x0,xN )] as detailed in [37] and β is given by solving

HTR−1Hβ̂ = HTR−1Y , which corresponds to the linear regression solution
of the best linear unbiased predictor.

These relations enforce that when x0 coincides with a training data point xi,
equation number A.3 results in a mean value of y(xi) and a null covariance (see
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Fig. A.10). Hence the parameters that characterise the mrGp behaviour (hy-
perparameters) and that have to be estimated are ω, β and Σ. This is typically
done by using maximum likelihood estimates (MLE), mainly for computational
reasons.

Appendix B. Gaussian process hyperparameters

The following data represents estimates of parameters, that fully characterise
the Gaussian processes, approximated on the modular Bayesian approach. They
are named here as hyperparameters φ and comprise: a matrix of regression
coefficients β, a variance matrix Σ, a noise variance matrix Λ and the roughness
parameters ω. The numerical model mrGp has hyperparameters

ω̂T,K = [2.0 1.4]

β̂SB,SG = [−0.105 0.121]
Σ̂ =

[
3.0645 8.4687
8.4687 25.3702

]
and the discrepancy function mrGp has hyperparameters

ω̂T = 6.87

β̂SB,SG = [−3.766 − 0.242]
Σ̂ =

[
22.90 1.07
1.07 2.75

]
Λ̂ =

[
0.27 0.03
0.03 0.59

]
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