
UWL REPOSITORY

repository.uwl.ac.uk

gprMax: open source software to simulate electromagnetic wave propagation

for ground penetrating radar

Warren, Craig, Giannopoulos, Antonios and Giannakis, Iraklis (2016) gprMax: open source software

to simulate electromagnetic wave propagation for ground penetrating radar. Computer Physics 

Communications, 209. pp. 163-170. ISSN 0010-4655 

http://dx.doi.org/10.1016/j.cpc.2016.08.020

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/5367/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: 

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


gprMax: open source software to simulate electromagnetic wave

propagation for Ground Penetrating Radar

Craig Warrena,⇤, Antonios Giannopoulosa, Iraklis Giannakisa

aInstitute for Infrastructure and Environment, School of Engineering, The University of Edinburgh,
Edinburgh, Scotland, United Kingdom

Abstract

gprMax is open source software that simulates electromagnetic wave propagation, using the
Finite-Di↵erence Time-Domain (FDTD) method, for the numerical modelling of Ground
Penetrating Radar (GPR). gprMax was originally developed in 1996 when numerical mod-
elling using the FDTD method and, in general, the numerical modelling of GPR were in
their infancy. Current computing resources o↵er the opportunity to build detailed and com-
plex FDTD models of GPR to an extent that was not previously possible. To enable these
types of simulations to be more easily realised, and also to facilitate the addition of more
advanced features, gprMax has been redeveloped and significantly modernised. The original
C-based code has been completely rewritten using a combination of Python and Cython
programming languages. Standard and robust file formats have been chosen for geometry
and field output files. New advanced modelling features have been added including: an
unsplit implementation of higher order Perfectly Matched Layers (PMLs) using a recursive
integration approach; diagonally anisotropic materials; dispersive media using multi-pole
Debye, Drude or Lorenz expressions; soil modelling using a semi-empirical formulation for
dielectric properties and fractals for geometric characteristics; rough surface generation; and
the ability to embed complex transducers and targets.

Keywords: Computational electromagnetism, Ground Penetrating Radar,
Finite-Di↵erence Time-Domain, open source, Python

PROGRAM SUMMARY
Program Title: gprMax
Journal Reference:
Catalogue identifier:
Licensing provisions: GNU General Public

⇤Corresponding author
Email addresses: Craig.Warren@ed.ac.uk

(Craig Warren), A.Giannopoulos@ed.ac.uk
(Antonios Giannopoulos), I.Giannakis@ed.ac.uk
(Iraklis Giannakis)

License 3 (GPL)
Programming language: Python
Computer: Any computer with a Python
interpreter and a C compiler.
Operating system: Microsoft Windows, Mac
OS X, and Linux
RAM: Problem dependent
Number of processors used: Support for
multiple processors via OpenMP and MPI
Classification: 10
External routines/libraries: Cython[1],

Preprint submitted to Computer Physics Communications August 5, 2016



h5py[2], matplotlib[3], NumPy[4], mpi4py[5]
Nature of problem: Classical electrodynamics
Solution method: Finite-Di↵erence Time-
Domain (FDTD)
Running time: Problem dependent

[1] Cython, http://www.cython.org
[2] h5py, http://www.h5py.org
[3] matplotlib, http://www.matplotlib.org
[4] NumPy, http://www.numpy.org
[5] mpi4py, http://mpi4py.scipy.org

1. Introduction

Ground Penetrating Radar (GPR) is a
powerful non-destructive tool that is used
for many diverse applications in fields
such as engineering, geophysics and even
medicine. Examples include: infrastructure
assessment of bridges, roads, and railways;
locating buried utilities; ice profiling and
glaciology; groundwater and soil contam-
inant mapping; landmine and unexploded
ordnance (UXO) recognition; and detec-
tion of breast cancer tumours. Understand-
ing how electromagnetic waves propagate
through naturally occurring or man-made
heterogeneous environments is a challenging
problem. Consequently the interpretation
of data acquired using GPR is often di�cult
due to the complex interactions between the
GPR system, the target(s) of interest, and
the environment. This is especially evident
when trying to interpret quantitative infor-
mation from GPR data. Successful inter-
pretation of GPR data usually relies on con-
siderable experience gained through exten-
sive experimentation, and even then is of-
ten limited to identifying areas of interest
or anomalies in the data. To advance our
understanding of GPR as well as provide a
means for testing new data processing tech-
niques and interpretation algorithms it is

important to have accurate and robust sim-
ulation software.
gprMax is open source software that

simulates electromagnetic wave propagation
for the numerical modelling of GPR, and
is available from http://www.gprmax.com.
It uses Yee’s [1] algorithm (with second
order accurate derivatives in space and
time) to solve Maxwell’s equations in 3D
using the Finite-Di↵erence Time-Domain
(FDTD) method. The FDTD method is
a di↵erential-equation-based solver that has
been described in many publications, such
as [2], so will not be repeated here. In sum-
mary, the strengths of the FDTD method
are that it is a simple, fully explicit, gen-
eral, and robust technique. The main weak-
ness is due to the fact that the entire
computational domain must be discretised
which can require extensive computational
resources. The time-domain nature of the
FDTD method means in a single simulation
a wide range of frequencies can be modelled.
This is particularly well-suited for simulat-
ing GPR systems which are usually ultra
wide-band (UWB). However, the computa-
tional domain must still be discretised in re-
lation to the highest frequency of interest.
gprMax was originally developed in 1996

[3] when numerical modelling using the
FDTD method and, in general, the numer-
ical modelling of GPR were in their in-
fancy. Since then a number of commer-
cial [4, 5] and other freely-available [6, 7]
FDTD-based solvers have become avail-
able, but gprMax has remained one of the
most widely used simulation tools in the
GPR community. It has been successfully
used for a diverse range of applications in
academia and industry [8, 9, 10, 11, 12, 13],
and has been cited more than 200 times
since 2005 [14].
Computing power has increased dramat-

2



ically since gprMax was initially developed
– multi-core CPUs and gigabytes of RAM
are now standard features on desktop and
laptop machines, and many research institu-
tions now have their own high-performance
computing (HPC) systems. These compu-
tational advances have particularly benefit-
ted numerical techniques, such as FDTD,
that discretise the entire computational do-
main, and thus larger and more complex
scenarios can be investigated. To enable
these types of problems to be simulated us-
ing gprMax, we have made significant mod-
ernisations to the code and also added of
new advanced features to the software.
The paper is organized as follows: Sec-

tion 2 provides an overview of the design
of the software, the tools that were used,
and the principals behind some of the de-
sign choices; Section 3 describes the key ad-
vanced features that have been developed
for modelling GPR; and finally Section 4
gives examples of GPR simulations that
take advantage of many of these new fea-
tures.

2. Software overview

2.1. Design principals and general features

gprMax was developed as cross-platform
software for Linux, Microsoft Windows, and
later Mac OS X. It was originally writ-
ten using the C programming language,
with the computationally intensive parts –
the FDTD solver loops – parallelized using
OpenMP [15]. The original design princi-
pal was to create a general computational
electromagnetic solver, and then build fea-
tures specifically for modelling GPR onto
that core. We continued to use this philos-
ophy for the redesign of gprMax whilst also
considering how to facilitate the implemen-
tation of new advanced features, and how

to lay better foundations for future devel-
opments.
We decided that the code should be

rewritten in Python [16] – a modern, in-
terpreted language that is intended to be
highly readable and extensible. There are
advantageous features of Python such as
dynamic typing, automatic memory man-
agement, and object orientation. However
some of these attributes come at a perfor-
mance cost compared with statically typed
languages such as C. For a typical FDTD
solver, most of the computational time is
spent solving the electromagnetic field up-
date equations. Therefore we focussed ob-
ject orientation and abstraction on the parts
of the code that construct the model (prior
to the solving), and then used Cython [17] –
a superset of Python that generates e�cient
C source code that can be compiled into
extension modules – to write simple meth-
ods with minimal decision-making for the
FDTD solver. Additionally, Cython sup-
ports OpenMP which allowed the FDTD
solver to be multi-threaded on machines
with multiple CPUs/cores. As an exam-
ple of this design philosophy, materials have
their own class and methods but prior to
the solving phase, the update coe�cients
for the electric and magnetic field equa-
tions for each material are stored in sim-
ple floating-point NumPy arrays. A NumPy
array of integers is used to represent ma-
terials and their locations in the compu-
tational domain, i.e. the geometry of the
model. The integers provide a lookup (in-
dex) into the array of the actual material
properties/coe�cients. Therefore a signifi-
cant memory saving is made by not having
to store material properties/coe�cients at
every location in the computational domain.
We used MPI for Python (mpi4py) [18]

to implement a simple MPI task farm to

3



distribute series of models as independent
tasks. This is especially useful in many
GPR simulations where a B-scan1 is re-
quired. Each A-scan2 can be task-farmed
as an independent model. The option to
combine OpenMP for threading within an
individual model and use MPI to distribute
a series of models, can be extremely benefi-
cial in HPC environments.
gprMax originally consisted of two sim-

ulators – GprMax2D, which solved the
transverse-magnetic mode with respect
to the z -direction (TMz ) in 2D, and
GprMax3D which solved the full FDTD al-
gorithm in 3D. Although there were a lot of
similarities between the two simulators, two
separate codebases had to be maintained
which was not e�cient. Ever increasing
computational power has meant 3D simula-
tions are more accessible and common, but
despite this there often still a need to run
simple 2D simulations, especially for edu-
cational purposes. Therefore we designed a
single codebase that can run 2D or 3D sim-
ulations. A 2D simulation is achieved by
specifying a computational domain that has
only a single cell dimension in one direction
(that direction is considered the infinite di-
rection). For example, referring to Fig. 1
which shows a 3D Yee cell, if we assume
that the infinite direction is the z -direction,
the software will set the values of the elec-
tric field components on the z -faces of the
cell to zero, i.e. the E

x

and E
y

components.
This has the e↵ect of setting the H

z

com-
ponent to zero and therefore making Per-
fect Electric Conductor (PEC) boundaries
in the z -direction. The field components

1A B-scan is a GPR image composed of multiple
A-scans recorded at di↵erent locations.

2An A-scan is a single time-domain trace/signal
from a GPR.

E y

H y

H y

E y

E y

E y

Ez

Ez Ez

Ez

E x

E x

E x

E x

H z

H z

Hx Hx

(i,j,k)

(i,j+1,k)

(i+1,j,k)

(i+1,j,k-1)

(i+1,j+1,k-1)(i,j+1,k-1)

x

y

z

Figure 1: FDTD Yee cell.

that remain are E
z

, H
x

, and H
y

, giving a
2D TMz mode. It is possible to relax the
time step from the (default) equality with
the Courant Friedrichs Lewy (CFL) condi-
tion in 3D to the 2D equivalent.

2.2. User interface, scripting and file for-

mats

gprMax uses a text-based input file in
which users specify all of the parameters for
a simulation, e.g., model size, discretization,
time window, geometry, materials, and exci-
tation, via pre-defined commands. We con-
sidered developing a CAD-based graphical
user interface (GUI) or creating a pure pro-
gramming interface for gprMax but decided
against both of these options. There were
three guiding principals behind this design
decision (two are similar to those given in
[7]): firstly, users most often perform a se-
ries of related simulations with varying pa-
rameters to solve or optimize a particular
problem; secondly, we wanted users to be
able to easily create models with minimal
knowledge or experience of programming;
and thirdly we decided the limited resources
we had were best concentrated on develop-
ing advanced modelling features for GPR
within software that could easily interface

4



Domain boundary

Half space

Metal cylinder

PML region

Transmitter

Receiver

Figure 2: FDTD mesh of metal cylinder buried
in a lossless dielectric half-space.

1 #domain: 0.240 0.210 0.002

2 #dx_dy_dz: 0.002 0.002 0.002

3 #time_window: 5e-9

4 #material: 6 0 1 0 half_space

5 #waveform: ricker 1 1.5e9 my_ricker

6 #hertzian_dipole: z 0.100 0.170 0

my_ricker,!

7 #rx: 0.140 0.170 0

8 #box: 0 0 0 0.240 0.170 0.002

half_space,!

9 #cylinder: 0.120 0.080 0 0.120 0.080

0.002 0.010 pec,!

Listing 1: Input file for a simple 2D GPR sim-
ulation of a metal cylinder buried in a lossless
dielectric half-space.

with other tools. Although a CAD-based
GUI is useful for creating single simulations
it becomes increasingly cumbersome for a
series of simulations or where simulations
contain heterogeneities, e.g. a model of
a soil with stochastically varying electrical
properties.

Listing 1 provides an example of an input
file for a simple 2D GPR simulation of a
metal cylinder buried in a lossless dielectric
half-space. Fig. 2 shows the geometry of the
model.

All commands begin with a hash sym-
bol followed by the name of the command,
and then a list of associated parameters3.
In lines 1-2 the size of the computational
domain and discretisation of the model are
given in x, y, z directions. The model is
2D as the z dimension of the domain is
only a single cell. Line 3 specifies the dura-
tion of time to simulate, with the time step
being calculated automatically at the CFL
limit. In line 4 a material is defined which
is used to build the half-space. The ma-
terial has the identifier name half_space, a
relative permittivity of six, electric conduc-
tivity of zero (S/m), relative permeability
of one, and zero magnetic loss (Ohms/m).
A Hertzian dipole fed with a Ricker wave-
form with a centre frequency of 1.5 GHz is
used as a source (lines 5-6). A receiver is
used to record the time histories of the elec-
tric and magnetic fields at a specific loca-
tion for the duration of the simulation. Fi-
nally, a box object (used to represent the
half-space) and a cylinder object are cre-
ated. The identifiers half_space and pec4

refer to the materials that the objects are
built from. The order of the objects is
important as a layered canvas approach is
used, i.e. subsequent objects overwrite the
properties of previous objects if they specify
the same location. The full syntax of every
command can be found in the User Guide
(http://docs.gprmax.com).
We have made it easier to create more

complex simulations in gprMax by allowing
scripting in the input file. This is achieved
because blocks of Python code can be writ-
ten in the input file and are then executed
when the file is read. Listing 2 shows a sim-

3all units are in the International System of
Units (SI).

4pec is a built-in material.

5



1 #python:

2 for x in range(8)

3 print('#cylinder: z 0 0.1 {}

0.05 0.005

pec'.format(0.02 + x *

0.02))

,!

,!

,!

4 #end_python:

Listing 2: Python scripting in an input file

ple example of how a repetitive geometry
command can be scripted directly in the in-
put file using a for loop in Python. A PEC
cylinder extending from 0 to 100 mm in the
z -direction, with y-coordinate 50 mm, and
radius 5 mm, is repeated every 20 mm in
the x -direction from 20 mm to 160 mm.

Alongside improvements to the input file
we have introduced new file formats for
field outputs and geometry information. We
wanted to design gprMax to be as flexible as
possible and based around robust and stan-
dardised formats which would allow users a
choice of tools for creating input, and view-
ing and processing output. We have used
HDF5 [19] as the output file format to han-
dle the larger and more complex data sets
that are being generated. HDF5 is a robust,
portable and extensible format with a num-
ber of free readers available. The Visualiza-
tion Toolkit (VTK) [20] is used for improved
handling and viewing of the FDTD geome-
try meshes. The VTK is an open source sys-
tem for 3D computer graphics, image pro-
cessing and visualisation. It also has a num-
ber of free readers available such as Par-
aview (http://www.paraview.org). gprMax
allows the user to view geometry informa-
tion for the entire model domain or any
specified sub-volume within the model do-
main. The geometry information can be re-
quested on a per-cell basis, useful for view-

ing volumetric objects, or a per-cell-edge
basis, which is useful for viewing fine or
more complex geometrical features.

3. Advanced features for modelling
GPR

gprMax contains many powerful and cus-
tomisable features for modelling GPR. This
section focusses on a selection of the new
and advanced capabilities that have been
developed.

3.1. Library of antenna models

Models of antennas have been included
in numerical simulations of GPR intermit-
tently over the past 20 years with varying
degrees of realism. Those that have in-
cluded models of the actual antenna have
been mainly of antennas used in academia
or for research purposes [21, 22, 23, 24,
25, 26, 27, 28, 29, 30]. There has been
very limited published work of GPR sim-
ulations with models of commercial anten-
nas [31, 32, 33, 34]. In fact, many simula-
tions have used a theoretical Hertzian dipole
source to represent a real GPR antenna
where only far-field behaviour or travel-time
information was of interest, or where com-
putational resources were limited. However,
advances in computational power, coupled
with the desire to investigate quantitative
amplitude information from GPR, means
there is a need to develop and use detailed
3D FDTD models of realistic GPR antennas
in simulations.
gprMax now includes a library with

pre-defined models of antennas that be-
have similarly to commercial antennas.
Currently, models of antennas similar to
Geophysical Survey Systems, Inc. (GSSI)
(http://www.geophysical.com) 1.5 GHz

6



1 #python:

2 import from user_libs.antennas import

antenna_like_MALA_1200,!

3 antenna_like_MALA_1200(0.05, 0.05,

0.05),!

4 #end_python:

Listing 3: Inserting a complex antenna model
into an input file

Figure 3: A model of a high-frequency antenna
like a MALA 1.2 GHz antenna. The geometry
mesh is a combination of per-cell geometry in-
formation for volumetric objects, and per-cell-
edge geometry information for finer geometric
details.

(Model 5100) antenna, and MALA Geo-
science (http://www.malags.com/) 1.2
GHz antenna are included. This simpli-
fies the process of adding such intricate
structures into a model. Listing 3 demon-
strates how a model of a high-frequency
GPR antenna, shown in Fig. 3, can be
inserted into a simulation without having
to be built step-by-step by the user. The
antenna model is imported from a library
and inserted at a specific location in the
computational domain.

3.2. Absorbing boundary conditions

With increased research into quantita-
tive amplitude information from GPR, it

has become necessary for simulations to
have more e�cient and better-performing
Perfectly Matched Layer (PML) absorb-
ing boundary conditions (ABC). Since 2005
gprMax has featured PML ABCs based on
the uniaxial PML (UPML) [35] formulation.
A PML based on a recursive integration
(RI) approach to the complex frequency
shifted (CFS) PML [36] has now been de-
veloped for gprMax. The implementation
is such that a standard UPML, first order
CFS-PML, or second order mixed RIPML
can now be configured. Additionally, for
advanced usage, the parameters of the PML
can be customised, which allows the perfor-
mance of the PML to be better optimised
for specific applications. One of the attrac-
tions of the RIPML is that it is easily ap-
plied as a correction to the electric and mag-
netic field values after the complete FDTD
grid has been updated using the standard
FDTD update equations. Moreover, the
RIPML is media agnostic so it can be used,
without change, to problems involving dis-
persive and anisotropic materials.

3.3. Materials

Many of the environments where GPR is
used are complex, heterogeneous, and con-
tain materials with dispersive properties.
Therefore we have focussed on developing
new features and making improvements to
how materials are created and simulated in
the software.

3.3.1. Anisotropic materials

gprMax allows anisotropic objects to be
modelled in a simulation. Materials such
as wood and fibre-reinforced composites,
which are often imaged with GPR, can
now be more accurately described. This
has been achieved by enabling every vol-
umetric geometry object to specify up to

7



1 #material: 40 5.41 1 0 cfrpX

2 #material: 7.5 0.016 1 0 cfrpYZ

3 #box: 0 0 0 0.1 0.1 0.05 cfrpX cfrpYZ

cfrpYZ,!

Listing 4: Uniaxial anisotropy of a carbon-
fibre-reinforced polymer (CFRP) composite
material

three material identifiers. It is therefore
possible for every object to have diagonal
anisotropy. Listing 4 demonstrates the uni-
axial anisotropy of a carbon-fibre-reinforced
polymer (CFRP) composite material.
The material cfrpX is used to define the

material properties of the CFRP in the x

direction, and the material cfrpYZ for the y

and z directions. A box of CFRP is cre-
ated on line 3, with the object using three
identifiers to associate it with it’s materials
properties in the x, y, z directions.

3.3.2. Dispersive materials

gprMax has always included the ability
to represent dispersive materials using a
single-pole Debye model. Many materials
can be adequately represented using this ap-
proach for the typical frequency ranges asso-
ciated with GPR. However, multi-pole De-
bye, Drude and Lorenz functions are often
used to simulate the electric susceptibility of
materials such as: water [37], human tissue
[38], cold plasma [39], gold [40], and soils
[41, 42, 29]. Electric susceptibility relates
the polarization density to the electric field,
and includes both the real and imaginary
parts of the complex electric permittivity
variation. gprMax now uses a recursive con-
volution based method to express disper-
sive properties as apparent current density
sources [43]. A major advantage of this im-
plementation is that it creates an inclusive

1 #material: 3 0.026 1 0 fat_tissue

2 #add_dispersion_debye: 2 1.42 13e-12

1.87 0.651e-9 fatty_tissue,!

Listing 5: A 2-pole Debye material that simu-
lates human fatty tissue

susceptibility function that holds, as special
cases, Debye, Drude and Lorenz materials.
Listing 5 gives an example of the command
to add a 2-pole Debye material that simu-
lates human fatty tissue [38].
Line 1 defines the basic material proper-

ties5 and in line 2 the #add_dispersion_debye

command adds dispersive behaviour to
the material based on the Debye for-
mulation. The parameters for the
#add_dispersion_debye command define the
number of poles, the di↵erence between the
DC (static) relative permittivity and the
relative permittivity at infinite frequency
for the first Debye pole, the relaxation time
(seconds) for the first Debye pole, the di↵er-
ence between the DC (static) relative per-
mittivity and the relative permittivity at in-
finite frequency for the second Debye pole,
and the relaxation time (seconds) for the
second Debye pole.

3.3.3. Soil models and topography

The inclusion of improved models of soils
is important for many GPR simulations.
gprMax can now be used to create soils
with more realistic dielectric and geometri-
cal properties [44]. A semi-empirical model,
initially suggested by [45], is used to de-
scribe the dielectric properties of the soil.
The model relates relative the permittiv-

5When a material has a dispersive modifier, the
relative permittivity should be specified as the rel-
ative permittivity at infinite frequency.

8



ity of the soil to it’s bulk density, sand
particle density, sand fraction, clay frac-
tion and volumetric water fraction. Us-
ing this approach, a more realistic soil with
a stochastic distribution of the aforemen-
tioned parameters can be modelled. The
real and imaginary parts of this semi-
empirical model can be approximated us-
ing a multi-pole Debye function plus a con-
ductive term. This can now be achieved
in gprMax using the new dispersive mate-
rial functionality described in Section 3.3.2.
For example, to create a soil with bulk den-
sity, ⇢

b

= 2 g/cm3, sand particle density,
⇢
s

= 2.66 g/cm3, sand fraction, S = 0.5,
clay fraction, C = 0.5, and a volumetric
water fraction in the range 0.001–0.25, the
command #soil_peplinski: 0.5 0.5 2 2.66

0.001 0.25 soil_properties would be used.
Fractals are scale invariant functions and

can be used to express the topography of
soils for a wide range of scales with su�cient
detail [46]. Fractals can be generated by
the convolution of Gaussian noise with the
inverse Fourier transform of 1/kb, where k is
the wavenumber and b is a constant related
to the fractal dimension [47].
The combination of the Peplinski soil

models and the fractal functions can be
used to generate a soil model in gprMax
with more realistic dielectric and geomet-
rical properties. Listing 6 gives an example
of the commands required to generate the
soil model shown in Fig. 4. The soil is com-
posed of ten di↵erent dispersive materials
and features a rough surface.

4. Example GPR simulations

The following three examples demon-
strate how simple and more advanced simu-
lations of GPR that can be carried out using
gprMax.

1 #soil_peplinski: 0.5 0.5 2 2.66 0.001

0.25 soil_properties,!

2 #fractal_box: 0 0 0 0.1 0.1 0.07 1.5 1

1 1 10 soil_properties soil,!

3 #add_surface_roughness: 0 0 0.07 0.1

0.1 0.07 1.5 1 1 0.065 0.075 soil,!

Listing 6: Simulated soil using a Peplinski
model, with a rough surface

Figure 4: Stochastic distribution of an arbi-
trarily chosen property of the soil and a rough
surface created using fractal correlated noise.

4.1. B-scan of a buried cylindrical object

This is an example of a B-scan from a
simple 2D GPR simulation of a metal cylin-
der buried in a lossless dielectric half-space.
Listing 7 is the input file required to gener-
ate this model.

Listing 7 is identical to Listing 1 except
that to create the B-scan the source and re-
ceiver are moved in steps to a new position
every time the simulation is run, i.e. for
each A-scan. The resulting B-scan is shown
in Fig. 5 and is composed of 60 A-scans, i.e.
60 model runs.

9



1 #domain: 0.240 0.210 0.002

2 #dx_dy_dz: 0.002 0.002 0.002

3 #time_window: 3e-9

4 #material: 6 0 1 0 half_space

5 #waveform: ricker 1 1.5e9 my_ricker

6 #hertzian_dipole: z 0.040 0.170 0

my_ricker,!

7 #rx: 0.080 0.170 0

8 #src_steps: 0.002 0 0

9 #rx_steps: 0.002 0 0

10 #box: 0 0 0 0.240 0.170 0.002

half_space,!

11 #cylinder: 0.120 0.080 0 0.120 0.080

0.002 0.010 pec,!

Listing 7: Input file to generate a B-scan of a
buried cylindrical object

Figure 5: B-scan of a metal cylinder buried in
a homogeneous dielectric half-space

4.2. Antenna patterns in a heterogeneous

soil

This example shows how to simulate the
field patterns of a GPR antenna over a het-
erogeneous soil.
Listing 8 demonstrates using Python

scripting within an input file to generate the
model. Fig. 6 shows a series of the resulting
H-plane field patterns at di↵erent observa-
tion distances from the antenna. Further
research into the characteristics of GPR an-
tennas in lossless and lossy environments
can be found in [31, 34, 48].

Figure 6: H-plane field pattern from GSSI 1.5
GHz antenna model over a lossy, heterogeneous
soil

Figure 7: Model of a GPR in a complex envi-
ronment

4.3. Complex environment

The geometry of the final example model
is shown in Fig. 7. The simulation is of a
complex environment that can be often be
encountered in GPR surveys. It includes a
heterogeneous soil with a rough surface and
pools of surface water. Grass and roots are
simulated, and a model of GPR antenna is

10



included. Listing 9 shows that all of this
complexity is achieved using relatively few
commands which demonstrates the power
and ease of use of the software.

5. Conclusion

Current computing resources o↵er the
possibility to build ever larger and more
complex simulations of GPR that have
not been possible before. A new ver-
sion of gprMax has been developed that
is open source and written using Python
and Cython programming languages. Im-
provements have been made to existing fea-
tures of gprMax as well as the addition
of new advanced modelling features includ-
ing: an unsplit implementation of higher
order perfectly matched layers (PMLs) us-
ing a recursive integration approach; di-
agonally anisotropic materials; dispersive
media using multi-pole Debye, Drude or
Lorenz expressions; soil modelling using
a semi-empirical formulation for dielectric
properties and fractals for geometric char-
acteristics; rough surface generation; and
the ability to embed complex transducers
and targets. A series of example simulations
demonstrate some of these features and the
ease with which they can be used. The open
source principle of the software provides a
platform for developers to contribute new
ideas and algorithms which will be of future
benefit to the GPR research community.

Acknowledgments

This work was supported by The Defence
Science and Technology Laboratory (Dstl),
UK, and the Engineering and Physical Sci-
ences Research Council (EPSRC), UK, and
benefited from networking activities carried
out within the EU funded COST Action

TU1208 ”Civil Engineering Applications of
Ground Penetrating Radar.”

References

[1] K. S. Yee, Numerical solution of initial bound-
ary value problems involving maxwells equa-
tions in isotropic media, Antennas and Prop-
agation, IEEE Transactions on 14 (3) (1966)
302–307.

[2] A. Taflove, S. C. Hagness, Computational elec-
trodynamics, Artech house, 2005.

[3] A. Giannopoulos, Modelling ground penetrat-
ing radar by gprmax, Construction and build-
ing materials 19 (10) (2005) 755–762.

[4] Lumerical Solutions, Inc. Fdtd solutions [on-
line, cited 2015].

[5] Remcom. Xfdtd em simulation software [on-
line, cited 2015].

[6] Gwangju Institute of Science and Technology.
Gmes - gist maxwell’s equations solver [online,
cited 2015].

[7] Massachusetts Institute of Technology. Meep -
mit electromagnetic equation propagation [on-
line, cited 2015].

[8] N. J. Cassidy, T. M. Millington, The appli-
cation of finite-di↵erence time-domain mod-
elling for the assessment of gpr in magnetically
lossy materials, Journal of Applied Geophysics
67 (4) (2009) 296–308.

[9] P. Shangguan, I. L. Al-Qadi, Calibration of
fdtd simulation of gpr signal for asphalt pave-
ment compaction monitoring, Geoscience and
Remote Sensing, IEEE Transactions on 53 (3)
(2015) 1538–1548.

[10] E. Slob, M. Sato, G. Olhoeft, Surface and
borehole ground-penetrating-radar develop-
ments, Geophysics 75 (5) (2010) 75A103–
75A120.

[11] F. Soldovieri, J. Hugenschmidt, R. Persico,
G. Leone, A linear inverse scattering algorithm
for realistic GPR applications, Near Surface
Geophysics 5 (1) (2007) 29–42.

[12] M. Solla, H. Lorenzo, F. Rial, A. Novo,
Ground-penetrating radar for the structural
evaluation of masonry bridges: Results and in-
terpretational tools, Construction and Build-
ing Materials 29 (2012) 458–465.

[13] A. P. Tran, F. Andre, S. Lambot, Validation
of near-field ground-penetrating radar mod-
eling using full-wave inversion for soil mois-

11



ture estimation, Geoscience and Remote Sens-
ing, IEEE Transactions on 52 (9) (2014) 5483–
5497.

[14] Elsevier. Scopus, the largest abstract and cita-
tion database of peer-reviewed literature [on-
line, cited 2015].

[15] OpenMP Architecture Review Board.
Openmp [online, cited 2015].

[16] Python Software Foundation. Python [online,
cited 2015].

[17] Cython. Cython [online, cited 2015].
[18] L. Dalcin. Mpi for python [online, cited 2015].
[19] The HDF Group. Hdf5 technology suite [on-

line, cited 2015].
[20] Kitware Inc. The visualization toolkit [online,

cited 2015].
[21] L. Gurel, U. Oguz, Three-dimensional fdtd

modeling of a ground-penetrating radar, Geo-
science and Remote Sensing, IEEE Transac-
tions on 38 (4) (2000) 1513–1521.

[22] G. Klysz, X. Ferrieres, J. Balayssac, S. Lau-
rens, Simulation of direct wave propagation
by numerical fdtd for a gpr coupled antenna,
NDT & E International 39 (4) (2006) 338–347.

[23] S. Lambot, E. C. Slob, I. van den Bosch,
B. Stockbroeckx, M. Vanclooster, Modeling
of ground-penetrating radar for accurate char-
acterization of subsurface electric properties,
Geoscience and Remote Sensing, IEEE Trans-
actions on 42 (11) (2004) 2555–2568.

[24] B. Lampe, K. Holliger, Numerical modeling of
a complete ground-penetrating radar system,
in: International Symposium on Optical Sci-
ence and Technology, International Society for
Optics and Photonics, 2001, pp. 99–110.

[25] K.-H. Lee, C.-C. Chen, F. L. Teixeira, K.-H.
Lee, Modeling and investigation of a geometri-
cally complex uwb gpr antenna using fdtd, An-
tennas and Propagation, IEEE Transactions
on 52 (8) (2004) 1983–1991.

[26] Y. Nishioka, O. Maeshima, T. Uno, S. Adachi,
Fdtd analysis of resistor-loaded bow-tie an-
tennas covered with ferrite-coated conduct-
ing cavity for subsurface radar, Antennas and
Propagation, IEEE Transactions on 47 (6)
(1999) 970–977.

[27] V. Pérez-Gracia, D. Di Capua, R. González-
Drigo, L. Pujades, Laboratory characteriza-
tion of a gpr antenna for high-resolution test-
ing: Radiation pattern and vertical resolution,
NDT & E International 42 (4) (2009) 336–344.

[28] R. L. Roberts, J. J. Daniels, Modeling near-
field gpr in three dimensions using the fdtd
method, Geophysics 62 (4) (1997) 1114–1126.

[29] F. L. Teixeira, W. C. Chew, M. Straka,
M. Oristaglio, T. Wang, Finite-di↵erence
time-domain simulation of ground penetrat-
ing radar on dispersive, inhomogeneous, and
conductive soils, Geoscience and Remote Sens-
ing, IEEE Transactions on 36 (6) (1998) 1928–
1937.

[30] D. Uduwawala, M. Norgren, P. Fuks, A. W.
Gunawardena, A deep parametric study of
resistor-loaded bow-tie antennas for ground-
penetrating radar applications using fdtd,
Geoscience and Remote Sensing, IEEE Trans-
actions on 42 (4) (2004) 732–742.

[31] N. Diamanti, A. P. Annan, Characterizing
the energy distribution around gpr antennas,
Journal of Applied Geophysics 99 (2013) 83–
90.

[32] N. Diamanti, P. Annan, D. Redman, Quan-
tifying gpr transient waveforms in the inter-
mediate zone, in: Advanced Ground Penetrat-
ing Radar (IWAGPR), 2013 7th International
Workshop on, IEEE, 2013, pp. 1–7.

[33] C. Warren, A. Giannopoulos, Creating FDTD
models of commercial GPR antennas using
Taguchi’s optimisation method, Geophysics
76 (37).

[34] C. Warren, A. Giannopoulos, Experimental
and modeled performance of a ground pene-
trating radar antenna in lossy dielectrics, Se-
lected Topics in Applied Earth Observations
and Remote Sensing, IEEE Journal of.

[35] S. D. Gedney, The perfectly matched layer ab-
sorbing medium, Advances in Computational
Electrodynamics: The Finite-Di↵erence Time-
Domain Method (1998) 263–344.

[36] A. Giannopoulos, Unsplit implementation of
higher order pmls, Antennas and Propagation,
IEEE Transactions on 60 (3) (2012) 1479–
1485.

[37] M. Pieraccini, A. Bicci, D. Mecatti,
G. Macaluso, C. Atzeni, Propagation of
large bandwidth microwave signals in water,
Antennas and Propagation, IEEE Transac-
tions on 57 (11) (2009) 3612–3618.

[38] D. Ireland, A. Abbosh, Modeling human head
at microwave frequencies using optimized de-
bye models and fdtd method, Antennas and
Propagation, IEEE Transactions on 61 (4)

12



(2013) 2352–2355.
[39] J. Li, L.-X. Guo, Y.-C. Jiao, R. Wang, Com-

posite scattering of a plasma-coated target
above dispersive sea surface by the ade-fdtd
method, Geoscience and Remote Sensing Let-
ters, IEEE 10 (1) (2013) 4–8.

[40] A. Vial, A.-S. Grimault, D. Maćıas,
D. Barchiesi, M. L. de La Chapelle, Im-
proved analytical fit of gold dispersion:
Application to the modeling of extinction
spectra with a finite-di↵erence time-domain
method, Physical Review B 71 (8) (2005)
085416.

[41] T. Bergmann, J. O. Robertsson, K. Holliger,
Finite-di↵erence modeling of electromagnetic
wave propagation in dispersive and attenuat-
ing media, Geophysics 63 (3) (1998) 856–867.

[42] I. Giannakis, A. Giannopoulos, N. Davidson,
Incorporating dispersive electrical properties
in fdtd gpr models using a general cole-cole
dispersion function, in: Ground Penetrating
Radar (GPR), 2012 14th International Con-
ference on, IEEE, 2012, pp. 232–236.

[43] I. Giannakis, A. Giannopoulos, A novel piece-
wise linear recursive convolution approach for
dispersive media using the finite-di↵erence
time-domain method, Antennas and Propaga-
tion, IEEE Transactions on.

[44] I. Giannakis, A. Giannopoulos, C. Warren, A
realistic fdtd numerical modeling framework of
ground penetrating radar for landmine detec-
tion, Selected Topics in Applied Earth Obser-
vations and Remote Sensing, IEEE Journal on.

[45] M. C. Dobson, F. T. Ulaby, M. T. Hallikainen,
M. A. El-Rayes, Microwave dielectric behavior
of wet soil-part ii: Dielectric mixing models,
Geoscience and Remote Sensing, IEEE Trans-
actions on GE-23 (1) (1985) 35–46.

[46] D. L. Turcotte, A fractal interpretation of
topography and geoid spectra on the earth,
moon, venus, and mars, Journal of Geophysi-
cal Research: Solid Earth (1978–2012) 92 (B4)
(1987) E597–E601.

[47] D. L. Turcotte, Fractals and chaos in geology
and geophysics, Cambridge University Press,
1997.

[48] C. Warren, A. Giannopoulos, Characterisation
of a ground penetrating radar antenna in loss-
less homogeneous and lossy heterogeneous en-
vironments, Signal Processing.

1 #dx_dy_dz: 0.001 0.001 0.001

2 #python:

3 import numpy as np

4 from user_libs.antennas import

antenna_like_GSSI_1500,!

5 radii = np.arange(0.1, 0.6, 0.02)

6 theta = np.arange(3, 359, 6)

7 fs = np.array([0.040, 0.040, 0.040])

8 domain = np.array([2 * fs[0] + 2 *

radii[-1], 2 * fs[1] + 0.107, 2 *

fs[2] + 2 * radii[-1]])

,!

,!

9 antennaposition = np.array([fs[0] +

radii[-1], domain[1] / 2, fs[2] +

radii[-1]])

,!

,!

10 antenna_like_GSSI_1500(antennaposition[0],

antennaposition[1],

antennaposition[2])

,!

,!

11 print('#domain: {:.3f} {:.3f}

{:.3f}'.format(domain[0],

domain[1], domain[2]))

,!

,!

12 print('#time_window: 14e-9')

13 print('#soil_peplinski: 0.5 0.5 2.0

2.66 0.001 0.25 mySoil'),!

14 print('#fractal_box: 0 0 0 {} {} {} 1.5

1 1 1 50 mySoil mySoilBox

1'.format(domain[0], domain[1],

fs[2] + radii[-1]))

,!

,!

,!

15 np.savetxt(inputdirectory +

'rxsorigin_H.txt',

antennaposition, fmt="\%f")

,!

,!

16 for radius in range(len(radii)):

17 ## H-plane circle (xz plane, y=0,

phi=0,pi),!

18 x = radii[radius] * np.sin(theta *

np.pi /180) * np.cos(180 *

np.pi / 180)

,!

,!

19 y = radii[radius] * np.sin(theta *

np.pi /180) * np.sin(180 *

np.pi / 180)

,!

,!

20 z = radii[radius] * np.cos(theta *

np.pi /180),!

21 for rxpt in range(len(theta)):

22 print('#rx: {:.3f} {:.3f}

{:.3f}'.format(x[rxpt] +

antennaposition[0],

y[rxpt] +

antennaposition[1],

z[rxpt] +

antennaposition[2]))

,!

,!

,!

,!

,!

,!

23 #end_python:

Listing 8: Input file to generate field patterns
of a GPR antenna over a heterogeneous soil

13



1 #domain: 1 0.208 0.7

2 #dx_dy_dz: 0.001 0.001 0.001

3 #time_window: 10e-9

4 #soil_peplinski: 0.5 0.5 2.0 2.66 0.001

0.25 soil_properties,!

5 #fractal_box: 0 0 0 1 0.208 0.5 1.5 1 1

1 10 soil_properties soil,!

6 #add_surface_roughness: 0 0 0.5 1 0.208

0.5 1 1 1 0.45 0.55 soil,!

7 #add_surface_water: 0 0 0.5 1 0.208 0.5

0.52 soil,!

8 #add_grass: 0 0 0.5 1 0.208 0.5 1 0.4

0.6 300 soil,!

9 #python:

10 from user_libs.antennas import

antenna_like_GSSI_1500,!

11 antenna_like_GSSI_1500(0.5, 0.104, 0.6)

12 #end_python:

13 #geometry_view: 0 0 0 1 0.208 0.7 0.001

0.001 0.001 complex_environment n,!

Listing 9: Input file for a complex environment
for GPR

14

View publication statsView publication stats


