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Time-Synchronized Convolutional Perfectly Matched
Layer for Improved Absorbing Performance in FDTD

Iraklis Giannakis and Antonios Giannopoulos

Abstract—A performance-enhancing modification to the
convolutional perfectly matched layer (CPML) technique for
implementing the complex frequency-shifted perfectly matched
layer (CFS-PML) absorbing boundary condition is presented. By
adopting this modification, an apparent discrepancy in the time
synchronization between the CPML and the main finite-difference
time-domain (FDTD) algorithm is resolved. This is achieved by
employing a semi-implicit approach that synchronizes CPML
with the main FDTD algorithm. It is shown through 2-D and
3-D numerical examples that the suggested modification to the
CPML algorithm increases its performance without increasing its
computational cost.
Index Terms—Complex frequency-shifted PML (CFS-PML),

convolutional PML (CPML), finite-difference time domain
(FDTD), perfectly matched layer (PML), recursive integration
PML (RIPML), stretched coordinate PML (SC-PML).

I. INTRODUCTION

P ERECTLY matched layer (PML), first introduced in
1994 by [1] and [2], has since become the most used

and well-known absorbing boundary condition employed in
finite-difference time-domain (FDTD) [3] electromagnetic
modeling codes as well as in other numerical techniques
like the finite-element time-domain method [4]. Different
approaches for implementing PML in FDTD grids have been
suggested, which can be roughly categorized into: split field
formulations [1], stretched coordinate PMLs (SC-PMLs) [2],
and uniaxial perfectly matched layer (UPML) [5]. The SC-PML
is considered possibly as the most attractive choice for imple-
menting PML for a lot of reasons. Among them, the most im-
portant are that it makes the understanding of PML easier [6]; it
is easier to incorporate it in cylindrical and spherical coordinate
systems [7]; and through SC-PML, more elegant implementa-
tions can be obtained, with which the PML is incorporated as a
correction term [8], [9]. In addition, lossy, dispersive [10], and
anisotropic [11] media can be easily treated. Finally, SC-PML
makes the implementation of complex frequency-shifted PML
(CFS-PML) more computationally efficient [12].
The CFS-PML was first introduced by [13] and has been

proven [14] that it can be used in order to reduce the late time re-
flections that occur when using SC-PML [15]. It has been also
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shown that CFS-PML decreases the numerical reflections re-
lated to the overabsorption of the propagating evanescent waves
inside the PML region [16], [17], [18].
In [12], an elegant and computationally efficient way to im-

plement CFS-PML has been introduced. This method is based
on an SC-PML formulation and is referred to as the convolu-
tional perfectly matched layer (CPML). CPML uses a recursive
convolution approach first introduced by [19] (aimed for imple-
menting dispersive media in FDTD) to evaluate the convolution
between the complex frequency-shifted stretching function and
the spatial derivatives of the magnetic and the electric fields. An
alternative interpretation of CPML based on an auxiliary differ-
ential equation (ADE) formulation is presented in [20]; both of
them result in the same equations.
Different methods for evaluating a convolution recursively

have been suggested since the first recursive convolution
(RC) [19] method was proposed. Piecewise linear recursive
convolution (PLRC) [21] and trapezoidal recursive con-
volution (TRC) [22] are considered second-order accurate
algorithms [22] and have been proven more accurate than RC
for both dispersive media [21] and PML [8] implementations.
In contrast to standard RC, as introduced for modeling disper-
sive media, in CPML, a TRC approach is employed by default.
This is a result of convolving spatial derivatives that are at
half a time-step apart from the corresponding fields that are
being updated by the FDTD equations. Therefore, CPML rivals
other second-order accurate techniques based on recursive
integration [8], bilinear transform [23], and Z-transform [24].
It has been shown, however, that in some examples

CPML does not perform as well as other second-order PML
methods [8]. A closer inspection of the algorithm reveals that
this is not due to the order of accuracy of the numerically
evaluated convolution, but due to the fact that the implemented
CFS-PML by the CPML is not properly synchronized with the
main FDTD algorithm. In this letter, a simple semi-implicit
scheme is proposed that results in the synchronization of CPML
with the main FDTD without increasing the computational
cost. The improvement of the proposed synchronization on the
overall performance of CPML is shown through 2-D and -3D
numerical examples.

II. SEMI-IMPLICIT CPML

Maxwell’s equations (in frequency domain) using CFS-PML
can be written in general form as

(1)
(2)
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(3)

(4)

where is the electric field; is the magnetic field strength;
is the magnetic flux density; is the electric flux density;
is the angular frequency; is the imaginary unit ;

is the SC-PML curl operator; and , , and are con-
stants ( ) that define the complex frequency-shifted
stretching function proposed in [13].
Transforming (1) and (2) to time domain results in

(5)

(6)

(7)

(8)

(9)

where denotes temporal convolution.
For the case of , following the procedure described in [12]

yields

(10)

where is a second-order central difference operator in
time [(11)], is a spatial second-order central difference
operator [(12) and (13)], and is the discrete impulse
response of [(14)] [12] as follows:

(11)

(12)

(13)

(14)

(15)

The summation in (10) is calculated recursively by taking
advantage of the exponential nature of [19]. From (10)
and (14), it is evident that the convolution in each time-step
takes place from 0 to . The spatial derivatives are
assumed to be constant at the intervals ,
and they are equal with the value they have at .
This approach for evaluating recursively the convolution is
known as TRC [22], which is more accurate compared to the
first-order RC suggested in [19] and rivals the accuracy [22] of
PLRC [21]. The drawback of CPML is not the order of accuracy
of TRC, but the fact that the approximated convolution is not
synchronized with the main FDTD algorithm. This is evident
in (10), in which the time derivative of the electric flux as well
as the spatial derivatives of the magnetic field are evaluated at

(using a second-order approximation), while the
convolutions arising due to the presence of the PML are evalu-
ated (using TRC, which is a second-order approximation [22])
at .
From the above, Maxwell’s equations using CPML are

rewritten in a discretized form using a second-order accuracy
in time scheme as

(16)

(17)

In order to synchronize and with themain FDTD
algorithm in (16) and (17), a semi-implicit scheme is used in
order to derive a second-order approximation (in time) [6] of

[(18)] and [(19)]

(18)

(19)

Substituting (18) and (19) into (16) and (17), respectively, re-
sults into

(20)

(21)

The modified CPML stores in temporary variables the values
of and and subsequently calculates

and according to [12]. The second-
order semi-implicit approximations in (18) and (19) can now be
trivially calculated and added as correction terms in the CPML-
FDTD code. From the above, it is evident that no additional
variables are needed to be stored compared to CPML.
It is evident from (20) that the synchronized CPML remains

a media agnostic formulation as it is independent of the electric
flux . Therefore, the presence of dispersive or lossy media
cannot affect the suggested synchronization.
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Fig. 1. -directed current source is located at the center of a
FDTD grid. The electric field is probed at and points. The spatial step
is mm, and the time-step is 0.99 times the Courant limit. The
thickness of the PML equals mm [6].

III. NUMERICAL RESULTS
The performance of CPML with the proposed modification

is validated through 2-D and 3-D numerical examples. The nu-
merical experiments are similar to the ones used in [6] and
[8]. The proposed algorithm, i.e., semi-implicit CPML, is com-
pared to the standard CPML in order to show how the suggested
synchronization affects the overall performance of the imple-
mented CFS-PML. Semi-implicit CPML is also compared to
the recursive integration PML (RIPML), which, as shown in [8],
achieves a small increase in performance with respect to CPML.

A. Current Source Radiating in an Unbounded 2-D Region

In the first example, a ( ) FDTD is employed.
The dimensions of the model are , the discretization step
equals mm (uniform along the grid), and the
time-step is 0.99 times the Courant limit. A current source is
placed at the center of the grid, and the time variation of the
source is equal to [6]

(22)

where ps and . The electric field is
sampled at and points (see Fig. 1). The sampled fields
are compared to a reference solution, and the error defined in
the following equation is calculated:

(23)

where is the probed electrical field at grid points and
at time-step, is the reference solution, and
is the maximum absolute value of the reference solution.
The thickness of the PML is 10 Yee cells, and the optimum

value for is calculated according to [6]

(24)

where is the impedance of the medium, is the discretiza-
tion step , and is the order of the poly-
nomial function that is used to scale along the PML [6]. A
constant value is applied along the FDTD. An inverse

Fig. 2. Error calculated from (23) using CPML, RIPML, and semi-implicit
CPML. and correspond to the receiving points illustrated in Fig. 1.

Fig. 3. -directed Hertzian dipole over a PEC plate. The spatial step is
mm, and the time-step is 0.99 times the Courant limit. The

thickness of the PML equals mm. is monitored in the opposite
corner of the source’s location, one Yee cell away from the PEC plate [6].

linear scaling is applied to [6] with . Fig. 2 il-
lustrates the error at the receiving points and (see Fig. 1)
using CPML, RIPML, and the semi-implicit CPML method. It
is evident that there is an improvement in accuracy using semi-
implicit CPML and RIPML compared to CPML. The differ-
ences regarding the accuracy between RIPML and semi-implicit
CPML are negligible. The main advantage of this new semi-im-
plicit CPML formulation is the simplicity in implementing it
into existing CPML codes.

B. Current Source Over a Thin Perfect Electrical Conductor
(PEC) Plate in a 3-D Domain
In the second example, the performance of the modified

CPML when evanescent waves occur is examined. The dimen-
sions of the 3-D domain are , the discretization
step is uniform along the domain and equals

mm, and the time-step is 0.99 times the Courant limit.
A -directed Hertzian dipole is placed on top of the edge of a

-mm PEC plate [8]. The time evolution of the current
source is given by (22) with ps and [8]. The
width of the PML is 10 Yee cells. The -field is probed at the
opposite corner from the source’s location, 1 mm away from
the PEC plate (see Fig. 3). The values of the stretching function
are (constant along the PML), is given by (24)
with . A linear function is used to express with

. Fig. 4 illustrates the error defined in (23) using
CPML, semi-implicit CPML, and RIPML. It is evident that
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Fig. 4. Calculated error (23) using semi-implicit CPML, CPML, and RIPML
for the case study described in Fig. 3.

synchronization increases the overall performance of CPML.
Again, semi-implicit CPML and RIPML exhibit negligible
differences in performance.

IV. CONCLUSION

Small differences in time synchronization between the main
FDTD algorithm and the CPML implementation have an im-
pact on the overall performance of PML absorbing boundary
condition. A simple approach is suggested that resolves these
performance issues by using a second-order semi-implicit ap-
proximation. The proposed modification can be implemented
in a straightforward manner as a correction in a CPML-FDTD
code. Numerical examples in 2-D and 3-D domains demonstrate
the improvement in performance that can be achieved using the
modified CPML over the original implementation.
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