
UWL REPOSITORY

repository.uwl.ac.uk

An extensible, self contained, layered approach to context acquisition

Kramer, Dean, Kocurova, Anna, Oussena, Samia, Clark, Tony and Komisarczuk, Peter (2011) An 

extensible, self contained, layered approach to context acquisition. In: Proceedings of the Third 

International Workshop on Middleware for Pervasive Mobile and Embedded Computing (M-MPAC 

'11). M-MPAC '11. ACM, New York, USA. ISBN 9781450310659 

http://dx.doi.org/10.1145/2090316.2090322

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/515/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: 

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


An extensible, self contained, layered approach to context
acquisition

Dean Kramer
School of Computing and

Technology
University of West London

London, UK W5 5RF
dean.kramer@uwl.ac.uk

Anna Kocurova
School of Computing and

Technology
University of West London

London, UK W5 5RF
anna.kocurova@uwl.ac.uk

Samia Oussena
School of Computing and

Technology
University of West London

London, UK W5 5RF
samia.oussena@uwl.ac.uk

Tony Clark
School of Engineering and

Information Sciences
Middlesex University

London, UK NW4 4BT
t.n.clark@mdx.ac.uk

Peter Komisarczuk
School of Computing and

Technology
University of West London

London, UK W5 5RF
peter.komisarczuk@uwl.ac.uk

ABSTRACT
Smart phones show increasing capabilities for context-aware
applications. The development of such applications involves
implementation of mechanisms for context acquisition and
context adaptation. To facilitate efficient use of the device’s
resources and avoid monitoring the same context changes
from multiple points, it is necessary that applications share
the context acquisition mechanism. In this paper, we intend
to develop a generic context acquisition engine which is ca-
pable of context capturing, composition and broadcasting.
By deploying the engine on a mobile device, context changes
are monitored from single point and disseminated to various
context aware applications running on the same device. As
a proof of concept, the context acquisition engine has been
implemented on the Android platform.

General Terms
Design

Keywords
context-awareness, mobile computing

1. INTRODUCTION
Smart phones in recent years have seen high proliferation,
allowing more users to stay productive while away from the
desktop. This proliferation has seen the increasing amount
of mobile applications being developed and becoming avail-
able to consumers through centralised application reposi-
tories. It has become highly predictable for these devices
to have an array of sensors including GPS, accelerometers,
digital compass, proximity sensors, sound etc. Using these
sensors with other equipment already found in phones, a
wide set of contextual information can be acquired.

This contextual information is consumed by context-aware
mobile applications. Context aware applications have been
described to be intelligent applications that can monitor the
user’s context and, in case of changes in this context, con-
sequently adapt their behaviour in order to satisfy the user’s
current needs or anticipate the user’s intentions [4]. Thus

context-awareness is composed of two concepts: context ac-
quisition and context adaptation. Whilst context adaptation
can be considered application specific, context acquisition
can be application independent by means of monitoring the
same contexts by multiple applications. This is expensive
and an inefficient use of resources such as battery, CPU and
memory. So there is a need for a single customisable context
acquisition mechanism which would monitor, manage and
disseminate contextual information to context aware appli-
cations running on the same mobile device. As the mecha-
nism is used by a wide variety of applications, it should be
developed in a generic way. Our goal is to contribute to the
design and development of a standalone context acquisition
engine capable of monitoring context changes independently
from applications and broadcasting context information to
various context-aware mobile applications.

In many cases, raw context data is not needed by context
aware mobile applications, whereas high-level context infor-
mation is more applicable. This information can be cre-
ated by composition of several different context data types.
Therefore, the context acquisition engine should support
composition of captured context events in the way that the
composition of contexts fits for purpose of any context aware
mobile applications. We address the problem by implement-
ing a context hierarchy that supports context fusion in a
loosely coupled way.

In this paper, design and development of a context acqui-
sition engine is proposed. Its capabilities includes context
acquisition, context management, context aggregation and
context distribution. The engine has been implemented on
the Android platform because the platform is open and pro-
vides all the features needed for the engine implementation.
This paper is structured as follows: Related work is dis-
cussed in Section 2. Architecture of the context engine is
described in Section 3. Implementation details of the con-
text engine developed on the Android platform are presented
in Section 4. Use of the engine is demonstrated in Section
5. Section 6 discusses the proposed context acquisition so-
lution. Section 7 highlights our further work.

1



2. RELATED WORK
Context-aware research has gained much interest in recent
years. The Context Toolkit has been proposed in [6] by Dey
et al., a framework for rapid context-aware application pro-
totyping. This framework is developed around components
including context widgets for context information retrieval,
interpreters for abstracting context information, aggregators
for combining multiple related context information, services
for executing actions e.g altering activator states, and dis-
coverers which maintain a registry of framework existing
capabilities.

ContextDroid [9] proposed by Wissen et al. is an expression
based context framework for the Android platform. This
framework is made up of context entities - a collection infor-
mation from context sensors, context conditions - a boolean
returned evaluation based on a set of parameters, evaluators
- interfaces for evaluator methods, and context expressions -
a method of combining contexts. Particularly with contexts
e.g light level its simple to think of different levels (dark,
medium, bright) as ranges of the lumens. Using this expres-
sion engine would require creating higher level contexts to
achieve the same goal as you would need to evaluate each end
of the range separately. Also the extensibility of this frame-
work is achieved by accessing the framework source code,
compared to our approach adding context components in
an application and dynamically using them with the engine
at runtime.

Dynamic context composition and modularisation has been
targeted in [5]. This approach uses layers within the Context-
Oriented Programming (COP) language ContextL [3] to com-
pose aggregated context behaviour. By defining relation-
ships between the individual contexts, and their adaptation
logic, aggregated context behaviour is created. Composition
using this approach can be particularly complex and diffi-
cult to understand, especially when composing large context
aggregations.

In [10], CAMF was presented by Wang and Ahmad incor-
porating machine learning into a context framework on the
Android platform, to evaluate how context-aware systems
benefit from machine learning, what context support is pro-
vided by Android, and how well suited Android is for the
development of context-aware systems. The framework itself
is based on the layered architectures described by Miraoui
and Baldauf [2].

Gonzalez et al. proposed Subjective-C [7] as context ori-
ented extension to the Objective-C language. This extension
allows for easier complex context interrelation expression
comparable to [5] though with additions, and adds the abil-
ity to express context-dependent method definitions allow-
ing application behaviour adaptation using context. Context-
dependent method definitions are handled by finding the
method implementation needed for the currently active con-
text, every time the context changes, called method dispatch.
This language extension similar to other COP languages re-
quires a custom compiler. This approach though targeting
COP issues in Objective-C, sheds little light on the use of
sensors, and how contexts are interpreted.

Space on mobile devices, though getting larger can be still

fairly limited. Therefore, it is desirable to not require a
framework to be required for each application, but more
share a common context engine across an application family.

3. ARCHITECTURE
In this section, we describe the main conceptual elements of
the context acquisition engine and outline a generic context
composition mechanism.

Figure 1: Context Engine Infrastructure

The infrastructure of the context engine is based on the idea
of self-contained context components that are structured in
a tree hierarchy as depicted in Figure 1. This tree software
architecture enables building context hierarchy in which low
level context components are loosely composed to form high
level composite context. The elements of the infrastructure
are described in details below.

3.1 Context Component
Each context component manages a particular context, where
context is ”information that can be used to characterize the
situation of an entity. An entity is a person, place, or ob-
ject that is considered relevant to the interaction between a
user and an application, including the user and applications
themselves” [1]. A blueprint of context component is de-
picted in Figure 2.

Figure 2: Component blueprint

Component attributes are name, value, date of change and
a set of values that it can be set to. Name and value follow

2



Key-value model which represents the simplest data struc-
ture for context information. This model is complemented
by date which refers to last context change. The structured
context information is sent to mobile applications which are
able to identify the context by its name and obtain context
value and date of last change. The valid context values of
a component are defined by valuesSet. The default set is
composed of values ON and OFF. This set of valid context
values can be changed. For instance, Battery context can
have defined a set of the valid values: LOW, OK, FULL.

3.1.1 Context Acquisition
Each component is self-contained and manages particular
context. So it needs to be capable of obtaining raw context
data from context sources and dealing with a context change.
In order to broadcast meaningful and useful context infor-
mation, component needs to have an ability to translate raw
context data into more meaningful context value. A context
change is broadcasted to all listeners if two conditions are
fulfilled:

• new context value is an element of predefined set of
valid context values;
• new context value differs from previous context value.

For example, if Bluetooth context value set is composed of
values ON and OFF and last context value has been OFF,
context information is broadcasted if and only if the new
context value is ON. If context data obtained from Blue-
tooth adapter is CONNECTING then this information is
not broadcasted further because it is not element of the set
of valid values.

3.1.2 Context Translation
Raw context data can be translated into more meaningful
context information. This step is significant in case of nu-
merical raw context data when infinitely many possible con-
text values can be translated into a small finite set of valid
values. For example, context data informing about battery
level is numerical. In this case, context aware applications
are not interested to be informed about every change of bat-
tery level, rather they want to obtain more relevant context
information such as that battery level is LOW. Therefore,
battery context component has to be able to translate nu-
merical values into more meaningful context information.
For this purpose, ranges have been created to translate nu-
meric data within a particular range into context value. In
respect to battery context, the range for LOW battery con-
text value can be setup as 0% to 10%. Furthermore, by
translating raw context data into more meaningful context
information, it is ensured that number of context values in
the values set is finite. This is an important factor for com-
pact context composition and deriving higher level context
information as shown below.

3.2 Context Composition
Two or more types of contexts can be loosely aggregated to
form high level context. The composed context is managed
by a composite component. The constructs of a composite
component are shown in Figure 3.

The main role of a composite component is to handle aggre-
gated, high-level context information. Composite compo-

Figure 3: A Composite component

nents inherit all constructs of context component. Further-
more, each composite component must be aware of contexts
it is composed of and rules which drive derivation of high-
level context values.

3.2.1 Adaptable composition
Composite components can be constructed, assembled and
defined at runtime. Mobile applications may specify and
customise high-level context information according to their
requirements. This generic approach is driven by rules. The
rules are formalized by a function as follows:

Let CC be composite component
Let CV be value set of CC
Let C1, C2, . . . , Cm be context components
Let Vi be value set of component Ci, i ∈ [0,m]
Let CC be composed of components C1, C2, . . . , Cn , n<=m
Then rule R can be specified as a function:
f: V1 × V2 × . . .× Vn → CV
Rule r(v1, v2, . . . , vn, f(v1, v2, . . . , vn)) where vi ∈ Vi

The uniformed rule format enables composition of different
types of contexts. Moreover, high-level context information
can be defined accurately and precisely. Execution of rules is
based on matching of context constants in order to produce
the aggregated context value.

3.2.2 Composite Component Behaviour

Figure 4: Composite component behaviour

The behaviour of a composite component is illustrated in
Figure 4. There are two states of composite component. The
initial state is the state of definition. Definition of compos-
ite component involves registering of context components,
setting up the relevant context value set and adding rules.
Only fully defined composite component can become active.
At the moment of leaving the Definition state, a listener or
monitor of context changes is setup. In the Active state,
the monitor in the composite component actively listens to
context changes broadcasted by registered components.

If a context change occurs, composite component is notified
and the new context value is obtained. Rules associated

3



with the context composition are executed in order to obtain
corresponding high-level context value. The new high-level
context value is set only if differs from previous high-level
context value. If a new value is set, a notification about
context change is sent to all listeners.

For example, let us have two contexts - BLUETOOTH and
WIFI, both with value sets {ON,OFF}. Then a compos-
ite component with name DATASYNC has value set {ON,
OFF}. BLUETOOTH and WIFI contexts are registered in
the DATASYNC component. Rules are added as follows:

R1({ON,ON}, ON)
R2({OFF,ON}, ON)
R3({ON,OFF}, ON)
R4({OFF,OFF}, OFF)

So if the initial set of context values is <ON,ON>, the con-
text value of DATASYNC is ON. A context change in one
context component (ON -> OFF ) does not change the con-
text value of DATASYNC (ON ) and no notification is sent.

3.3 Context Engine Manager
The role of Context Engine Manager is to manage and dis-
tribute context information. The main responsibility of the
management part is to control life cycles of context compo-
nents. Life cycles are defined by the states of components.
Components which have entered the active state are stored
in a list maintained by the manager. The active compo-
nents can be further composed and combined. Keeping the
list ensures that each component runs only once.

The distribution functionality of the manager ensures that
context information is delivered to multiple mobile applica-
tions. There are two ways of delivering context information.
In first case, context changes are constantly broadcasted to
multiple applications. In this asynchronous communication,
each application is informed basically at ad hoc manner and
therefore needs to have implemented a mechanism to distin-
guish between context information broadcasted by the con-
text engine and other broadcasted data. The second way of
delivering context information is direct synchronous inter-
action. In this case, applications can obtain context infor-
mation on request.

Hence the context acquisition engine performs long-running
operations and supplies functionality for other applications
to use, the managing element should also operate as a ser-
vice. To standardise interaction between the context en-
gine service and applications, it is necessary to have a well-
defined programming interface with method signatures.

3.4 Context Engine Usage
The overall use of the context acquisition engine is depicted
in Figure 5(a). The context engine is deployed on a mo-
bile device as a service with well-defined interface. Context-
aware applications can interact with it by using its interface
specification. Typically context acquisition logic is same for
various context-aware applications. If an application needs
to extend the functionality of the components, the context
engine can be used as a library within an application as
shown in Figure 5(b).

Figure 5: Usage Scenarios

4. IMPLEMENTATION
As a proof of concept, the context acquisition engine has
been implemented on the Android platform. A simple ap-
plication has been developed to test correct functioning of
the engine. This section describes the implementation de-
tails.

4.1 Component Types
The context component has been designed in an abstract
way to give some conceptual standards to its construction.
The methods can be customised and adapted for each con-
text. We have implemented three abstract context compo-
nent types which inherit the methods from the Component:
context monitor, context listener and preference listener.

Mobile device platforms such as Google’s Android, Apple’s
iOS, or Microsoft’s Windows Phone are evolving at an amaz-
ing rate and increasingly enable higher-level context ab-
straction. Context information gathered from sensors and
networks become more semantic for application developers.
Thus there is usually a finite set of predefined values for par-
ticular context associated with a particular mobile platform.
For instance, Bluetooth context on the Android platform has
predefined values ON, CONNECTING and OFF. The con-
text monitor type has been designed for the contexts with a
finite set of values. On Android, the context monitor type
has implemented a broadcast receiver.

A variety of hardware sensors such as light sensor, accelerom-
eter or GPS in mobile phones act as primary sources of en-
vironmental context information. The context listener type
has been designed to process raw context data captured by
sensors. On Android, this component type implements Sen-
sorEventListener interface.

The third type called preference listener has a significant
place in the infrastructure. This component has been de-
signed to dynamically configure and alter the execution logic
of the context engine at runtime. Preference listener is
used to listen to any change in application-specific or global,
device-specific user preferences. On Android, preference lis-
tener implements OnPreferenceChangeListener.

4



4.2 Using Android Interface
The context engine is used by third-party applications and
needs to be capable of performing long running operations
in background. Thus the managing element has been imple-
mented as a service. The service publishes its API through
three interfaces declared by using Android Interface Defini-
tion Language (AIDL). The interface for context definition
enables any mobile application deployed on the same mo-
bile device to specify context hierarchy. This entry point
allows defining new composite components and identifying
all contexts it is composed of, defining context value sets
and adding rules. Composite contexts defined by one appli-
cation can be used by other applications. The applications
can access the list of active contexts and obtain any context
information at runtime.

4.3 Context Broadcast Engineering
Messages informing about context changes must be passed
at run-time between context components, components and
engine, engine and applications. The messages in Android
applications which facilitate run-time binding between ob-
jects are called intents. A custom, context engine specific
intent has been implemented in the Component class. The
custom intent is characterised by its action name as shown
below on first line in the code snippet. The intent is defined
within the sendNotification method in the Component class
as follows: Thus a mechanism is needed for listening to con-

public static final String CONTEXTINTENT =
uk.ac.uwl.mdse.contextengine.CONTEXTCHANGED;

public void sendNotification() {
Intent intent = new Intent();
intent.setAction(CONTEXTINTENT);
intent.putExtra(CONTEXNAME, name);
intent.putExtra(CONTEXDATE,

Calendar.getInstance().toString());
intent.putExtra(CONTEXTVALUE, value);
sendBroadcast(intent);

}

text updates in a loosely coupled way. To accomplish this,
we have used Broadcast Receivers. A broadcast receiver is
registered in each component to capture context informa-
tion broadcasted by other components. The broadcasted in-
tents contain the structured context information of context
name, context value and date. This information structur-
ing, broadcasting and receiving form a generic broadcasting
mechanism. This mechanism also works for interaction be-
tween the engine and applications.

4.4 Dynamic Class Loading
Dynamic class loading (DCL) gives the programmer the abil-
ity to install software components at runtime [8]. Benefits
of using DCL include the capability to lazy load classes,
reducing memory usage; the ability to instantiate a com-
ponent without explicit referencing, allowing more generic
code; and finally allow the programmer to add additional
context components to the engine without needing to alter
or access the engine source code unlike [9]. As shown in fig-
ure 5, customised context components can be used by the
engine outside of the library. Additionally, as found in An-
droid documentation1 there is the possibility to extend this
to do DCL across multiple applications.
1http://developer.android.com/guide/topics/security/security.html

5. EXAMPLE APPLICATION
To demonstrate the use of the context engine within an ap-
plication, a simple context-aware application has been devel-
oped. This application has an interest in obtaining context
information about data connectivity. Its context hierarchy

Figure 6: Context Composition

is depicted in Figure 6 and the code snippet for the context
hierarchy definition is illustrated as follows:

contextService = IContextsDefinition.Stub.asInterface(service);
try {
contextService.newComposite("DATASYNC");
contextService.addToComposite("WifiContext","DATASYNC");
contextService.addToComposite("TelephonyContext", "DATASYNC");
contextService.addRule("DATASYNC",

new String[]{"ON","OFF"}, "ON");
contextService.addRule("DATASYNC",

new String[]{"OFF","ON"}, "ON");
contextService.addRule("DATASYNC",

new String[]{"ON","ON"}, "ON");
contextService.newComposite("CONNECTION");
contextService.addToComposite("BatteryContext","CONNECTION");
contextService.addRange("BatteryContext", "0", "10", "LOW");
contextService.addRange("BatteryContext", "11", "90", "OK");
contextService.addRange("BatteryContext", "91", "100", "FULL");
contextService.addToComposite("DATASYNC", "CONNECTION");
contextService.addRule("CONNECTION",

new String[]{"ON","OK"}, "YES");
contextService.addRule("CONNECTION",

new String[]{"ON","FULL"}, "YES");
contextService.startComposite("DATASYNC");
contextService.startComposite("CONNECTION");
} catch (RemoteException re) {re.printStackTrace();}
setupContextMonitor();

...

Basically the application specifies the DATASYNC compo-
nent composed of WIFI and 3G. The value sets for all of
them are specified as {ON,OFF}. Hence the application
wants to be informed about possible data connectivity only
in case that battery level is not LOW, it defines the CON-
NECTION component as composition of DATASYNC and
BATTERY contexts. The application defines ranges for the
BATTERY context and rules for composite components.
For instance, if the context value of the BATTERY context
is equal to LOW, the application is notified that the con-
text value of the CONNECTION context is equal to NO.
Thus the application alters its behaviour and in this case,
the buttons are disabled as illustrated on the screenshot in
Figure 7.

6. DISCUSSION
This paper describes a generic approach to context acqui-
sition for mobile devices. This approach is rule driven en-
abling application developers to specify high-level context

5



Figure 7: Connection - NO

information. Although using rules can enhance complexity
management, rules should be executed by a well-designed
rule engine capable of handling rule conflicts and circularity.
In addition, number of rules can be decreased, for instance,
by adding conditions such as ALL values or ANY value must
match.

As specified earlier, context changes are propagated up the
tree and to the application through the use of broadcasted
messages. During the testing and debugging phase, we used
the logging system to monitor these broadcasts, and found
that in certain conditions the context changes are highly fre-
quent and it results in a considerable amount of messages
broadcasted. Though we observed no obvious slow down in
system responsiveness, further analysis to make broadcast-
ing more efficient will be required.

Though the use of classloaders has helped separating the
engine from each context component and promotes exten-
sibility, there are drawbacks of this approach. When dy-
namically loading a component, there are assumptions on
the class constructor, and any arguments needed, if the con-
structor is parameterised. Our component constructors re-
quire a Android Context2 object either from the application
or activity, for use with the sensors which could limit the
application developer.

Other interesting results found were in the area of security.
Android uses permissions as a way of controlling protected
operations. To access sensitive data and access sensors, an
application needs the appropriate permission declared in the
manifest, which is then used at install time to inform the
user of what the application has access to. If the engine
is bundled with an application, the permissions needed are
added, but if the engine is used externally, then that out-
side application wont require the permissions as protected
operations will be executed indirectly.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented an infrastructure of the
context acquisition engine. One of our main goals has been
separating context acquisition from context adaptation logic

2http://developer.android.com/reference/android/content/Context.html

in the way that it can be used by multiple context aware
applications running on the same mobile device. We have
adopted a simple context aggregation approach which al-
lows dynamic composition of different types of context. We
have implemented the context acquisition engine on the An-
droid platform and demonstrated its use by developing a
simple mobile application. Our future work will investigate
a more precise mechanism for context aggregation based on
structured context values. Furthermore, we intend to fully
incorporate user preferences as configuration data in order
to enforce quality of context aggregation.

8. REFERENCES
[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,

M. Smith, and P. Steggles. Towards a better
understanding of context and context-awareness. In
Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, HUC ’99, pages
304–307, London, UK, 1999. Springer-Verlag.

[2] M. Baldauf and S. Dustdar. A survey on
context-aware systems. Interational Journal of Ad Hoc
and Ubiquitous Computing, 2:263–277, 2007.

[3] P. Costanza. Context-oriented programming in
contextl: state of the art. In Celebrating the 50th
Anniversary of Lisp, LISP50, pages 4:1–4:5, New
York, NY, USA, 2008. ACM.

[4] L. M. Daniele, E. Silva, L. F. Pires, and M. Sinderen.
A soa-based platform-specific framework for
context-aware mobile applications. In W. Aalst,
J. Mylopoulos, M. Rosemann, M. J. Shaw,
C. Szyperski, R. Poler, M. Sinderen, and R. Sanchis,
editors, Enterprise Interoperability, volume 38 of
Lecture Notes in Business Information Processing,
pages 25–37. Springer Berlin Heidelberg, 2009.

[5] B. Desmet, J. Vallejos, and P. Costanza. Layered
design approach for context-aware systems. In in 1st
VaMoS 07, 2007.

[6] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications.
Hum.-Comput. Interact., 16:97–166, December 2001.

[7] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C.
Libbrecht, and J. Goffaux. Subjective-c: bringing
context to mobile platform programming. In
Proceedings of the Third international conference on
Software language engineering, SLE’10, pages 246–265,
Berlin, Heidelberg, 2011. Springer-Verlag.

[8] S. Liang and G. Bracha. Dynamic class loading in the
java virtual machine. SIGPLAN Not., 33:36–44,
October 1998.

[9] B. van Wissen, N. Palmer, R. Kemp, T. Kielmann,
and H. Bal. ContextDroid: an expression-based
context framework for Android. In Proceedings of
PhoneSense 2010, Nov. 2010.

[10] A. I. Wang, B. Wu, and S. K. Bakken. Camf -
context-aware machine learning framework for
android. In Proceedings of the International
Conference on Software Engineering and Applications
(SEA 2010), CA, USA, November 2010.

6


