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Abstract—In recent years, research on location predictions by
mining trajectories of users has attracted a lot of attentions. Ex-
isting studies on this topic mostly focus on individual movements,
considering the trajectories as solo movements. However, a user
usually does not visit locations just for the personal interest.
The preference of a travel group has significant impacts on
the places they have visited. In this paper, we propose a novel
personalized location prediction approach which further takes
into account users’ travel group type. To achieve this goal, we
propose a new group pattern discovery approach to extract the
travel groups from spatial-temporal trajectories of users. Type
of the discovered groups, then, are identified through utilizing
the profile information of the group members. The core idea
underlying our proposal is the discovery of significant movement
patterns of users to capture frequent movements by considering
the group types. Finally, the problem of location prediction is
formulated as an estimation of the probability of a given user
visiting a given location based on his/her current movement and
his/her group type. To the best of our knowledge, this is the first
work on location prediction based on trajectory pattern mining
that investigates the influence of travel group type. By means
of a comprehensive evaluation using various datasets, we show
that our proposed location prediction framework achieves sig-
nificantly higher performance than previous location prediction
methods.

Index Terms—Personalized location prediction, group pattern
discovery ,trajectory mining, frequent movement patterns.

I. INTRODUCTION

With the rapid development of mobile devices and location
acquisition technologies, an enormous amount of trajectory
data recording the movement of people is available. These
overwhelming amounts of data is tremendously useful for
the rapidly growing location-based applications market. Due
to various requirements of these applications, e.g., system
efficiency and marketing efficacy, accurately predicting the
next location to which a user may move is essential. The
location prediction technique identifies the next location that
is most likely to be visited by the user, according to a set of
application-dependent locations or pre-determined locations.
By knowing the next movement of users, resources can be

efficiently allocated to the most possible location, rather than
the blind resource allocation. Efficient resource allocation
to mobile users would lead to higher resource utilization
and lower latency in accessing the resources. In addition,
predicting the subsequent location can provide the insights
for many existing pervasive applications, such as targeted
advertising and services recommendation [1].

The problem of predicting the next location where a user
will move has received many research interests in recent
years. As the location prediction process is very similar to
the location recommendation, many existing works [2],[3],[4]
intuitively applied a location recommendation approach as
their location prediction model. However, there are a few
difficulties in adopting the location recommendation for the
location prediction. First, the location recommendation process
is a non-real-time estimation which means that the recent
movements of the user are not taken into account in making the
recommendations. Second, conventional location recommen-
dation methods only consider the interest of the user such that
they suggest a new location that a user may be interested in.
However, the problem of next location prediction focuses on
inferring the next location that a user will visit which not only
considers the user’s interest, but also the intention of the user.
People do not solely visit locations because they are interested,
they also go to places because they have to. Consequently, it is
not straightforward to apply these recommendation techniques
in location prediction.

On the other hand, considering the fact that human move-
ment exhibits sequential patterns, various sequential pattern
mining techniques [5],[6],[7],[8] have been developed for
location predictions. These approaches address the location
prediction as a historical movement matching problem. They
usually consider the user’s movement trajectory as a sequence
of locations, and then, extract the frequent movement patterns
from the set of trajectories. These frequent patterns then will
be used as the prediction rules to be matched with the previous
movement of the user. The difference of these approaches is



mainly about the type of the movement pattern they discover.
However, they did not take the personalization into account as
their approaches just return the same sequence patterns for all
the users.

To extract the significant movement patterns, the exist-
ing methods mine the frequent sequences of locations from
individual user trajectories, such that they assume all the
movements as the solo movements. Accordingly, the ex-
tracted movement patterns only reflect the individual inten-
tion/interest. However, it has been shown that people do
not visit locations just for their personal intention/interest.
They also go to places which are motivated by the group’s
intention/interest they travel with [9], [10]. The preferences
of the travel group, which may comprise very diverse people,
have significant impacts on the places that users visit. Taking
a family comprising two adults and a child who walking in a
shopping mall as an example, considering only the individuals,
i.e. parents, may lead to the different location prediction than
when the group type, family, is taking into account.

In this paper, we propose a personalized framework to
predict the next location of the users. The core idea underlying
our proposal is the discovery of significant movement patterns
by considering not only the individual movements, but also
the group movements. We first, extract the groups of people
who travel together, group travelers, from the spatial-temporal
trajectories. Second, the profile information of the users will be
used in order to identify the type of the extracted group. Third,
the significant movement patterns will be discovered taking
into account the group specific movements and individual
movements. Finally, the problem of location prediction will be
formulated as an estimation of the probability of a given user
visiting a given location based on his/her current movement
and his/her group type.

In order to extract the group travellers from spatial-temporal
trajectories, we propose a novel group pattern, Loose Trav-
elling Companion Pattern (LTCP), with taking into account
the properties of human movement behaviour. Extracting the
significant movement rules to support the prediction model is
also a critical and challenging issue. We define two categories
of significant movement rules: General sequential rules (SR)
which refers to the movement rules considering the indi-
vidual movement pattern, and Group-based sequential rules
(GSR) which refers to movement patterns associated with the
group types. Discovered movement rules then are utilized to
construct the prediction model with further incorporating the
distribution of places and group types.

The main contributions of this paper are summarized below:
• To the best of our knowledge, this is the first work

that investigates the location prediction problem with
consideration of group movement;

• We propose a novel group discovery approach to identify
the groups of people who move together considering the
human movement behaviour;

• We apply a classification model to predict the type of the
discovered groups, utilizing the profile information of the
users;

• We propose a novel location prediction model that takes
into account the general movement rules and the group-
based movement rules to predict next location of the user;

• We present comprehensive experimental results over var-
ious datasets. The results demonstrate that our proposed
framework significantly outperforms the widely used se-
quential prediction technique.

The remainder of this paper is organized as follows. First,
we briefly review the related work in Section II and present
an overview of our proposed prediction framework in Section
III. Next, our proposed group pattern discovery approach
and group type prediction technique are described in detail
through Section IV and V, respectively. The movement rules
are discovered in Section VI, and the prediction model is
constructed in Section VII. A real case study is introduced
in Section VIII. The performance of our proposal through an
empirical evaluation study is discussed in Section IX. Finally,
conclusion and directions for the future works are given in
Section X.

II. RELATED WORK

The problem of predicting the future location has been
variously formulated in the literature. The first strategy is
Vector Based Prediction model which estimates the object’s
future location through applying the motion functions. These
approaches can be divided into two types: 1) linear models
assume that object’s movement follows a linear pattern [11],
[12], [13], [14], [15], and 2) non-linear models, on the other
hand, take into consideration both linearity and non-linear
patterns in modelling the object’s movement [16], [17]. As the
non-linear methods apply more sophisticated functions, they
result in the higher prediction precision than the linear models.
However, the motion functions are only able to predict the
near future location. They also cannot differentiate between
the random movement and regular movement of the object.
These approaches are highly sensitive to the change in an
object’s movement, they cannot capture the sudden changes
of the object as the function is only affected by the previous
locations.

The movements of people contain a high level of regularity
[18]. According to this fact, researchers have discovered the
usefulness of extracting these regularities and applying them
in order to predict the next movement of people. Accordingly,
two prediction approaches have been raised: 1) discrete-time
Markov model-based methods [19], [20], [21], [22], and 2)
trajectory pattern based approaches [23], [24], [25], [26].
Markov model-based approaches extract a statistical method
to estimate the next locations of the object among the spatial
cells. They take which cell the object belongs currently into
account, and then, calculate the next cell that the object is
likely to be there in future. However, these approaches do not
take the full movement history of the user into account. The
new location depends on not only the last visited location but
also on the previously visited locations.

The approaches mentioned above do not consider the
influence of sequential visiting of locations on the user’s



movement behaviour, although, in reality, human movement
exhibits sequential patterns [18], [27]. Trajectory pattern based
prediction approaches address the location prediction as a
problem of matching the historical movement of the user
on the extracted frequent movement patterns. Accordingly,
prediction techniques developed for this problem domain can
be broken down into two steps: 1) extracting the frequent
movement patterns, and 2) prediction model building.
Frequent movement pattern Extraction : Various tech-

niques have been developed to extract the frequent patterns
from movements of users [23], [28]. These methods can be
classified according to what movement information they use to
extract the patterns, for example considering the location only,
time, or semantic information. The first group of approaches
consider a trajectory as a sequence of locations, and then use
the existing frequent pattern mining approaches to extract the
movement patterns [5], [6], [7], [29]. In [5] and [6] several
methods have been proposed to generate the association rules
for an individual user using a modified versions of the Apriori
algorithm [30]. Such rules can identify the frequent locations
which are visited together in the movement of an individual
user. In order to choose the appropriate rule for the prediction,
they take two criteria of support and confidence into considera-
tion. Morzy et al. [7] subsequently applied a modified version
of the PrefixSpan algorithm [31] to discover the sequential
frequent movements of users. Such pattern can identify the
locations which have been visited together, along with the
consequence of location, i.e., the place users mostly visit
after visiting somewhere else. Jeung et al. [32] proposed an
innovative approach that combine a vector-based model with
the trajectory based model to forecast the future locations of
a user. They apply Recursive Motion Function [16] to predict
the near future locations, and to discover mobile sequential
patterns a modified version of the Apriori algorithm [30] is
used.

Spatial-temporal data may reveal various discoveries such
as location pattern recoginition and networks conditions [33].
By considering the temporal information of the movement
besides the spatial information, spatial-temporal sequential
patterns can be extracted. Giannotti et al. [34] proposed T-
pattern, a kind of spatial-temporal sequential pattern, which
takes into consideration both spatial and temporal information
of user’s movement. In order to identify the temporal patterns,
temporal information is mapped in the Rn space and then
the dense hypercubes are discovered from the Rn space. In
[23], the authors extended their previous work by proposing
three mining algorithms to extract the frequent movement pat-
terns from the spatial-temporal trajectory data. The proposed
algorithms are different in terms of how they define the stay
locations. In [8] and [35] the authors propose a pattern which
takes into account the semantic information in addition to the
spatial-temporal information to extract the frequent movement
patterns of users. The idea of taking service requests into
account, mobile access pattern, was initially raised by Tseng
et al. in [36]. This pattern considers the user’s movement
along with the associated service requests in each location. In

[37] and [38] an efficient approach for mining the sequential
mobile access patterns from users’ movement was proposed,
SMAP-Mine, which is based on the FP-Tree [39]. T-MAP
[40] was proposed by Lee to efficiently identify the mobile
user’s access patterns taking the time intervals in addition to
the location and service information into account. Yun et al.
in [41] proposed the Mobile Sequential Pattern (MSP) which
is taking the moving paths in mining the frequent patterns.
The existing studies, however, can not differentiate movement
behaviours among users. The reason is, they focus on discov-
ering the movement patterns from the whole movement data.
To alleviate this problem, Lu et al. in [42] proposed a novel
pattern, Cluster-based Temporal Mobile Sequential Pattern,
which takes different clusters of users into account. However,
their clustering method is based on the movement trajectory of
users, not the users’ personal information. Consequently, the
prediction model can not deal with the problem of personalized
prediction of the next location motivated by group intentions.
Prediction model building : Existing studies on user

location prediction can also be classified according to the
reference data they use for building the prediction model: 1)
those who their model is only based on the movement history
of the user itself, 2) those who build the model using the
movement data of all the users in a database, and 3) hybrid
approaches who take advantage of both kinds of data. First
category of studies model the regular movement of a user
in order to predict his/her next location [5], [32]. However,
as the historical movements of all users are not included in
the prediction model, it results in low coverage of prediction.
Even if a user has visited many locations, there are places that
the user has never been there. As a result, the locations not
previously seen by the user, can not be predicted with this
prediction model. The second category of studies, apply only
the movement data from all users to predict the next location,
like probability distribution based models [43], or location
recommendation models [2], [3], [4]. However, as these kinds
of recommenders do not take the current movement of the user
into account, they result in the low precision prediction. The
third category of studies predicts next location of users using
a hybrid method, which not only consider a user’s current
movement data but also utilize the movement data from other
users [44]. Even though, this branch of studies alleviates the
low coverage and low precision of the tow above categories,
it still suffers from the following problem: as the prediction
model focuses only on solo movements of users, it can not
deal with the next location prediction motivated by the group-
triggered intentions. Consequently, the prediction model is not
able the predict the next location motivated by the group
intentions.

III. SYSTEM OVERVIEW

Fig. 1 shows the architecture of our system, which is divided
into two main parts, ”Offline” and ”Online”. In the offline part,
the prediction rules are minded from the existing movement
trajectories, and through the online part, the location prediction
for the incoming trajectory will be done. The groups of people
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are firstly detected from the movement trajectories (Section
IV). The individual information of group members then is used
for conducting the travel group type prediction (Section V).
The stay point locations are extracted from the spatial trajecto-
ries and the location sequences which are associated with the
travel group types will be generated. Through applying the
sequential pattern mining the significant movement patterns
will be identified from the generated location sequences, and
then, prediction rule will be extracted (Section VI). Finally,
we propose a location prediction model, which is entailed by
the general sequential prediction rules and the group-specific
sequential prediction rules (Section VII).

A. Input Data Characteristics

The input data we are working with in this paper, consists of
two pars: movement trajectories, and the profile information.
Movement Trajectory: ODB = {O1, O2, ..., On} is a set

of people in our database. The spatial-temporal trajectory Tr
of each person O is represented as a series of points denoted
as Tr = 〈p1, p2, ..., pn〉, where pi includes the location and
timestamp attributes.
Profile Information : Each person is also attached with

some individual information Id = 〈age, gender〉. Therefore,
for each person we have the following pair of information
Oi = 〈Tri, Idi〉. In this paper, we put this assumption that
we have access to the individual information of the people.
These information can be identified from various ways, i.e.,
such as extracting the profile information from the users’ social
network or or as the input data from an application. Addressing
these details is out of scope of this paper. In section VIII, we
provide a realistic example which provide us with this kind of
information.

IV. GROUP DISCOVERY FROM PEOPLE MOVEMENT
TRAJECTORIES

Several studies have been proposed in the literature to
discover the groups of moving objects. The main focus of
the previous approaches, however, is on the movement tra-
jectories of vehicles or animals with the aim of finding the
general trends [45], [46]. Different from them, we concentrate
on human movement trajectories, particularly in the indoor

Restaurant1

Cofee1

Shopping3

Shopping2

Shopping1

Cofee2

Fig. 2. A group of passengers at airport

environment. The movement of people is rather different from
the movement of animals or vehicles. People might belong
to the same group, while they have different movements and
follow the different path. Groups evolve and form various sub-
groups during their lifetime. Fig.2 represents an example of
group movement of people browsing the airport before their
departure (according to the observation of movement data of
passengers at Guangzhou Baiyun International Airport). As it
is shown in the figure, while these passengers belong to the
same main group, they also contribute in different sub-groups.

Considering the mentioned fact, we propose a novel group
discovery approach, Loose Traveling Companion Pattern
(LTCP) framework, to identify the group travellers including
the main group and the sub-groups they form during their
movement [47]. In the following, first, the essential concepts
will be explained, afterward, we present the group discovery
problem in a formal way. The list of main notations is outlined
in Table I.

A. Essencial Concepts

We consider ODB = {O1, O2, ..., On} as a set of moving
objects (corresponding to the people in our problem). The
spatial-temporal trajectory Tr of an object O is represented as
a series of points denoted as Tr = 〈p1, p2, ..., pn〉, where pi
includes the location and timestamp attributes. We assume
t ∈ {1, ..., T} as the time interval, which T may be equal to a
day or a time slot can be determined by 1 minute, depending
on the requirement of applications. The set of objects with
their trajectories at time slot t is called a slot-dataset at t.

Then we extract the clusters of objects at each time slot t,
slot-cluster, according to the corresponding slot − dataset.
The output of this step, is a database of slot-clusters CDB =
〈C1, C2, ..., Cn〉. Each slot-cluster Ci contains the extracted
clusters at time-slot i, Ci = 〈ci,1, ci,2, ..., ci,j〉, where j is
the number of clusters at that time-slot. The number of time-
slots that a cluster c has been observed is denoted by c.f . We
call the subset set of clusters at time-slot i, subset-collection
Si = 〈csi,1, csi,2, ..., csi,k〉, where k is the number of subsets
(except empty subset). Each subset cs is called a cluster-set.
For example, in Fig. 3, at time-slot 2, we have the slot-cluster
C2 = 〈c2, c3〉 and subset-collection S2 = 〈〈c2〉, 〈c3〉, 〈c2, c3〉〉,
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and the cluster-set cs2,3 = 〈c2, c3〉. The timestamp of a cluster-
set is denoted as cs.t.

B. Problem Formulation

An LTCP group is a sequence of cluster-sets at continuous
time-slots. We define four threshold parameters in order to
identify the LTCP groups: 1) size threshold mG which restricts
the size of the groups we are targeting, 2) duration threshold
dG which determines the minimum lifetime of a group, 3)
frequency threshold fC that determines the minimum time-
slots that a group should be gathered.
Definition 1 : According to the above mentioned param-

eters, we identify an object set OG along with a cluster-set
sequence TS = 〈cs1,a, cs2,a2, ..., csn,an〉 (n = t2 − t1 + 1)
at interval [t1, t2] as an LTCP group, if it satisfies the following
conditions:

1) cs1.t = t1 , csn.t = t2 , |t2 − t1| ≥ dG ;
2) |OG| ≥ mG ;
3) For any csi,ai of TS, union of its clusters should be

equal to OG : ∀ cj ∈ csi,ai ,
⋃
cj = OG ;

4) ∃ cj ∈ TS, cj = OG , and cj .f ≥ fC ;
then the pair of object set OG and cluster-set sequence TS is
defined as Loose Travelling Companion Pattern (LTCP) in

TABLE I
TABLE OF NOTATIONS

Notation Definition

O Moving object

Tr Trajectory

t Time slot index

ODB Set of objects

c Cluster

c.f Frequency of a cluster

Ci Set of clusters at time slot i, slot-cluster

CDB Set of slot-clusters at all time slots

cs Subset of Ci, cluster-set

Si Set of all subsets of Ci, subset-collection

cs.t Timestamp of a cluster-set

mG, dG Size and duration threshold

fC Frequency threshold of gathering of all members

lC Gap threshold between cluster-sets

[t1, t2], P = 〈OG, TS〉. Based on the union operation among
clusters in a cluster-set, a sequence of cluster-sets is derived
which meets condition 3. Condition 4 adds a constraint on
the number of time-slots that all members of an LTCP group
should stay close together. Fig. 3 shows an example of LTCP
group with members {O1, O2, O3, O4, O5, O6, O7} in interval
[1, 5] while it satisfies the condition of fC = 2 and dG = 5.

However, the rigid continuous time constraint in LTCP may
lead to no discovery of a group or fragmented discovery of
a group. In cases with lots of objects in a limited space,
i.e., airport, it might be that the objects in a group stay
in the same cluster with other groups for a few time-slots.
Strict continuous time constraint in LTCP will prevent the
discovery of such group patterns. Therefore, we propose
Weakly Continuous Loose Travelling Companion Pattern
(WCLTCP), which is the extension of LTCP. The difference
between WCLTCP and LTCP is the possibility of a time-
gap between the cluster-sets. Considering cluster-set sequence
TS = 〈cs1,a1, cs2,a2, ..., csn,an〉 and time-gap threshold lC ,
the following condition should be satisfied in a WCLTCP
group: csi+1.t − csi.t ≤ lC (∀ i, 1 ≤ i < n).

Example: Table II shows the running process of the LTCP
discovery algorithm. It is clear that the membership is un-
changed during the lifetime of the group (OG = {O1 −O9});
however members are contributing in different sub-groups
{O1 − O5} and {O6 − O7}. In the following sections, we
explain how the discovered groups (main-group and sub-
groups) are used to mine the significant movement patterns.

As the focus of this paper is on the prediction part, we omit-
ted the explanation of the discovery algorithms. The detailed
about the discovery algorithms of the proposed patterns, along
with the extensive evaluations, has been provided in [47].

V. PREDICTING TRAVEL GROUP TYPES

It has been pointed out that the preferences of the group
people travel with have a significant impact on the locations
they visit. Taking a family group and a couple group as
examples, predicting a location preferred by the family to both
groups may not satisfy the couple preferences.

Through the previous step, we discovered the traveller
groups from the movement trajectory data. In this step, we
identify the type of the discovered groups by utilizing the
profile information, Id, of the users. In this paper, we take four

TABLE II
ILLUSTRATION OF LTCP DISCOVERY

time cluster-set candidates

1 C1 P1 = 〈 OG, 〈〈C1〉〉 〉
2 C2 P3 = 〈 OG, 〈〈C1〉, 〈C2, C3〉〉 〉
3 C4,C5 P3 = 〈 OG, 〈〈C1〉,〈C2, C3〉,〈C4, C5〉〉 〉
4 C6,C7 P4 = 〈 OG, 〈〈C1〉,〈C2, C3〉,〈C4, C5〉,

〈C6, C7〉〉 〉
5 C8 P5 = 〈 OG, 〈〈C1〉,〈C2, C3〉,〈C4, C5〉,

〈C6, C7〉,〈C8〉〉 〉



group types into account, (1) family, (2) friends, (3) couple and
(4) solo traveler, as they have been shown to have a significant
impact on choosing the location to visit [9]. In the following,
the required features for representing the group travellers will
be introduced and the prediction model will be trained by
means of these features.

Considering the profile information of the group members
(age and gender), we identify the influential features on type
of the group travellers. For example, a family group usually
includes parents (gender difference) and one or more kids (age
gap), or a couple group includes a male and female (gender
difference), who are usually close in age (age gap). In detail,
three kinds of features are used in the proposed group type
prediction method.

1) Gender difference: By averaging the L2 distance of
gender between any two persons, the gender difference
will be calculated.

2) Age gap: We consider two types of age-based measures,
(1) age-gap, and (2) age range. The first one is calculated
by the standard deviation and the second one is the
average of the members’ age.

3) Group size: The number of members in a group is
another influential parameter, for example, group of
friends or family groups are larger than the couple
groups.

Given a set of traveller groups and the corresponding travel
group types, we will train the prediction model. In order to
build the prediction model, we apply the Adaboost where the
weight and the threshold of each feature is determined. The
similar approach has been used in [9].

In this paper, we consider groups with one member as a solo
traveler, therefore, we would train our prediction model on
data from three other group types (family, couple, and friends).
We will demonstrate the effectiveness of group type prediction
and its impact on location prediction in Section IX.

VI. GROUP-SPECIFIC PATTERN MINING

Through the previous sections, traveller groups and their
types are discovered. In this section, we use this information to
discover the significant movement patterns, the patterns which
are frequently visited by the users. We propose a new type
of pattern, called GFSP (Group-Based Frequent Sequential
Pattern), to represent the frequent movement behaviours by
considering the group travellers. In contrast to the conventional
sequential pattern, which considers the individual movements,
we take into account the type of the group to illustrate the
movement of users. As shown in Fig. 1, we first detect stay
locations from spatial-temporal trajectories; then we transform
each trajectory to a sequence (or sequences) of stay locations,
considering the discovered groups, called GLS (Group-based
location sequence). Afterward, we apply a frequent sequential
pattern mining to discover GFSPs from GLSs, and then extract
the prediction rules. The list of main Notations are outlined
in Table III.

Location A
Location B

Location C

Fig. 4. Simple group movement

A. Stay Location Discovery

Before identifying the significant movement patterns, the
raw spatial-temporal trajectories need to be transformed to the
sequences of stay locations visited by the users.

Stay location is defined as the geographic region user stay
for over a time threshold. In this phase, we follow a grid based
approach which use a regular grid (or some pre-defined spatial
decomposition) to divide the space into cells, locations. The
time a user stays in a cell, stay time, is obtained according
the difference between the time a user enters and leaves the
cell. Cells with stay time shorter than the user-specified time
threshold, stU , will be filtered out. We call the remaining
cells (i.e., their stay time is equal to or greater than the
threshold) stay cells, stay locations. It should be noted, various
approaches can be applied for identifying the stay location
depending on the input data.

B. Trajectory Transformation

Intuitively, after stay locations are detected, trajectories can
be transformed to a sequence of stay locations. Applying
the conventional transformation approach, which considers
individual trajectories, we can transform each trajectory into
a sequence of stay location. However, in group-based location
sequence transformation, we consider the group information,
rather than the individual information, to transform the spatial-
temporal trajectories into the location sequences.

Fig.4 represents a simple movement of a group (i.e.,
family) which members follow the same path during the
whole life time of the group. Subsequently, conventional
approach generates three location sequences (LS) considering
the individual movements:

LS 1 : A→ B → C
LS 2 : A→ B → C

TABLE III
TABLE OF NOTATIONS

Notation Definition

GSP Group-Based Sequential Pattern

LS location sequence

GLS Group-based location sequence

FSP Frequent sequential pattern

GFSP Group-based frequent sequential pattern

SR Sequential Rule

GSR Group-based sequential Rule
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Fig. 5. Complex group movement

LS 3 : A→ B → C

Unlike the conventional approach, group-based location
sequence transformation considers groups rather than the
individuals. Consequently, group-based transformation
generates one group-based location sequence (GLS)
considering the group movement.

GLS 1 : family(A→ B → C)

Fig. 5 shows another example of movement of a group
travellers, friends, which is composed of two sub-groups,
a family and a couple. They (friends) all visit Location A
and Location B, then first sub-group (couple) visits Location
C and Location D and the second sub-group (family) visits
Location E and Location F. They eventually join in Location
G. Applying the conventional transformation, movement
trajectories are turned into the following location sequences:

LS 1 : A→ B → C → D → G
LS 2 : A→ B → C → D → G
LS 3 : A→ B → E → F → G
LS 4 : A→ B → E → F → G
LS 5 : A→ B → E → F → G

Unlike the conventional approach, which each trajectory
is transformed exactly to one location sequence, group-based
location sequence transformation doesn’t follow the same
straight-forward approach. We have three group types in the
above example, friends (main-group), couple (sub-group), and
family (sub-group). Subsequently, trajectories are transformed
to the group-based location sequences considering their group
types:

GLS 1 : friends(A→ B → C → D → G)
GLS 2 : friends(A→ B → E → F → G)
GLS 3 : couple(A→ B → C → D → G)
GLS 4 : family(A→ B → E → F → G)

These location sequences then are treated as the reference
data for training and prediction.

Eventually, two kinds of databases containing the location
sequences are extracted from the movement trajectories, gen-
eral database and group-specific database. General location

TABLE IV
SAMPLE DATABASE

User ID Location Sequence Group Type

1 A→ B → C → D Family

2 A→ B → C → D

3 A→ B → C → D

4 A→ B → C → D Family

5 A→ B → C → D

6 A→ B → C → D

7 E → F → G Couple

8 E → F → G

9 H → I → J Couple

10 H → I → J

11 E → F → G Solo

12 H → I → J Solo

sequence database, DGeneral, is obtained through applying the
conventional transformation method, with focusing on the in-
dividuals. This database contains the location sequences for the
corresponding users. On the other hand, Group-specific loca-
tion sequence database, DGroup−specific, is obtained through
applying the group-based transformation with considering the
group information. This database contains location sequences
belonging to the corresponding group types.

C. Identifying the Significant Movement Patterns

During the two previous phases of our four phases pre-
diction framework, we extracted the location sequences (LS
and GLS) from the movement trajectories. In the third phase,
frequent pattens are mined from the location sequences, and
then, prediction rules are extracted from these patterns.

To extract the frequent sequential patterns, we apply the
widely used Apriori algorithm in [30]. We define support of
a pattern, as the number of times it has been visited by the
users, supp. A pattern is frequent, if its support is higher than
the specified support threshold, δ. Accordingly, first, we mine
the frequent sequential patterns (FSP) from DGeneral. Group-
based frequent sequential patterns (GFSP), then, are extracted
from the group-based location sequences in DGroup−specific.
Table IV shows a sample database of location sequences.
Table V and Table VII are the corresponding General database
and Group-specific database, respectively. Considering δ = 2,
FSPs and GFSPs are mined in Table VI and VIII, respectively.

D. Sequential Rules

After discovering the frequent patterns, we generate the
sequential rules (SRs) and group-specific sequential rules
(GSRs) from the FSPs and GFSPs, respectively.

For a given pattern FSPL : 〈L1, L2, ..., Ln〉, sequential rule
SRL and the confidence Conf(SRL) are written as:

SRL = 〈L1, L2, ..., Ln−1〉 → 〈Ln〉 (1)

Conf(SRL) =
Sup(〈L1, L2, ..., Ln〉)
Sup(〈L1, L2, ..., Ln−1〉)

(2)



TABLE V
GENERAL DATABASE (DGeneral)

User ID Location Sequence

1 A→ B → C → D

2 A→ B → C → D

3 A→ B → C → D

4 A→ B → C → D

5 A→ B → C → D

6 A→ B → C → D

7 E → F → G

8 E → F → G

9 H → I → J

10 H → I → J

11 E → F → G

12 H → I → J

TABLE VI
FREQUENT SEQUENTIAL PATTERNS (FSP)

Pattern Support

A→ B → C → D 6

E → F → G 3

H → I → J 3

TABLE VII
GROUP-SPECIFIC DATABASE (DGroup−specific)

Location Sequence Group Type

A→ B → C → D Family

A→ B → C → D

E → F → G Couple

H → I → J

E → F → G Solo

H → I → J

TABLE VIII
GROUP-SPECIFIC FREQUENT SEQUENTIAL PATTERNS (GFSP)

Pattern Group Type Support

A→ B → C → D Family 2

In the definition of confidence of SRL, we term the an-
tecedent 〈L1, L2, ..., Ln−1〉 as left hand side (LHS) and the
consequent 〈Ln〉 as right hand side (RHS).

In order to reveal the strength of each rule, we rank the
rules by considering both support and confidence of the rules:

Strength(SRL) = Sup(〈L1, L2, ..., Ln〉)× Conf(SRL)
(3)

The same procedure will be applied for extracting the
GSRs.

VII. GROUP-SPECIFIC LOCATION PREDICTION MODEL

According to Fig. 1, the input of the prediction framework
include the target user’s profile composed of the group he/she
belongs, historical movements (sequence of the visited loca-
tions), and the output is the most probable location he/she
is going to visit. First, the group that the user belongs to is
discovered through applying the group discovery approach, as
described in Section IV. Then, the type of the group (family,
friends, couple, or solo traveler) will be obtained by applying
the proposed group type prediction model. Afterward, the
known trajectory of the user will be compared with the move-
ment prediction rules generated from the frequent trajectories
(SRs and GSRs).

A. Prediction Model

In this section, we describe how the discovered rules (SRs
and GSRs) are applied to predict the next location of the
user according to the user’s historical movement. let SU =
(s1, s2, ..., sm) be a trajectory of a user, for which we are
seeking the most probable next location. For a given trajectory
S, set of all matched rules is denoted by RS = (r1, r2, ..., rn).
For a given user’s trajectory SU , we call rule ri = 〈LHSi〉 →
〈RHSi〉 a matched rule, such that LHSi covers a part of the
trajectory SU , LHSi ⊆ SU . The strategy outputs, as the result,
the rule’s right hand RHSi, weighted by the relative coverage
of the trajectory SU . For a given movement rule ri the score
of the prediction is defined as:

Score(ri, SU ) = Strength(ri)×
length(LHSi)

length(SU )
(4)

the strength of the rule is calculated according to Equation
3.

To predict the optimal next location, this problem can be
formulated as follows:

LNext = argmaxLJ
UScore(LJ |SU , GU , SR,GSR) (5)

where GU is the learned group type for the corresponding user,
and SR and GSR are the obtained sequential rules. Intuitively,
we will predict the proper location that most users visit and
match the user’s group type and historical movements SU .

Until now, we have two kinds of rules: the general sequential
rules SRi = 〈L1, L2, ..., Ln−1〉 → 〈Ln〉 which show the
popularity of the different location sequences. The group-
specific sequential rules GSRi = (〈L1, L2, ..., Ln−1〉 →
〈Ln〉, GT ) which show the popularity of the different location
sequences for each group type GT . Here we describe a way
of constructing the scoring model that takes two rule sets into
account:

UScore(LJ |SU , GU , SR,GSR) =

UScore(LJ , SU , SR) · UScore(LJ , SU , GU , GSR)
(6)

where UScore(LJ , SU , SR) calculates the unified score of
the location LJ according to the general sequential rules, and



UScore(LJ , SU , GU , GSR) calculates the unified score of the
location LJ according to the group-specific sequential rules as
follows:

UScore(LJ , SU , SR) =
∑

ri∈SR,RHS(ri)=LJ

Score(ri, SU )

(7)

UScore(LJ , SU , GU , GSR) =
∑

ri∈GSR,RHS(ri)=LJ

Score(ri, SU )

(8)

where Score(ri, SU ) is calculated by Equation 4. It should
be noted, here we applied the general rules and group-specific
rules with the same importance. However, different weights
can be assigned according to the goal of the application.

B. Background Smoothing
There is a possibility that we cannot find a matched rule

in any of the rule sets (SRs and GSRs) for the incoming
trajectory. For example, before we would be able to discover
the group of a target user, we cannot utilize the GSRs to
predict the next location, and we cannot predict the next
location, according to Equation 6. In order to solve this
problem, we need to add a smoothing factor in the scoring
model. Intuitively, we take location popularity and group-
specific popularity into consideration:

Popularity(LJ) =
Frequency(LJ)

TotalNumberofV isits
(9)

Popularity(GU ) =
Frequency(GU )

TotalNumberofGroups
(10)

where Frequency(LJ) refers to the number of visiting the lo-
cation LJ and TotalNumberofV isits refers to the total num-
ber of visiting by all the users. Similarly, Frequency(GU )
refers to the number of groups with type of GU to the total
number of discovered groups TotalNumberofGroups.

Combining the scoring model with the popularity informa-
tion, Equation 9 and Equation 10 into Equation 6, we get
the following model as the final prediction model:

LNext = argmaxLJ

{Popularity(LJ) + UScore(LJ , SU , SR)}·
{Popularity(GU ) + UScore(LJ , SU , GU , GSR)}

(11)

Because the term Popularity(LJ) + UScore(LJ , SU , SR)
considers the relationship between locations by utilizing
the general sequential rules and location popularity, the
prediction using this is regarded as general sequential
prediction model (SPM). On the other hand, the term
Popularity(GU ) + UScore(LJ , SU , GU , GSR) in the pre-
diction is the group − based sequential prediction model
(GSPM). The combination of SPM and GSPM is denoted
as ”SPM +GSPM”.

Fig. 6. Charlie/ Smart Trolley

VIII. CHARLIE: SMART TROLLEY

Over the last decade, airport industry has evolved dra-
matically to a commercial enterprise with the focus on the
importance of customers. In large airports, like Heathrow
Airport in London, thousands of passengers are served every
day. Providing the right services to the passengers is the
ultimate goal for the airport authority. In this regard, access
to the passenger information plays an important role.

Charlie is a smart trolley developed by working with
industrial partner Wuxi Chigoo Interactive Technology Co.
Ltd in China, Fig. 6. This tool is a combination of a trolley
and Android based tablet. The goal of Charlie is helping
passengers to navigate inside the airport and provide them
with personalized services. By using the smart Charlie, pas-
sengers may carry their handbags, receive personalized flight
information on the tablet, receive boarding reminding, enjoy
the media and Internet services, and navigate themselves inside
the airport.

To begin, the passenger needs to scan his/her board-
ing pass on the Charlie. This provides us the access to
the profile information of the passenger, i.e. Flight Num-
ber, Destination, Age, and Gender. Charlie, in addition,
reports its location which capables us to track the pas-
senger. The location data is reported with the format of:
〈MacAddress, Coordinate, T ime〉. Through the first field,
we can distinguish the Charlies, and through the other two
fields we have access to the movement trajectory of the
passengers. In this paper, we utilize the movement information
to extract the passenger groups and the individual information,
Age and Gender, will then be used to identify the type of the
discovered groups. More detailed information can be found in
[47].

IX. EXPERIMENTS

In this section, we conducted a series of experiments to
evaluate the performance of the proposed prediction model,
under various conditions. Experiments can be divided into
three parts: 1) group discovery evaluation, 2) group type pre-
diction evaluation, and 3) next location prediction evaluation.



All of the experiments were implemented in Python on a 3.30
GHz machine with 4 GB of memory running Ubuntu.

A. Datasets

As mentioned in Section VIII, we use our smart trolley,
Carlie, to collect the profile information and also the location
information of the passengers. In order to obtain a comprehen-
sive dataset for evaluating our model, we build a framework
which utilize both the real and synthetic datasets.

1) dataset 1 (D1): To be able to evaluate the accuracy
of the proposed group discovery approach, we conducted an
experiment to obtain the ground truth. The experiment took
place in Guangzhou Baiyun Airport with 100 participants who
used Charlie to browse the airport and report their location.
During the experiment, participants were divided into groups
with different sizes between 1-8. Each group followed the
predefined routes which were chosen such that the members
split and merge and stop for several times. The groups spent
between 1 to 2 hours browsing the airport. In order to obtain a
more complete dataset comprising more groups with different
sizes and lifetimes, the period that the passenger spends at
airport, we generate a number of groups according to the real
movement data received from the experiment. The resulted
dataset is comprised of 5000 passengers which belong to the
groups with different sizes of 1 to 8 and lifetime between 1
to 6 hours.

2) dataset 2 (D2): In order to obtain the training data
for predicting group types, we interviewed passengers at
airport (Guangzhou Baiyun Airport during the July 2017)
about the type of the group they travel with (family, couple,
friends, or solo traveler) and the individual information (age
and gender) of the travelers. Eventually, around 1000 group
information was collected (more details are listed in Table
IX). Group information contains the corresponding group type
and the individual information of the members as follows:
〈GroupType, 〈Age1, Gender1〉, ..., 〈Agem, Genderm〉〉.

As it is mentioned before (Section V), we consider groups
with one member as the solo travelers. Therefore, we only
use the data from three other group types (family, couple, and
friends) to train the group type prediction model.

3) dataset 3 (D3): Currently, the only way for collecting
the location data of passengers is through the Charlie. As not
all members of a group use a separate trolley, we don’t have
the individual information and also the movement trajectory
data for all the group members. For this reason, we propose a
framework to build a comprehensive synthetic dataset with the
help of the collected real datasets (D1 and D2) to evaluate the
proposed location prediction model. This framework follows
three major steps: 1) initializing the groups with different

TABLE IX
TRAINING DATA FOR PREDICTING THE GROUP TYPE

Family Couple Friends Solo-Traveler

Collection 281 215 174 330
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Y C2C4

C3

IGeneral1
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IGeneral4 I General2
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PGeneral1

PGeneral3
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I General1

Fig. 7. Cell network for modelling the movement behaviour

sizes and types, 2) generating the movement path for a
group such that it reflects the influence of group type on
the movement (our main assumption), and 3) generating the
individual movement trajectories of passengers considering
their group movement.

In this experiment, we build a database containing N
groups, G = {g1, g2, ..., gN}, which are equally divided
into four categories, family, couple, friends, and solo trav-
ellers. For each group, gi, then we randomly choose an
instance with the same group type from database D2. For
example, if type of gi is a family, we choose a family
group from D2 and assign the corresponding group infor-
mation to gi, i.e. gi = 〈type : family,membersInfo :
〈〈56, F emale〉, 〈58,Male〉, 〈16, F emale〉〉〉.

We model the environment as a |W | × |W | cell network.
Cells are considered as the locations that passengers visit and
have predefined length |l| and width |w|. Each location has
different level of interestingness for different group types. For
example, a location which is not family favourite, could be
interesting for couples. For this reason, we assign two values
of interestingness to each cell, group specific interestingness
IGroup−Specific and general interestingness IGeneral. The
former refers to the interestingness of a cell for a specified
group type, i.e. Ifamily. The later points to the interestingness
of a cell in general. The value of interestingness parameters are
determined from a uniform distribution within a given range
UI . Eventually, each cell is assigned with a few interestingness
values, IFamily, ICouple, IFriends, Isolo, and IGeneral.

For generating the movement path (movement between
cells) for each group, we apply a modified version of sim-
ulation model in [41], [42]. For each cell, the advancing
probability of each neighbour is the probability for a group to
move to the neighbouring cells. In the model, the advancing
probability pa is obtained by the ratio of the interestingness
value of each neighbour to those values of other neighbours.
Corresponding to the different types of interestingness values,
we define different types of advancing probabilities, group-
specific advancing probability PGroup−Specific which includes
PFamily, PCouple, PFriends, and PSolo, and general advancing
probability PGeneral. The backward moving represents that
a user will move from the current cell back to the cell



from which the user came. The backward probability pb is
denoted by Pb = Pa.Wb, where Wb is a backward weight.
Similar to the advancing probability there are different types
of backward probability. Each group may choose the next cell
to move according to the group-specific advancing probability
with probability PEvent or following the general advancing
probability. Length of the movement path is determined from
a Poisson distribution with a mean equal to UT , respectively.
Example : For the 3 × 3 mesh network example shown

in Fig. 7, there are four neighbours 〈C1, C2, C3, C4〉 for cell
Y . As an example, we assigned each cell with the general
interestingness value, IGeneral1. When a user wants to move
out from cell Y , the general advancing probabilities to the
neighbours are shown in Fig 7. If a user has already came
from one of the neighbours to the current cell, the advancing
probability of the corresponding node should be calculated
considering the backward weight.

So far, the groups and the corresponding movement path
between cells are extracted. At the final step, we generate
the movement trajectories of the individual members of the
group inside and between the cells through the following
procedure. We choose one of the members as the head who
moves following the extracted group movement path. Other
members, then, move approximately towards the head, similar
to the group movement behaviour in D1, splitting and merging
during the movement. We define Ntp time points in a day and
choose the start time point for each user trajectory from that.
The movement data for each user, then, is generated every
10 seconds in the form of 〈x, y, t〉 which corresponds to the
spatial coordinates and temporal information of the movement.
The spending time in each cell (stay time) is determined from
a Poisson distribution with a mean equaling to NT .

The final dataset contains the spatial-temporal trajectories
of users along with the users’ individual information (age and
gender) and the information of the group they travel with
(group members and the group type). The default values for
the above framework is listed in Table X.

B. Parameter Settings and Measurements

Default values of the parameters for discovering the groups
are listed in Table XI. Detailed information about this step

TABLE X
TABLE OF NOTATIONS

Parameter Description Default value

N Number of groups 10000

|W | |W | × |W | size of the network 15

|l|, |W | Length and width of each cell 10, 10

UI Interestingness value 500

PEvent Probability of group-based movement 0.7

Wb The weight of backward movement 0.7

UT Length of Movement Path 20

Ntp The number of time points in a day 200

NT Stay time in cell 20 minutes

can be found in [47]. To extract the significant movement
patterns, we set the stay time threshold as 10 minutes, stU , and
support threshold, δ, as 0.1%, Table XII. It should be noted
that all of the parameters can vary according to the different
applications. In this paper, we set the parameters according to
our application which is predicting the next location for the
passengers at airports.

The followings are the main predictability measurements for
the location prediction evaluation:

Precision =
P+

P+ + P−
(12)

Recall =
P+

|R|
(13)

Applicability =
P+ + P−

|R|
(14)

where P+ and P− refer to the number of correct predictions
and incorrect predictions, respectively, and |R| points out the
total number of requests.

C. Evaluation of Next Location Prediction

The first experiment is designed to verify the performance
of our model on location prediction. We use dataset D3 for
this part of experiment such that 70% of the data is used for
the training, and the remaining 30% is for the prediction.

We compare our prediction model, ”SPM + GSPM”, with
the traditional widely used approach which apply the general
sequential prediction model (SPM), i.e. [5], [6], [7]. We
consider this approach as the first baseline, base1. As to
our own two-stage prediction framework, we also consider
the related strategies proposed in this article as the addi-
tional baselines. The base2 considers only the group-based
sequential prediction model (GSPM), and base3 considers
both the general sequential prediction model and group-based
sequential prediction model without applying the background
smoothing. The third baseline also clarifies the importance of
the background smoothing on performance of the prediction.

TABLE XI
DEFAULT VALUES FOR THE PARAMETERS

Parameter Description Default value

timeslot Duration of a time slot 1 minute

mG Group size threshold 2

dG Duration threshold 20 time slots

fC Frequency threshold 10 time slots

lC Gap threshold 10 time slots

TABLE XII
DEFAULT VALUES FOR THE PARAMETERS

Parameter Description Default value

δ Support threshold 0.1%

stU Stay time 10 minuts
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Fig. 8. Precision, Recall, and Applicability of different approaches

Fig. 8 represents the predictability of different models
according to the default setting. As the figure indicates base1,
base2, base3, and SPM + GSPM have achieved the precision
of 48%, 59%, 70%, 64%, recall of 32%, 39%, 24%, 53%,
and applicability of 63%, 68%, 39%, 80%, respectively. We
observe that base3 achieves the highest precision, however,
the recall and applicability of this approach are significantly
lower than the other methods. The reason is, this approach
predicts only the locations that can be found by both the
sequential prediction model (SPM) and group-based prediction
model (GSPM), which results in the precise prediction but
low predictability. Our prediction model, instead, reaches the
slightly lower precision compared to base3, while results in
the best recall and applicability. Compared to base1 (widely
used approach), SPM + GSPM improves the precision, recall,
and applicability by 16%, 21%, and 17%, respectively.

First, we analyze the influence of database size on the
performance of the prediction of different approaches. We
change the size of the database between 1000 groups to 10000
groups and evaluate the precision, recall and applicability of
four prediction methods. Fig. 9 shows that SPM + GSPM out-
performs the baselines in terms of recall and applicability with
varied database size. With increasing the database size, the
precision is nearly constant. On the other hand, the recall and
applicability of different approaches increases with increasing
the database size. The reason is, with the availability of more
movement data, the repeatability of the movement pattern
increases which leads to the higher recall and applicability.
Taking the precision into account, base3 achieves the higher
result than our approach (the reason is the same as above),
however, its recall and applicability are significantly lower than
SPM + GSPM.

We also investigate the precision, recall and applicability
when the event probability PEvent varies between 0.5 to 0.9.
Fig. 10(a), Fig. 10(b), Fig. 10(c) show that predictability
of our model outperforms the baselines in terms of recall
and applicability with varied event probability. Considering
the precision, however, base3 reveals the better results which
explained above. We observe that precision, recall and appli-
cability of the base2, base3 and ”SPM + GSPM” increase
with the varying the event probability from low values to
the higher values. The reason is, when the event probability
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Fig. 9. Predictability: (a) precision, (b) recall, (c) applicability, vs DB size

increases, movement of the people is more affected by the
type of the group they travel with which leads to the discovery
of more precise group-specific prediction rules. Therefore the
prediction models which are affected by the the group-specific
prediction (base2, base3, and ”SPM + GSPM”) results in the
higher precision, recall and applicability, with increasing the
PEvent. On the other hand, the predictability of the general
sequential prediction model (base1) degrades with increasing
the event probability. The reason is the movement of people
are less affected by only the sequential influence, which leads
to the less comprehensive sequential prediction rules.

Finally, we perform the experiment to analyze the
precision, recall, and applicability of the prediction ap-
proaches with changing the size of the network, |W |. This
parameter has the opposite effect of database size. Fig. 11(a),
11(b) and 11(c) reveal that our approach outperforms base1
and base2 in terms of precision, recall and applicability with
varying the network size. Even though the precision of base3
is higher than SPM+GSPM (the reason is explained in sub-
section C), the recall and applicability of this approach are
significantly lower than SPM+GSPM. While the precision
is nearly constant with increasing the size of the network,
both Recall and Applicability decrease with increasing the
network size. The reason is, users in larger networks have
different movement behaviours. Therefore the repeatability of
the movement decreases which leads to the reduction in recall
and applicability.

In conclusion, comparing to the base1, which is the tra-
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Fig. 10. Predictability: (a) precision, (b) recall, (c) applicability, vs PEvent
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Fig. 11. Predictability: (a) precision, (b) recall, (c) applicability, vs |W |

ditional sequential based prediction, SPM+GSPM achieved
significant improvement in terms of precision, recall and
applicability. This superiority becomes clearer with increasing
the value of PEvent.

D. Evaluation of Group Discovery

We compare the proposed group discovery method
WCLTCP with two state-of-the-art baselines: 1) the trav-
eling companion pattern (TC) [44] which captures the groups
whose members are close together for certain consecutive time
intervals, 2) the loose companion pattern (LC) [49] which is
the same as traveling companion pattern with the difference
that the gatherings of the whole group can be non-strictly
continuous, for certain time intervals. In this section, the
quality of the discovered groups by different group discovery
approaches will be evaluated. We consider the information
of the groups in dataset D1 as the ground truth, which the
output of the different approaches will be compared with
that. The following criterias will be used to evaluate the
quality of the discovered groups, Accuracy and Precision.
We define the criterion of Accuracy as the proportion of the
correct discoveries over the ground truth. We also measure the
proportion of the correct discoveries over the retrieved results
as Precision.

Fig. 12 plots the accuracy and precision of different group
discovery approaches. As the figure indicates, TC, LTC, and
and WCLTCP achieve the accuracy of 42%, 50%, 93% and
the precision of 8.5%, 7%, and 70%, respectively. As the
figure shows, WCLTCP significantly outperforms TC and LTC
in terms of accuracy and precision. Because of the relaxed
time constraint in LTC, it achieves better accuracy than the
TC approach. However, it also leads to more false positive
results, which results in the lower precision than TC. For all
the approaches, the accuracy is considerably higher than the
precision. It means that even though the ground truth groups
are well discovered, group discovery approaches also result
in wrong discoveries which leads to the lower precision. This
difference is more severe for the baseline approaches such that
although they are able to discover almost half of the ground
truth, more than 90% of the discovered groups are wrong.

For further clarification, we show the accuracy and precision
of the group discovery approaches in terms of different group
sizes, Fig. 13. As the group discovery approaches extract
groups with minimum size 2, we consider individuals who
are not assigned to any groups as the groups with size 1 (solo
traveler). There is a decreasing trend in terms of accuracy
with increasing the group size, Fig. 13(a). It reveals that the
group discovery approaches are less able in discovery of the
larger groups than the smaller groups. However, WCLTCP
shows a slight decrease, while TC and LTC reveal an abrupt
reduction in accuracy with increasing the group size. In terms
of precision, except the groups with size 1, WCLTCP achieves
the precision nearly to 100%. Unlike the accuracy, precision
shows the increasing trend as groups grow larger, Fig. 13(b).
It reveals that, the wrong discovery is reduced with increasing
the size of the group.
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Fig. 13. (a) accuracy, (b) precision vs group size

It should be noted, as our focus in this paper was on
the prediction part, we omitted the detailed evaluation of
the proposed group discovery. The comprehensive evaluation
results can be found in [47].

E. Evaluation of Group Type Prediction

We evaluate the group type prediction performance by 10-
fold cross validation over the three group types, family, friends,
and couple on dataset D2. As shown in Fig. 14, the accuracy
for couple group is slightly better than the others, possibly
due to the distinct features of the couple group, e.g., gender
difference, which is a common characteristic in most couples.
The prediction accuracy, on the average, can achieve 86%. It
is clear that if more training data is available, the prediction
accuracy can be further improved.

X. CONCLUSION

In this paper, we defined a new kind of frequent pattern,
namely GFSP Pattern, which takes into account the group
travel type of the users. Accordingly, we proposed a novel
personalized prediction framework to predict the next location
of a user for applications such as location-based services.
The core idea of our prediction module is a novel prediction
strategy that evaluates the score of the next location for a given
user by mining the movement patterns of users in terms of the
general and group-specific properties. To discover the travel
groups from spatial-temporal trajectories, we applied a novel
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Fig. 14. Precision of predicting the group types

group pattern discovery which takes the human movement
behaviour into consideration. Then, according to the profile
information of the individual, the type of the discovered groups
was identified. To the best of our knowledge, this is the
first work that focuses on next location prediction by mining
trajectory data that takes into consideration the groups users
travel with. We evaluated our prediction model through a series
of experiments and showed that our approach outperforms
the widely used sequential approach in terms of precision,
recall, and applicability. For the future work, we want to
expand our prediction model with more contextual data such
as the travel duration. We believe such location prediction
models which are enriched with the contextual information
are promising for the location-based applications such as
advertisement. Besides, since our prediction model further
encompasses group discovery from the movement trajectories,
a number of parameters corresponding to that are used in
the model. As the next step, we will also try to reduce the
complexity of the model by simplifying the parameters.
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