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Abstract—In cache enabled D2D communication networks, the
cache space in a mobile terminal is relatively small compared with
the huge amounts of multimedia contents. As such, a strategy for
caching the diverse contents in a multiple cache-enabled mobile
terminals, namely caching deployment, will have a substantial
impact to network performance. In this paper, a user preference
aware caching deployment algorithm is proposed for D2D caching
networks. Firstly, based on the concept of the user preference,
the definition of user interest similarity is given, in which it can
be used to evaluate the similarity of user preferences. Then a
content cache utility of a mobile terminal is defined by taking
the communication coverage of this mobile terminal and the
user interest similarity of its adjacent mobile terminals into
consideration. The logarithmic utility maximization problem for
caching deployment is formulated. Subsequently, we relax the
logarithmic utility maximization problem, and obtain a low
complexity near-optimal solution via dual decomposition method.
The convergence of the proposed caching deployment algorithm
is validated by simulation results. Compared with the existing
caching placement methods, the proposed algorithm can achieve
significant improvement on cache hit ratio, content access delay
and traffic offloading gain.

Index Terms—content caching, D2D, user preference, utility

I. INTRODUCTION

Today’s internet traffic is dominated by content distribution
and retrieval. With the rapid explosion of the data volume
and content diversity, it becomes challenging to deliver high
quality service to the end user efficiently and securely. Con-
tent caching, a widely adopted content delivery technique in
Internet for reducing network traffic load, has been exploited
in fifth generation (5G) mobile networks. It has been proven
that caching of popular content and pushing them close to
consumers can significantly reduce the mobile traffic [1].

Device-to-device (D2D) communication has been regarded
as another driving force behind the evolution into 5G. D2D
caching networks, which take both advantages of caching and
D2D communication technologies, have naturally set the stage
for the 5G evolution [2]. In the D2D caching networks, the
mobile terminals (MTs) equipped with storage space are used
as caching nodes, and the MTs collaborative download and
cache different parts of the same content from the serving
base station (BS), and then share them by using D2D com-
munications.

With a limited amount of storage on each MT, the main
challenge is how cellular traffic can be maximally offloaded

by using D2D communication to satisfy requests for content
as well as to share messages between neighboring devices. A
carefully designed caching deployment strategy would have a
great impact on the network performance of the D2D caching
networks. Some literatures have studied the caching deploy-
ment optimization problem [3]–[5]. In [3], a caching allocation
scheme was proposed to enhance storage utilization for D2D
networks, and the optimal storage assignment achieved trade-
off between static caching and on-demand relaying. In [4],
the authors studied the problem of maximizing cellular traffic
offloading with D2D communication by selectively caching
popular content locally, and exploring maximal matching for
sender-receiver pairs. In [5], the authors optimized the content
cache distribution considering the user’s geographical location
in the D2D network to improve the cache hitting probability.

These works utilize the D2D cache to achieve their goals
by taking into account the channel state information, the pop-
ularity of the content, the available bandwidth resources, the
data transmission rate, and the distribution of users. However,
in the context of multimedia content distribution, especially in
wireless social networks, the user’s preference for content has
a great impact on the cache system performance.

In [6], the authors pointed out that each data object would
eventually be delivered to interested users. From users per-
spective, the closer of the storage location of the data object
will result in less generated network traffic to access the data
objects. With this in mind, the users interest preference will
provide certain guidelines in selecting the caching location of
the content replicas: it is beneficial to store the content replicas
in the location much closer to the user who is interested in it.
As such, the caching deployment strategy can be designed on
the basis of the user preference.

In the context of D2D caching networks, [9] considered the
difference of users preference and the selfishness nature of
D2D users, and proposed a caching incentive scheme.

It is worth mentioning that user preference based caching
strategies have been explored in content centric networking
(CCN) recently. In a content centric multi-hop wireless net-
work, a caching placement strategy based on user interest was
proposed [10]. A cooperative caching strategy was proposed in
CCN [11], which took user preference, node importance, and
cache replacement rate into account when making the caching
decision. Nevertheless, the works in CCN pay more attention
to the online and on-path caching decision design, which



cannot obtain the overall network performance optimization.
Although the works in [9]–[11] laid a good foundation in

integrating user’s interest preference to the caching strategy
design, the effect of the similarity of the users interest prefer-
ences on the caching strategy design is less well understood. In
the caching strategy design, if the MT caches some specific
contents which may be interested by the adjacent MTs, the
cache space utilization can be improved. Hence, the content
caching of a MT should not only consider the user preference
itself, but also take account of the user interest similarity
on the contents of adjacent MTs. Our work fills the gap by
carefully considering the user interest similarity and the D2D
transmission coverage region when defining the content cache
utility, thereby improving the network performance via the
caching deployment problem optimization.

In this paper, we propose a user preference aware caching
deployment algorithm for the D2D caching networks. The
content cache utility of each MT is defined to measure the
caching utilization, which takes both the user preference
and the transmission coverage region into consideration. The
logarithmic cache utility maximization problem is introduced
for the caching performance optimization. Then a near-optimal
solution is obtained by dual decomposition method. This solu-
tion provides a feasible, efficient and low-overhead algorithm
for implementation in D2D caching networks. The simulation
results show that the proposed algorithm can converge to
the maximization solution in a few iterations and achieve
significant performance on cache hit ratio, content access delay
and traffic offloading gain.

The rest of the paper is organized as follows: Section II
presents the system model. Section III defines user interest
similarity, and the content cache utility. In Section IV, we
propose the content cache utility optimization problem and the
near-optimal algorithm. Section V evaluates the performance
of the proposed algorithm. Lastly, the conclusion is highlighted
in Section VI.

II. SYSTEM MODEL
A. Network model

The system model of this paper is illustrated in Fig. 1. A
single macrocell is considered, where a macro BS serves N
uniformly distributed D2D users. D2D communication utilizes
orthogonal frequency, so there is no co-channel interference
between D2D communications links. The bandwidth of each
orthogonal frequency channel is B. Each MT has a cache space
which is able to cache up to S contents. The popular contents
are assumed to have the same data size, and the data volume
of each content is v.

With each user node as the center, we calculate the number
of neighbor nodes around each nodes communication cover-
age, and let Φn denotes the set of neighbors of user n in
its communication coverage. The user n can communicate
and share the content directly with his neighbor MTs through
D2D communication link if user n cached a content. For a
given content, which MT to save the content replica in an
overlap region of multiple MTs will be decide by the caching
replacement strategy.

Macro BS

Self-Serve

D2D MT

Cache

Figure 1. D2D caching networks..

When user n is communicated with user n′, the data rate
from user n′ to user n is

cnn′ = B log

(
1 +

gn′np
′tx
n

σ2

)
, (1)

when user n is communicated with BS, the data rate from its
severing BS to user n is

cn BS = B log

(
1 +

gBS np
tx
BS

σ2

)
, (2)

where σ2 is additive white Gaussian noise power, p′txn is the
maximum transmit power of user n′, ptxBS is the maximum
transmit power of BS, and gn′n is the channel gain between
n′ and n, and gBS n is the channel gain between BS and n,
which including the path-loss, shadow fading and multipath
fading.
B. Caching model

Taking into account the diversity of contents within the D2D
network, this paper assumes that all M contents which having
the highest popularity are cached by at least one MT according
to certain criteria.

In our caching model, a user can be a content requester and
a content provider. If there exists a complete or partial copy
of content m in its own cache, the request is fulfilled with
no delay and without the need to establish a communication
link. Otherwise, the user broadcasts a request message for
the content m to the neighbor MTs within its coverage, if
the user can find the requested file from a MT’s cache space
within its D2D transmission range, then it can establish a D2D
communication link and obtain the content. If the user cannot
find the requested content neither in its own cache nor its
proximity users, it needs to download the file from the BS.

III. CACHE UTILITY FUNCTION

In this paper, the user preference φmn is defined as the
interest of user n to the content m based on cousin theory [12].
Further, the interest similarity function is defined to charac-
terize the interest similarity among users. We use a simple
model to capture the user interest similarity of real social
networks [13]. Since φm is within the segment [0, 1] , the
interest similarity between user n and user n′ is defined as
the Euclidean distance on the wrapped segment,

φm (n, n′) = min {|φmn − φmn′ | , 1− |φmn − φmn′ |} . (3)

The small distance between φmn and φmn′ is, the larger
interest similarity of user n and n′ on the content m is. A



larger interest similarity between two users indicates that the
more likely content cached in one user is requested by the
another user.

Then, we define the cache utility function of a user con-
sidering both the user preference and the D2D transmission
coverage region. In the D2D communication coverage region
of a MT, the more neighbor users, the higher the possibility
of content sharing of the cached content, and the larger the
caching utility of this MT.

As described above, φm (n, n′) represents the interest sim-
ilarity between user n and user n′ for the conetent m. Besides
that, we let d (n, n′) represents the physical distance between
the two users, and let Φn denotes the set of neighbors of user
n in its communication range. Therefore, the cache utility per
unit cache space of user n caching content m is defined as,

umn =
∑

n′∈Φn

[
φm(n, n′)

−α · d(n, n′)
−β
]
, (4)

where α and β are the weighting factors of the user interest
similarity and the user physical distance.

IV. CACHING DEPLOYMENT ALGORITHM

The goal of this paper is to optimize the cache utility of the
whole network to obtain the caching deployment algorithm.
A. Problem Formulation

We define a caching index xmn = 1 of user n and content
m, indicating that a portion of (or entire) content m is cached
in user n, otherwise xmn = 0.

Assumption 1: user n can cache a portion of content m.
This assumption is practical and necessary, because a user may
have multiple interested content to be cached and the cache
space in a MT is relative small compared with the data volume
of the multiple contents.

Suppose the cache space of each MT is S, and the cache
space allocated by the MT n for caching parts of the content

m is S

(
M∑

m=1
xmn

)−1

, namely equal cache space allocation.

Logarithmic utility function in particular is a very common
choice of utility function [14], which naturally achieves some
level of utility fairness among the contents. So we use a
logarithmic utility function in the cache utility maximization
problem. The optimization problem can be written as,

P1 : max
x

M∑
m=1

 N∑
n=1

xmn log

 Sumn
M∑

m=1

xmn




s.t. C1 :
N∑

n=1
xmn = 1, ∀m ∈ {1, · · · ,M} ,

C2 : xmn ∈ [0, 1] , ∀m ∈ {1, · · · ,M} ,
and ∀n ∈ {1, · · · , N} .

(5)

The problem P1 is combinatorial due to the binary variable
xmn, the complexity of the brute force search is Θ

(
(N)

M
)

,
where N and M denote the number of MTs and number of
contents, respectively. The computation is essentially impos-
sible for even a modest-sized cellular network.

To overcome this, we give the Assumption 2 as following
to allow one content to be cached in multiple MTs.

Assumption 2: one content can be cached in multiple MTs
simultaneously. This assumption may require more overhead
to implement, but it is a practical method in D2D caching
networks, since the multiple MTs can collaborative download
and cache some large volume contents.

In the following, we provide a physical relaxation of C2
in (5) as 0 ≤ xmn ≤ 1. With this physical relaxation, the
indicators xmn can take on any real value in [0, 1], representing
that one content can be cached portion in more than one MT,
which follows the Assumption 1 as well. So optimization
problem can be expressed as,

P2 : max
x

M∑
m=1

 N∑
n=1

xmn log

 Sumn
M∑

m=1

xmn




s.t. C1,
C3 : 0 ≤ xmn ≤ 1, ∀m ∈ {1, · · · ,M} ,

and ∀n ∈ {1, · · · , N} .

(6)

To solve the convex optimization (6), the global network in-
formation is necessary, which requires a centralized controller
for caching deployment and coordination between MTs.
B. Dual decomposition

From (6), we have log

(
Sumn

(
M∑

m=1

xmn

)−1)
=

log (Sumn) − log

(
M∑

m=1

xmn

)
. We introduce a new variable

Mn =
M∑

m=1
xmn representing the number of contents cached

in the MT n. Then the problem of (6) can be rewritten as,

P2′ : max
x

M∑
m=1

N∑
n=1

xmn log (Sumn)−
M∑

m=1

N∑
n=1

xmn logMn

s.t. C1,C3,

C4 : Mn =
M∑

m=1
xmn,

C5 : Mn ≤ M.
(7)

The redundant constraint Mn ≤ M is added for the analysis
of convergence of the proposed algorithm which represent
that the number of contents cached in user n is less than
the maximum number of contents cached in user n. The only

coupling constraint is Mn =
M∑

m=1
xmn in problem (7). This

motivates us to turn to the Lagrangian dual decomposition
method whereby a Lagrange multiplier λ is introduced to relax
the coupled constraint. The dual problem is,

D : min
λ

D (λ) = fx (λ) + gMn (λ) , (8)

in which,

fx (λ) = max
x

M∑
m=1

N∑
n=1

xmn log (Sumn − λn)

s.t. C1,C3,
(9)



and

gMn (λ) = max
Mn≤M

M∑
n=1

Mn (λn − logMn). (10)

The primal problem (7) can be equivalently solved by the
dual problem (8). Denoting xmn (λ

∗) as the maximizer of
the first sub-problem (9) and Mn (λ

∗) as the maximizer of
the second sub-problem (10). There exists a dual optimal
λ∗ such that xmn (λ

∗) and Mn (λ
∗) are the primal optimal.

Therefore, given the dual optimal λ∗ , we can get the primal
optimal solution by solving the decoupled inner maximization
problems of (9) and (10) separately.

C. Algorithm procedure

The procedure of the dual problem solution is executed by
the macro BS. We assume that the all information of caching
utility xmn is known by the macro BS.

The outer problem is solved by the gradient projection
method [15], where the Lagrange multiplier λ is updated in
the opposite direction to the gradient ∇D(λ)

∂D(λ)

∂ (λn)
= Mn −

M∑
m=1

xmn. (11)

Evaluating the gradient of the dual objective function (8)
requires us to solve the inner maximization problem, which
has been decomposed into two sub-problems f and g. These
sub-problems are solved by Algorithm 1 as follows.

Algorithm 1 Caching deployment algorithm
Set t as the iteration index, and define a caching index matrix
X = {xmn}M×N . A small positive number ε is predefined as the
convergence constant.
Initialization: t = 0, xmn = 0, and the macro BS generates a
random multiplier λn for each MT.
Iteration: in the tth iteration of gradient projection algorithm for the
content m, the procedure is as following,

Step 1: the macro BS obtain the MT n satisfies n∗ =
argmax

n
(log (Sumn)− λn (t)); then set xmn∗ > 0 and update

M∗
n (t+ 1) =

M∑
m=1

xmn∗ ;

Step 2: the macro BS updates the values of Mn (t+ 1) according to
the problem (10), we set its gradient to be 0 with the constraint Mn ≤
M , i.e., λn−1− logMn = 0, then we have, Mn = e(λn(t)−1), then
the value of Mn is updated by

Mn (t+ 1) = min
{
M, e(λn(t)−1)

}
. (12)

Step 3: the macro BS updates the Lagrange multiplier value
λn (t+ 1) by the following method,

λn (t+ 1) = λn (t)− δ (t)

(
Mn (t)−

∑
m

xmn (t)

)
, (13)

where δ (t) > 0 is a dynamically chosen step size sequence based
on some suitable estimates.
Convergence Judgment: when |D(t+1)−D(t)| ≤ ε, the iteration
will stop and the caching deployment result is given by caching index
matrix X; otherwise, it will go to the next iteration.

It can be proved that the Algorithm 1 is guaranteed to
converge to a near-optimal solution [15]. At each iteration,
the complexity of the proposed algorithm is O (MN). The
gradient method converges fast generally, and thus the number
of iterations is a small number (less than 10 in the simulation).
Meanwhile, we assume that the convergence of the proposed
algorithm is faster enough compared with the timescale of the
cached contents updated and replacement.

V. PERFORMANCE EVALUATION

In the simulation, a macro BS is deployed at the center
of the cell and N users are uniformly randomly distributed
in the cell, and can communicate with any neighbor users
in each user own coverage. We assume the storage capacity
of each user are equal and the initial states are empty. The
popularity of M contents follows a Zipf -like distribution as
previous studies [10], and the content size v is set to 1024
bytes. We also assume that the macro BS is aware of all the
users preferences, i.e. {φmn} is a common knowledge within
the network.

Here we assume that the macro BS has all the user requested
contents by downloading from the Internet, the bandwidth for
D2D communication is 20 MHz, and D2D communication
links use orthogonal frequency resources. The detailed simu-
lation parameters are given in Table I.

TABLE I: SIMULATION PARAMETERS

Parameters Value
Bandwidth 20MHz
Cell radius 500m
Maximum transmission range of D2D links 50m
Maximum transmit power of BS 46dBm
Transmit power of D2D 30dBm
Log-normal shadowing fading 10dB
Noise power -174dBm/Hz
Number of users 10∼100
Number of contents 10∼100

We compare the performance of the following caching
schemes:

Preference Aware Caching (PAC): The proposed caching
placement algorithm via dual decomposition.In the simulation,
the parameters related with PAC are setting as, α= 1, β= 1,
ε= 0.1, δ= 2, θ= 0.8, ρ= 1.6 and µ=M .

Random Complete Caching (RCC): In this caching
scheme MTs cache data items randomly and then other MTs
choose to get the replica from the nearest cache MT or from
the data source. In this caching scheme, only the cache MTs
choose their strategies randomly.

The performance criteria considered are the average content
access delay, cache hit ratio, offloading ratio, and the content
cache utility. The detailed definitions are given as following.

Average content access delay: The average content access
delay is the service delay of data request within the simulation
period, which is calculated as,

τ =
1

MN

N∑
n=1

M∑
m=1

(
vφmn

cnn′xmn + cn BS (1− xmn)

)
, (14)



where, cnn′ and cn BS are the data rate from D2D user and
BS calculated according to (1) and (2).

Cache hit ratio: The percentage of queries of data item
being satisfied within its own communication range or its own
cache space during the simulation period. The cache hit ratio
is calculated as,

η =

N∑
n

M∑
m

(
1− e−d2

)
φmnxmn

N∑
n

M∑
m

φmn

. (15)

Offloading ratio: This is the ratio of the amount of data
offloaded by the D2D content delivery to the total amount
of the request data in the cell, which reflects the ability of
offloading the traffic of BS. Considering the actual application
scenario, the data volume of all the contents is much larger
than the cache space available to each MT, so the expression
of the offloading ratio is,

h =

N∑
n

M∑
m

((
1− e−d2

)
φmnxmnS

(
M∑

m=1
xmn

)−1
)

v
N∑
n

M∑
m

φmn

. (16)

Firstly, the convergence of the proposed PAC algorithm is
verified in the Fig. 2. In the simulation, the cache space size
of each MT is set as S = 8, and the number of contents is
M = 10. It can be observed that the PAC can converge to the
approximate optimal solution within 10 times iterations both
in the cases of 20 and 40 MTs. When N = 40, the fluctuations
before convergence are relatively larger compared with the
case of N=20. This is because when there are the more users,
there will be more the state of the caching, consequently the
proposed algorithm needs to take more time to choose the best
fitted MT to cache the contents before reaching a steady state.
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Figure 2. Convergence validation of the PAC.

Then we verify the performance of the caching schemes
with varying number of contents from Fig. 3-Fig. 6. Here
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Figure 3. System utility with varying number of contents.
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Figure 4. Average content access delay with varying number of contents.

we set the parameter to: the number of users is N=100, the
number of contents changes from 20 to 100, and the number
of contents S = 4 and S = 8, respectively. We can see that all
the performance of the proposed PAC is significantly improved
compared to the RCC.

Fig. 3 shows that the total system utility increases as
the number of users increasing, and the utility value of the
proposed PAC is always higher than that of the RCC. This is
due to the fact that with the increase of the number of contents,
the distribution of popular content is more and more dispersed,
and the user preferences for contents are also increasingly
scattered. RCC randomly select contents without considering
the user preference, whereas the proposed PAC considers the
user preference to maximize the caching utility of the users.

The comparison of the average content access delay with
varying number of contents is given in Fig. 4. We can see that
the proposed PAC achieves much lower content access delay
compared to the RCC. Meanwhile, the average content access
delay increases with the increasing of the number of contents.
This is due to the fact that with the increase of the number of
contents, the D2D MTs with limited cache space cannot cache



20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Contents

C
ac

he
 h

it 
ra

tio

 

 
PAC S=8,N=100
RCC S=8,N=100
PAC S=4,N=100
RCC S=4,N=100

Figure 5. Cache hit ratio with varying number of contents.
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Figure 6. offloading ratio with varying number of contents.

all the contents which requested by the neighbor users, which
leads that macro BS will provide more contents to the users.

Fig. 5 compares the cache hit ratio of the PAC and RCC
for different numbers of contents. The cache hit ratio of the
proposed PAC decreases as the number of contents increasing.
The reason is that with the increasing of the number of
contents, the users cannot cache all contents with limited
cache space. The cache hit ratio performance gain of the PAC
reaches up to 61% and 75% relative to the RCC when S=8 and
S=4, respectively. The gain increases as the storage capacity
increases, since higher capacity allows the MTs to cache more
popular contents.

From Fig. 6, we observed that the offloading ratio of
the proposed PAC has great improvement compared that of
the RCC, especially when the case space size is large. The
results also show that, the offloading ratio decreases with
the increasing of the content number, because more contents
requests cannot be responded.

VI. CONCLUSION

In this paper, we have proposed a user preference aware
caching deployment algorithm. The proposed algorithm mea-

sures the content caching utilization taking account of both
the user preference and the transmission coverage region. By
doing so, the proposed algorithm would be able to cache spe-
cific contents that match the user preferences that may also be
interested by the adjacent nodes at unpopulated region. Beyond
that, we have introduced a cache utility function with the aim
to maximize cache utility in order to enhance the possibility
of content sharing of among the multiple MTs. The proposed
algorithm has obtained the near-optimal performance of the
caching deployment, which can be used as the benchmark for
the online caching strategy design.
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[12] X. Han, L. Wang, S. Park, Á. Cuevas, and N. Crespi, “Alike people, alike
interests? a large-scale study on interest similarity in social networks,”
in 2014 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2014), Aug 2014, pp. 491–
496.
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