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A Spark-based genetic algorithm for sensor placement in large
scale drinking water distribution systems

Chengyu Hu1 · Guo Ren1 · Chao Liu1 · Ming Li2 · Wei Jie3

Abstract Water pollution incidents have occurred fre-
quently in recent years, causing severe damages, economic
loss and long-lasting society impact. A viable solution is
to install water quality monitoring sensors in water supply
networks (WSNs) for real-time pollution detection, thereby
mitigating the risk of catastrophic contamination incidents.
Given the significant cost of placing sensors at all locations
in a network, a critical issue is where to deploy sensors
within WSNs, while achieving rapid detection of contam-
inant events. Existing studies have mainly focused on sensor
placement in water distribution systems (WDSs). However,
the problem is still not adequately addressed, especially for
large scale WSNs. In this paper, we investigate the sensor
placement problem in large scale WDSs with the objective
of minimizing the impact of contamination events. Specifi-
cally, we propose a two-phase Spark-based genetic algorithm
(SGA). Experimental results show that SGA outperforms
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other traditional algorithms in both accuracy and efficiency,
which validates the feasibility and effectiveness of our pro-
posed approach.

Keywords Sensor placement · Water distribution system ·
Genetic algorithm · Spark

1 Introduction

Clean drinking water is a critical resource for the health and
well-being of all humans. However, water quality can easily
deteriorate because ofmalicious attackor accidental incident.
For example, an outbreak of waterborne disease epidemic in
Walkerton, Ontario, Canada, in 2000 affected 2,300 people
as a result of exposure to contaminated drinking water [1].
An Event such as the poisoning of water supply caused 71
people poisoned happened in Ruyang city, Henan Province,
China in 2007 [2].

Deploying water quality sensor networks is considered
as a viable approach for detecting contamination incidents
in drinking WDS [3,4]. However, high cost of water qual-
ity sensors (e.g., a Hach chlorine sensor costs between USD
3000–5000) and installation/maintenance, as well as opti-
mization methods, limit the number of sensor [5]. How to
quickly detect the contaminant event in a large scale WDS
with a fixed number of water quality sensors is a critical
problem.

In the past decade, although SPP in drinking WDS has
been well investigated, there are two main problems for
deploying sensors in a large scale WSN (e.g., the number
of node is greater than 10,000):

– Computational complexity. SPP is divided into two
different constrained optimization problems: one is a
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sensor-constrained optimization problem, i.e. allowing
only a fixed number of sensors; the other is a time-
constrained optimization problem, i. e. requiring con-
tamination detection within a given time limit. Some
researchers have proved that the two problems are NP-
hard or NP-Complete [6], and the former is polynomially
equivalent to the asymmetric k-center problem, the lat-
ter is polynomially equivalent to the dominating set
problem. Similarly, Carr et al. [7] formulated SPP as a
mixed-integer program and proved that its complexity is
NP-hard when the objective coefficients are not known
with certainty.

– Large computation overhead. Drinking WDS in the
real world is a complexity systemwhich consists of thou-
sands of miles of pipes, valves and pumps, which results
in significant computational efforts for water quality sim-
ulation. As an example WSN shown in the battle of the
water sensor network has 12,523 nodes, 2 sources, 2
tanks, 14822 pipes, 4 pumps, 5 valves [8]. Large scale
WSN results in expensive computation overhead and
storage requirement. For a large scale networkwith about
10,000 nodes, if each node has a probability of being
injected contaminant, with the sampling time of the sen-
sor being 10 min and the whole simulation time being
72 h, then we need to simulate 10,000× 72× 60÷ 10 =
4.32 million contaminant scenarios. If we consider that
storing the contaminant concentration at each node needs
4 byte for each scenario, then the requirement of storage
is 172.8 Gigabytes. Considering the running time of sim-
ulation on this network (roughly 4 s on a current Pentium
4.3GHz), the time for an exhaustive simulation of all 4.32
million scenarios would require roughly 200 days [9].

To deal with computational complexity of SPP, some
researchers applied some rule-based or graph-based meth-
ods to avoid the dilemma. For example, Chang et al. [10]
employed two rules (e.g., accessibility and complexity rules)
to generate a set of sensor placement locations. These meth-
ods do not need to simulate hydraulic and quality transport
model, therefore incurring little computation and storage
overhead. However, these methods seem to be too crude to
locate sensors because they generally do not take into account
the transport process of drinking water in WSN. In fact,
for NP-hard or NP-Complete problems, evolutionary algo-
rithms are a set of competentmethods to get a near-optimal or
optimal solution [11,12]. However, evolutionary algorithms
often lead to longer computation. A big challenge is how to
quickly and efficiently generate a near-optimal solution.

In recent years, there are a few research works on WDS
involved in high performance computation. SPP is dealt
with by the combination of parallel processing technique
and evolutionary computation. Laszewski et al. [13] solved
the contaminant source identification (CSI) problem on the

super-computing resources of TeraGrid. Wu et al. [14] inves-
tigated the use of cloud computing in WDSs, where a pump
scheduler has been deployed onto the high performance com-
puter, through which a user can submit, execute and retrieve
optimization analysis jobs. Shen et al. [15] applied paral-
lel computing to simulate intrusion events for CSI problem
with a super-computer. Wang et al. [16] presented a parallel
method for the first time using the MapReduce paradigm to
identify the contamination source in WDS.

To the best of our knowledge, there is no method that has
been proposed in literatures for SPP using Spark to paral-
lelize genetic algorithm (GA). Herein, as a first attempt, we
use Spark to implement two-phase genetic algorithm. The
first phase is fitness evaluation parallelization, and the second
phase is genetic operations. More specifically, the contribu-
tions of our work are as follows:

– We present the system model and formulate SPP into
a mixed-integer programming problem that satisfies the
goal of minimizing the average time of detecting the con-
taminant events.

– We propose a two-phase genetic algorithm based on
Spark model for sensor placement in drinking WDS.

– We give a comprehensive evaluation of the proposed
algorithm. Through experiments, we verify the perfor-
mance and effectiveness of our proposed algorithm.

The rest of the paper is organized as follows. Section 2
reviews the state of arts. Section 3 focuses on system model
andmathematic formulation. Section 4 presents our proposed
algorithm. Section 5 discusses simulation results. Section 6
concludes the paper and puts forward some issueswhich need
to be further investigated in the future.

2 Related work

Sensor placement is to deploy water quality sensor in WSN,
with the purposes of protectingmunicipal people against both
deliberate and accidental hazard‘s intrusions. The physical
structure of a water distribution system is a network in which
nodes represent water sources, tanks, and junctions.

In a typical scenario shown in Fig. 1, two perfect sen-
sors are deployed at junction 30 and junction 118, reservoir
is located at node 129, and two tanks are at nodes 130 and
131. The contaminant is injected at the node 18 from 7 a.m.
to 9 a.m. with an injection flow rate of 120 L/h, contami-
nant concentration of 230,000 mg/L. After the injection, the
contaminant gradually dilutes with the water flows from the
upstream to downstream. After 2 h, the contaminant will pass
through the node 118 where one quality sensor stands, and
then a warning alarm will be raised.



Fig. 1 AWDS with 126 nodes,
1 source, 2 tanks, 168 pipes, 2
pumps and 8 valves

Fig. 2 Placement of Network2 in BWSN (12,523 nodes, 2 sources, 2
tanks, 14,822 pipes, 4 pumps, 5 valves) [8]

In Fig. 1,we aremainly concernedwithwhich node should
be deployedwith sensors. For a small or medium scaleWSN,
it is easy to give the optimal placement of sensors by exhaus-
tive search. However, it is a difficult task to obtain the optimal
sensor placement for a large scale WSN. As shown in the
example of Fig. 2, if we deploy 20 sensor to the WSN with
10,000 nodes, there are C20

10,000 placement schemes of sen-
sors.

2.1 Some approaches for sensor placement problem in
WDS

For the SPP in WDS, a variety of different sensor place-
ment optimization algorithms have been used to address the
problem. They includes deterministic or heuristic algorithm,
such as integer programming, genetic algorithm, simulated
annealing and ant colony optimization [17].

As a high dimensional combination optimization prob-
lem, SPP is too computationally-intensive to find an exact
solution. However, sometimes a near-optimal solution can be
sufficient. Therefore, some effective heuristic random algo-
rithms such as evolutionary techniques should be explored.

Evolutionary algorithms are typically used to provide
good approximate solutions to problems that cannot be
solved easily using other techniques, such as graph classi-
fication applications [18,19]. Due to their random nature,
evolutionary algorithms are never guaranteed to find an opti-
mal solution for any problem, but they will often find a good
solution if the one exists.

Guan et al. [20] first proposed a genetic algorithm simu-
lation optimization methodology based on a single objective
function approach in which the four quantitative design
objectives were embedded. Liu and Pierre [21] used a multi-
objective genetic algorithm to optimize the placement of
sensor networks. Schwartz et al. [22] presented a genetic
algorithm to find the optimal sensor placement. Ant colony
optimization algorithm was also used for the optimization of
the position of water quality sensors [23].

However, the above mentioned approaches are limited to
solving SPP in a small or medium scale WSN. As is well
known, evolutionary algorithm is one kind of population-
based heuristic random algorithm which involves multiple



iterative fitness evaluations. For large scale drinking WSNs,
the solution space increases exponentially with the size of
WSNs, which needmuchmore fitness evaluations, thus caus-
ing high computation overhead.

To address the intensive computation challenge, an evolu-
tionary algorithm in parallel is studied as an alternative way
to improve both performance and quality of the solutions.
Spark is an emerging popular parallel computation frame-
work, and characterized by fast in-memory computing, high
performance, good scalability. Genetic algorithm, as one of
the evolutionary algorithms, requires a large number of itera-
tive operations, and in linewith theCPU-intensive computing
features. Thus, it can benefit from Spark’s in-memory com-
puting ability. Our goal is to design a Spark-based parallel
GA which is suitable for sensor placement [24].

2.2 MapReduce and Spark

As twovery popular open source cluster and cloud computing
frameworks for large scale data processing, MapReduce and
Spark expose a simple programming API to users. But the
major architectural components such as shuffle, execution
model, and caching lead to different performance between
MapReduce and Spark.

MapReduce is a popular programming model for Cloud
computing and big data computing [25–27]. It exposes a
simple programming API in terms of map and reduce func-
tions. The simplicity of MapReduce is attractive for users,
but the framework has several limitations. Applications such
as machine learning and graph analytics iteratively process
the data, which means multiple rounds of computation are
performed on the same data. In MapReduce, every job reads
its input data, processes it, and then writes it back to Hadoop
Distributed File System (HDFS). For the next job to con-
sume the output of a previously run job, it has to repeat the
read, process, andwrite cycle. For iterative algorithms,which
want to read once, and iterate over the data many times, the
MapReduce model poses a significant overhead. As a typi-
cal iterative algorithm, genetic algorithm needs many times
iterative computations for evaluation of fitness function. To
overcome the above limitations of MapReduce, Spark uses
resilient distributed datasets (RDDs) which implement in-
memory data structures and cache intermediate data across a
set of nodes [28]. Since RDDs can be kept in memory, algo-
rithms can iterate over RDDdatamany times very efficiently.
In the paper, we make a simple experiment by evaluating the
fitness function as a computing task. In Figs. 3 and 4, the
horizontal axis is the number of tasks, and the vertical axis
is the execution time. We can see that each Mapreduce task
takes about 120s, with 50s for map and reduce operations
and 70s for shuffle and I/O jobs. In comparison, each Spark
task takes only 3 s except for the first task, due to the first
load data.

Fig. 3 Execution time of each task using MapReduce model

Fig. 4 Execution time of each task using Spark model

3 System model and problem formulation

3.1 System model

WDS, which consists of thousands of pipes, junctions and
hydro-valves, may have a loop or branch network topology,
or a combination of both. It is often modeled as a graph
G = (V, E), where vertices in V represent junctions, tanks,
or other sources, and edges in E represent pipes, pumps, and
valves. Drinkingwater flows are driven by pumping rates and
pressure, which may vary frequently.

A contaminant event a refers to the injection of poison
substance by malicious attacks and may occur at any node,
any time with uncertain dose of toxic chemicals or biological
substance. The set of all possible contaminant scenarios A
is infinite because of uncertainty, a representative set of sce-
narios and quantify damages can be listed by enumeration or
produced by random sampling.

In order to track how the contamination spread through
the system, sensor placement problem requires the ability
to perform hydraulic and quality simulation to evaluate the
flow pattern at any time under the condition of known or



assumed water demand. Most researchers rely on EPANET,
a computer program developed by EPAs Water Supply and
Water Resources Division as the main simulation tool [29].

For the convenience of analyzing sensor placement prob-
lem, We make the following assumptions.

– A contamination event occurs at a single point in the
network.

– The contaminant is conservative, i. e., it does not react
with the substance in the water.

– Sensors are fixed at the junctions and protect downstream
populations. A population is considered exposed if it
could be reached by a flow path from the contamination
point without passing a sensor.

– Water quality sensorsworkwith two-valuemeasurement,
whichmeans only a discrete yes/no indication of contam-
ination is available from these sensors.

– Sensors are perfect, which mean they can detect con-
taminants of any concentration with no false negatives
and false positives; or they are capable to instantaneously
detect a contaminant as soon as its concentration exceeds
a minimum accepted value.

– A contamination warning is raised once a sensor detects
a contamination event, and then response reactions are
taken to isolate and flush contaminated water without
any delay.

3.2 Problem formulation

Generally speaking, the objective of sensor placement in
WDS is to detect contamination events and thus to mitigate
the impact of contamination events. A typical mixed-integer
programming (MIP) formulation for expected-impact sensor
placement design is as follows.

min
∑

a∈A

αa

∑

i∈La

dai xai (1)

Constraint of equalities and inequalities are as follows:

∑

i∈La

xai = 1 ∀a ∈ A (2)

xai ≤ si ∀a ∈ A, i ∈ La (3)

∑

i∈L
ci si ≤ p (4)

si ∈ {0, 1} ∀i ∈ L (5)

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (6)

This MIP minimizes the expected impact of a set of con-
tamination incidents defined by A. For each incident a ∈ A,
αa is the weight of incident a, which is a probability of con-
taminant injection. dai is the impact by contaminant event a
at node i , L is a set of locations from the full set, where a
location refers to a network node. For each incident a, La is
the set of locations that can be contaminated by an incident
a.

xai is the decision variable, which indicates whether inci-
dent a is witnessed by a sensor at location i . It is defined as
continuous variables between 0 and 1. In practice, there is
always an optimal solution where xai is binary.

si is a binary decision variable, si = 1 indicates that a
sensor are deployed at i node. Collectively, all of the si vari-
ables indicate where sensors are placed in the network; ci
is the cost of placing a sensor at location i , and p is the
budget. If the sensors are isomorphic, then p is a fixed num-
ber.

The constraints of Eq. (2) assures that one sensor will
send alerts for each incident. The constraints of inequal-
ities (3) forbids a location from sending alerts if there
is no sensor installed there. The third set of constraints
enforces the limited budget for the total number of sen-
sors.

Ostfeld et al. [8] defined four quantitative design objec-
tives as contamination impact such as average detection
time, average population affected prior to detection, aver-
age consumption of contaminated water prior to detection,
and average detection likelihood. These different objectives
functions can be described by the impact dai . In the paper,
we use average detection time as the performance criterion.
That is, the lesser the average detection time is, the quicker
we can detect the contaminant. Minimum average detection
time can be defined as Eq. (7):

min αa

∑

a∈A

Ti∈La (xai ) (7)

where, Ti∈La (xai ) is the minimum detection time when the
incident a occurs and L nodes are deployed with sensors.
Ideally, if the number of sensors is enough to deploy at each
node in WSN, then they will give the earliest alarm to the
full population as soon as the contaminants are injected into
the WSN.

4 Algorithm design

4.1 Optimization framework

Before using optimization algorithm to find the optimal
placement of sensors, we need to make preprocessing or data
preparation for sensor placement optimization. Herein, the



Fig. 5 Framework of optimization for SPP

first step is to simulate contamination incidents and compute
contamination impact by the simulator EPANET [29], which
is used to perform simulation of the hydraulic and water
quality behavior within pressurized pipe network. Generally
speaking, this process is time-consuming because contami-
nation incidents are simulated for all network junctions, one
for each hour of the day. After the simulation, the results of
risk are stored in an impact matrix, and then the optimiza-
tion algorithm can search the optimal placement of sensors
according to the impactmatrix. The frameworkof ourmethod
is shown in Fig. 5.

From Fig. 5, we can see that optimization process for SPP
can be divided into two steps. The first step is to generate the
contaminant events and use simulator (EPANET) to compute
the impact matrix. And the second step is using optimization
algorithm to select an optimal placement of sensors from the
potential solution set.

4.2 Spark-based genetic algorithm

Genetic algorithm is inherently parallel since its fitness eval-
uation and evolution process can be carried out concurrently.
There are four parallel models for distribution algorithm:
global model, distributed model, cellular model, and hybrid
model [30].

As a master-slave distributed computing, Spark is suitable
for the parallelization of the global and distributed model of
genetic algorithm. Therefore, aiming to improve the perfor-
mance and effectiveness of genetic algorithm, we use Spark
to parallelize it. The proposed parallel genetic algorithm is
based on Spark resilient distributed datasets. The whole pop-

ulation is stored as RDD and is cached in memory, which
accelerates the subsequent processing.

We roughly divide our proposed algorithm into two
phases. In the first phase, we initialize population, paral-
lelize it into different partitions of RDD, and then evaluate
fitness function of each individual on differentworkers. In the
second phase, we perform the genetic operation on each indi-
vidual after the parallel fitness evaluation value is returned
to the driver. Then, we check whether the stop condition is
satisfied. If it’s not met, the algorithm continues the fitness
evaluation in Phase 1.

Algorithm 1 details the pseudo-code of our proposed
approach. The required inputs include the impact matrix, the
maximum generation, the size of population, the crossover
rate and the mutation rate. The output is an optimal or
near-optimal solution, which is the best placement of sen-
sors.

As seen in Algorithm 1, the population is first initial-
ized with popsize individuals, each individual is made up
of s sensors that are deployed in WSN, then they are
cached into different partitions of populationRDD (line
1–4). Subsequently, SGA performs the evaluation of the
fitness function in parallel (line 6–8), the population with
fitness value are counted by the driver. Next, SGA enters
the second phase and executes evolution operations, such
as crossover and mutation. And then a roulette selection
operation is carried out according to the fitness value of
each individual (line 9–14). Finally, if the results meet
the stop condition, we output the best individual. Other-
wise, SGA returns to the fitness evaluation phase (line
5).

As the evaluation of fitness function is the most time-
consumed part, we implement the parallel algorithm on the
Spark cluster. Algorithm 2 describes the pseudo-code of the
process of fitness function evaluation.

Algorithm 1 Spark-based Genetic algorithm
Require: matrix. txt, maxgeneration, popsize, pc, pm
Ensure: optimal placement of sensors.
1: matrixRDD ← parallelize(“matrix. txt”)
2: matrixRDD.persist();
3: population ← initializePop(popsize);
4: populationRDD ← Parallelize(population);
5: while t < maxgeneration do
6: for each Individual I j ∈ populationRDD do
7: fitnessRDD ← I j .map(−.assessFitness())
8: end for
9: result ← fitnessRDD.collect()
10: population(t) ← sortByValue(result)
11: Selection : Ps(t) ← select[population(t)]
12: Crossover : Pc(t) ← crossover[(Ps(t), pc]
13: Mutation : Pm(t) ← mutate[Pc(t), pm]
14: population(t + 1) ← Pm(t)
15: end while



Algorithm 2 Fitness Evaluation
Require: matrixRDD, population
Ensure: population with fitness value
1: populationRDD ← parallelize(“population”)
2: for each Individual Ij ∈ populationRDD do
3: for each row ∈ matrixRDD do
4: ftemp(t) ← min(detection time)
5: if ftemp(t) > maxTime then
6: ftemp(t) = 0
7: rowNum ← (rowNum − 1)
8: else
9: f(t) = f(t) + ftemp(t)
10: end if
11: end for
12: fitnessRDD ← f(t) ÷ rownNum
13: end for
14: fitness ← fitnessRDD.collect()
15: return population with fitness value

In Algorithm 2, the required inputs include the population
and matrixRDD and the output is the population with fitness
value. For the contaminant impact matrix, we first sort each
rows and get the minimal detection time. Second, we sum up
theminimal detection time for each rows and return themean
value as the fitness value (line 2–13). As the matrix has more
than 25,000 rows and 10,000 columns, this part has the most
significant computation overhead for our proposed SGA.

5 Experiment results and analysis

5.1 Experiment settings

In the experiment, we deploy 5 or 20 sensors in a large scale
WSN as shown in Fig. 2. In order to evaluate the placement
of sensors, we first simulate the contamination scenarios.
Each contaminant intrusions occur at random time with an
injectionflow rate of 125L/h, contamination concentration of
230,000mg/L, and injection duration of 2 h. The contaminant
was assumed conservative after injection. Each contamina-
tion scenario involved a single injection location, which may
occur at any network node and begin at any time with equal
probability. For purposes of design evaluation, contaminant
concentrationswere evaluated using a 5-min time step.A ran-
domized impact matrix of 25,054 events (two injections at
each node of the system, at two random times)was generated.

To verify the performance of SGA, we implemented SGA
on a cluster with eight servers. Each server is equipped with
a 2.0 GHZ dual-core processor and 16 GB memory, as sum-
marized in Table 1.

The default parameters of SGA are listed in Table 2.

5.2 Accuracy evaluation

To test and evaluate the accuracy of SGA, we performed two
categories of experiments with 5 and 20 sensors in water dis-

Table 1 Cluster configuration

Number of servers 8

Processor 2.0 GHZ

Memory 16 GB

Operation System Ubuntu 12.04

Hadoop Hadoop-2.4.0

Spark Spark-1.4.0

Table 2 Spark-based Genetic
Algorithm Settings

Crossover probability 0.95

Mutation probability 0.1

Elite strategy 10

Population size 80

Evolution generation 50

Fig. 6 Fitness value versus evolution generation, 5 sensors or 20 sen-
sors are deployed in large scale WSN)

tribution network. Then we compared the performance with
two other algorithms, i. e., the traditional genetic algorithm
and the greedy algorithm [8].

Figure 6 shows that fitness function value decreases as the
evolution generation increases from 1 to 50. The reason is
that all of the three algorithms are convergent. In addition, it
can be seen that the more sensors will lead to the reduction of
average detection time. It should note that if we equip each
node with one sensor, the average detection time is zero.

Tables 3 and 4 show the optimal sensor placement and the
average detection time generated by the three algorithms,
with 5 or 20 sensors in WSN respectively. It can be seen
that our method can give a better placement of sensors
which make the average detection time much smaller than
the genetic algorithm and the greedy algorithm.



Table 3 Solution for 5 sensors
in a large WSN

Algorithm Sensor location Average detection time

Genetic algorithm 321, 3770, 4084, 4939, 7762 795

Greedy algorithm 10874, 4684, 11304, 3357, 11184 789

SGA 5240, 5665, 5883, 6107, 8897 257

Table 4 Solution for 20 sensors in a large WSN

Algorithm Sensor location Average detection time

Genetic algorithm 174, 311, 1486, 1905, 2589, 2991, 3548, 3757, 3864, 4184, 4238

5091, 6995, 7145, 7689, 8826, 9308, 9787, 10614, 12086 645

Greedy algorithm 10874, 4684, 11304, 3357, 11184, 1478, 9142, 1904, 4032, 9364, 4240

4132, 3635, 2579, 3836, 6700, 8999, 3747, 8834, 3229 665

SGA 426, 966, 2934, 5027, 5206, 5558, 5858, 6034, 6117, 6710, 7010, 7256

9012, 9332, 10453, 10966, 11057, 11126, 11431, 11753 130

Fig. 7 Task execution time versus the number of evolution generation,
20 sensors are deployed in water distribution networks)

5.3 Efficiency evaluation

After showing the accuracy of our SGA, we further evaluate
its efficiency in the metric of task execution time as well as
the derived fitness value.

We first varied the generation number under cluster size
(i. e., the number of CPU cores) 2, 4, 8 and 16 to check how
it affects the task execution time in the metric of seconds.
Figure 7 shows the task execution time under different gen-
eration numbers ranging from 1 to 50. It can be first seen
that the task execution time is proportional to the generation
number in SGA. This is simply because larger generation
numbers require longer evolution time, which further incurs
longer task execution time. On the other hand, we can also
see that larger cluster size also indicates shorter task exe-
cution time. This implies that SGA efficiently explores the
available cloud resources.

Fig. 8 Average detection time versus evolution generation, 20 sensors
are deployed in large scale water distribution networks)

Next, we investigated how the generation number affects
the optimization objective, i.e., average detection time. The
results are shown in Fig. 8. On the contrary, we can see that
increasing the generation number is beneficial to the fitness
value. However, the benefit becomes marginal when the gen-
eration number is large enough. The nature of the evolution
computation determines that the quality of the generation
may finally converge. Although average detection time of
four cases reduces with the increment of the number of gen-
erations, their rates of convergence are different because of
the randomness of genetic algorithm.

Finally, we check how the cluster size influences the task
execution time in the metric of speedup ratio Speedup, we
define Speedup as the formula (8).

Speedup = T1/Tp (8)
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Fig. 9 Speedup versus the number of CPU cores

In formula (8), T1 is the task execution time of one serverwith
two CPU cores, and Tp is the task execution time of cluster
with p CPU cores. Figure 9 presents evaluation results with
the number of CPU cores ranging from 2 to 16. We note that
the speedup scales well with the cluster size.

6 Conclusion

In this paper, we proposed a Spark-based genetic algorithm
for sensor placement in water distribution system. Based on
the global and distributed model of GA Parallelization, SGA
is divided into twophases. Thefirst phase is thefitness evalua-
tion that calculates each individual’s fitness value onworkers.
The second phase is the genetic operations which run on the
driver node. We evaluated the performance of SGA in terms
of accuracy, efficiency and speedup. Results show that SGA
outperforms the other two algorithms in the term of accuracy.
We also find that SGA has a nearly linear speed-up for the
parallel processing of sensor placement problem.

We have also identified a number of issues to be investi-
gated in future studies with the following being noteworthy:

1. Investigation of the robustness of the proposed algorithm
by applying it to a larger scale drinking water distribution
networks and test it on a large size cluster.

2. Incorporation of the ability of sensors and accuracy of the
hydraulic model into the proposed algorithm for realistic
applications.
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