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Abstract: Chronic pain is among the most disabling and costly disorders, with prevalence ranging 

from 10% to 55%. However, current therapeutic strategies for chronic pain are unsatisfactory due 

to our poor understanding of its mechanisms. Thus, novel therapeutic targets need to be found in 

order to improve these patients’ quality of life. PI3K and its downstream Akt are widely expressed 

in the spinal cord, particularly in the laminae I-IV of the dorsal horn, where nociceptive C and Aδ 

fibers of primary afferents principally terminate. Recent studies have demonstrated their critical 

roles in the development and maintenance of chronic pain. In this review, we summarized the roles 

and mechanisms of PI3K/Akt pathway in the progression of chronic pain through sciatic nerve injury, 

diabetic neuropathy, spinal cord injury, bone cancer, opioid tolerance, or opioid-induced 

hyperalgesia.  
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Introduction: 

Although physiological pain serves an important protective function, chronic pain can profoundly 

compromise the quality of life [1-3]. Chronic pain is divided into neuropathic pain, inflammatory 

pain and cancer pain[4]. Several studies have demonstrated that many pathological processes are 

characterized by chronic pain, such as sciatic nerve injury, human immunodeficiency virus-

associated sensory neuropathy, diabetic neuropathy, spinal cord injury, bone cancer, opioid tolerance, 

and opioid-induced hyperalgesia. There are many features in chronic pain, including pain in 

response to normally innocuous stimuli (allodynia), an increased responsiveness to noxious stimuli 
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(hyperalgesia) and pain experienced in the absence of any obvious peripheral stimulus (spontaneous 

pain)[5, 6]. The mechanism of chronic pain is extremely complicated including central sensitization 

and peripheral sensitization [2, 7-10]. 

Phosphoinositide 3-kinase (PI3K) has been demonstrated to be essential in the development and 

maintenance of chronic pain[11, 12]. It is a lipid kinase that phosphorylates the D3 position of the 

inositol ring of phosphoinositide and thereby generates intracellular signaling molecules such as 

phosphorylation of Akt (pAkt) at Thr308 and Ser473 [13]. The mammalian PI3K signaling family 

is categorized into three classes (I, II, III) according to their structure and substrate specificity [14, 

15]. Class I isoforms have been most extensively studied. Class IA, which consists of PI3Kα, PI3Kβ 

and PI3Kδ isoforms, is often activated by hormones, cytokines, intergrin’s, and growth factors via 

the tyrosine kinase receptors; while PI3Kγ (the only member of class IB) is activated by G-protein-

coupled receptors (GPCRs)[16-18]. It was demonstrated that the PI3Kβ also can been coupled to 

GPCR [19]. PI3Kδ and γ are mainly expressed in the hematopoietic system and mediate immune 

responses, whereas PI3Kα and β are ubiquitously expressed and regulate functions such as 

proliferation and survival. It is known that PI3Kγ can also been found in endothelium[18], heart[17, 

20] and brain[21]. Several lines of evidence have shown that activation of PI3K signaling is involved 

in the modulation of nociceptive information and central sensitization produced by intense noxious 

stimuli [22-24]. Importantly, PI3K has been reported to mediate central sensitization and 

hyperalgesia induced by activation of the central RTK system NGF/TrkA, BDNF/TrkB and G-

CSF/G-CSFR signaling[25]. Our previous studies revealed that PI3K mediates pain behaviors 

induced by the activation of peripheral ephrinBs/EphBs signaling in mice [26]. Besides, Akt plays 

an important role in diverse biological processes through phosphorylation on Thr308 and Ser473, 

as a key downstream substrate in the PI3K pathway[24]. It is also worth noting that systematic or 

spinal blocking PI3K with wortmannin or LY294002 prevents the mechanical and thermal 

hyperalgesia in a dose-dependent manner [27].  

 

PI3K/Akt Pathway and Bone Cancer Pain 

Bone cancer pain (BCP) is one of the most severe type of chronic pain [28-30]. It was reported that 

up to 85% of patients with advanced prostate, breast, and lung cancer had bone metastasis [31-33]. 

Moreover, one-third of these patients experienced unbearable pain, which severely affected their 

quality of life. It is now considered that BCP is mechanistically unique compared with neuropathic 

and inflammatory states [34-36]. In a rat model of BCP, we found that PI3K and its downstream 

target pAkt were up-regulated in a time-dependent manner and were required for the development 

and maintenance of BCP [37].  Additionally, PI3K is distributed mainly in the superficial layers of 

the spinal dorsal horn neurons, astrocytes and a minority of microglia [13, 37, 38]. PI3K pathway 

is activated by signals at the cell plasma membrane, such as IL-3, nerve growth factor, and insulin-

like growth factor[39]. In the model of BCP, the MCP-1 activated the PLC-β2, PI3K, ERK, p38, 

and Akt by binding to CCR2 [40]. In the central nervous system and peripheral nervous system, the 

activation of PI3K/Akt signaling pathway can mediate the mechanical and thermal hyperalgesia 

induced by nerve injury, incision, or inflammation[13, 41, 42]. There is growing evidence that 

PI3K/Akt signaling pathway plays a critical role in regulating other signaling pathways, such as 

Raf/MEK/ERK pathway[43, 44], ephrin Bs/EphBs pathway[37], MAPK pathway[45], and MCP-

1/CCR2 pathway[46], which contribute to tumor genesis and cancer pain. For example, ERK 

signaling has been reported to contribute to synaptic and neuronal plasticity, and is involved in the 



modulation of peripheral and central sensitization induced by noxious stimuli and nociceptive 

information[47, 48]. It has been reported that activation of ephrinB2/EphB4 receptor signaling 

mediates micro vascular endothelial cell and retinal endothelial cell migration and proliferation via 

the PI3K/Akt pathway [49, 50]. Then the microglia were activated, which contributed to the 

development of pain [46]. In a subset of prostate cancer cells, it has been demonstrated that Akt can 

positively regulate the Raf/MEK/ERK pathway at the level of B-Raf [44]. We have found that the 

activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK 

crosstalk pathway [27]. A large body of evidence suggests that inhibition of PI3K attenuates the 

mechanical allodynia in BCP rats and can suppress BCP-associated behaviors [27, 51]. In the neural 

stem cells (NSCs), it has been demonstrated that fluoxetine can modulate the neuroprotection 

through up regulating expression of the phosphorylated-Akt and ERK1/2. Besides, expression of 

phosphorylated-Akt and phosphorylated-ERK1/2 in fluoxetine-treated NSCs was effectively 

blocked by both PI3K inhibitor (LY294002) and MEK inhibitor (PD98059) [43]. In the rats model 

of BCP, we have found that spinal or peripheral ephrinB1/EphB1 receptor signaling activated 

PI3K/Akt pathway, accompanied with thermal hyperalgesia and mechanical allodynia [26]. It has 

been demonstrated that the expression level of p-Akt co-expressed with OX-42 is increased, and 

decreased after inhibition by the PI3K inhibitor LY294002 in microglia. MCP-1 has been found to 

stimulate the PI3K/Akt pathway in some kinds of cells (monocytes, HEK-293, COS-7 and PC-

3)[52]. The PI3K/Akt signaling expressed in microglia could be activated by MCP-1, which lead to 

microglial activation and pain [46]. PI3K/Akt signaling pathway not only affect cancer pain, its 

dysregulation has also been involved in multiple pathological processes of tumor, including tumor 

genesis, invasion, proliferation, cell cycle progression, apoptosis and metastasis[53]. 

 

PI3K/Akt Pathway and Neuropathic Pain 

Neuropathic pain is broadly defined as chronic pain that is initiated or caused by a primary lesion 

or dysfunction in the nervous system and may arise from a spectrum of traumatic insults to the 

nervous system [54-56]. An increasing number of studies have demonstrated that many factors can 

contribute to the development of neuropathic pain, such as inflammation [57], and changes in 

neurotransmission [58, 59]. Neuropathic pain appears in many anomalous situations, including 

spinal cord injury[60], diabetes, peripheral nerve injury[61, 62] and in some inflammatory 

conditions[24, 41, 63, 64]. A growing body of evidence has shown that activation of the PI3K/Akt 

pathway in the spinal cord contributes to hyperalgesia in many neuropathic models [46]. 

 

PI3K/Akt Pathway and Sciatic Nerve Injury 

According to the previous studies, the rat model of partial sciatic nerve ligation (PSL) was designed 

to investigate peripheral neuropathic pain65, 66]. In this model, one group of rats were anesthetized 

and received a unilateral L5 sciatic nerve ligation; but in sham-operated rats, the left L5 spinal nerve 

was isolated, but without ligation [67].  

Studies showed that the activation of PKA, PKC and MAPK signal pathway after peripheral nerve 

injury plays an important role in regulating the expression of sodium channel subtypes, and 

neuropeptides in DRG and contributes to the generation of pain-related behaviors[68, 69]. 

Furthermore, evidence shows that PI3K and Akt are crucial mediators that lead to the activation of 

the transcription factor nuclear factor κB (NF-κB) induced by interleukin-1(IL-1) and tumor 

necrosis factor-α (TNF-α)[70, 71] which play a central role in the development of neuropathic 



pain[72]. It has been strained that neuroprotection is mediated via a TNFR2-PI3K-Akt-NF-κB 

pathway in which the duration of NF-κB activation is the critical determinant in mounting resistance 

toward excitotoxic insults. In accordance with the important role of NF-κB in neuroprotection, it 

has been demonstrated that upon in vitro glutamate exposure of TNF-treated cortical neurons, a 

PI3K-dependent Akt phosphorylation was ensued by NF-κB activation [71]. Several lines of 

evidence indicate that PI3K activation is the upstream of growth factor-induced Akt[73, 74] which 

is involved in pain hypersensitivity induced by intradermal injection of capsaicin in rats[75], so that 

PI3K can mediate pain behavior through the Akt signal pathway. In the PSL model, 

immunohistochemistry work shows that the p-Akt IR-positive neurons in ipsilateral L5 DRG and 

spinal cord significantly increased, but the significant change was not detected in the contralateral 

L5 spinal dorsal horn[64, 67]. To investigate the role of PI3K and Akt actvation in the development 

of neuropathic pain induced by L5 PSL, the PI3K inhibitor wortmannin or LY294002 as well as Akt 

specific inhibitor Akt inhibitor IV or (-)-Deguelin were injected intrathecally 30 min before surgery 

and once daily thereafter until the 7th day after L5 PSL. Compared with the control group, in which 

rats received vehicle injection as above, wortmannin, LY294002, Akt inhibitor IV and (-)-Deguelin 

treatment significantly reduced mechanical allodynia and thermal hyperalgesia after L5 PSL on the 

1st day and 3rd day, but not on the 7th day [67]. In the model of paclitaxel-induced painful peripheral 

neuropathy, Akt inhibitor Mk-2206 at various doses (1, 10 and 50 nmol) was intrathecally injected 

30 min prior paclitaxel treatment for 10 consecutive days. Blocking of Akt1 activation with 

different inhibitor (MK-2206 or LY294002) attenuated mechanical allodynia and thermal 

hyperalgesia induced by paclitaxel [76]. The p-Akt is usually referred to as the marker of PI3K 

activation, which suggests that the PI3K and PI3K-Akt signal pathway might contribute to the 

development of neuropathic pain at an early stage. 

 

PI3K/Akt Pathway and Diabetic Neuropathy 

Diabetic neuropathy occurs in 25% of diabetic patients, and its mechanism remains largely 

unknown[77]. Diabetic neuropathy are characterized by a progressive loss of nerve fibers affecting 

both the autonomic and somatic divisions of the nervous system and only a minority are associated 

with pain[78]. Deficits in nerve growth factor (NGF) production and/or NGF transport in the target 

tissues of NGF-responsive neurons have been implicated in the pathogenesis of diabetic 

neuropathy[79, 80]. Previous work showed that a reduced retrograde axonal transport of NGF and 

neurotrophin-3 (NT-3) in the vagus nerve of diabetic rats occurred in the presence of normal 

production of neurotrophins and neurotrophin receptors[81]. Several lines of evidence have shown 

that the interaction between neurotrophins and the tyrosine kinase (Trk) receptor can activate the 

PI3K/Akt signal pathway which mediates neuron survival, differentiation, axon growth, and 

protects nerve regeneration[82, 83]. The PI3K/Akt signal pathway located in the distal axon of 

neurons has a unique role in the retrograde transport of NGF and brain-derived neurotrophic factor 

(BDNF) in sympathetic, sensory neurons and Moto neurons [84, 85]. Inhibition of PI3K in the distal 

axons attenuates the retrograde transport of NGF and also induces neuron apoptosis [86]. It has been 

reported that diabetes decreases the activity of the PI3K and Akt in the vagus nerve, without 

affecting the protein expression of the p85 subunit of PI3K, Akt and phosphorylation of Akt, but 

increases the phosphorylation of p70s6 kinase[87]. A growing body of evidence have demonstrated 

that peripheral noxious insults caused by intraplantar carrageenan or bone cancer lead to increases 

in phosphorylation of mTOR (p-mTOR) and S6K1 (p-S6K1) in rat spinal dorsal horn but not in 



DRGs [88, 89]. In the chronic inflammatory pain and L5 spinal nerve ligation-induced neuropathic 

pain, western blot analysis showed significantly increased levels of p-mTOR and p-S6K1 [90]. 

These findings indicate that the impaired PI3K/Akt signal pathway contributes to diabetic 

neuropathy. 

 

PI3K/Akt Pathway and Spinal Cord Injury 

Chronic neuropathic pain and sensory abnormalities are common secondary consequences of spinal 

cord injury (SCI), affecting 60% of patients with traumatic or ischemic injury [91-94]. SCI pain and 

associated dysesthesias manifest as at- and below-level neuropathic symptoms that are defined as 

either spontaneous(pain independent of peripheral stimuli) or evoked (occurring in responses to a 

noxious or non-noxious stimuli)[95]. It has been found that injury to the spinal cord results in 

enhanced intrinsic growth and hyper excitability of adjacent peripheral afferents that may contribute 

to the development of at-level pain syndromes[94, 96, 97]. 

Recent evidence shows that injury induced upregulation of chemical signals including NGF and 

Wnts leads to activation of PI3K and the subsequent inhibition of glycogen synthase kinase-3β 

(GSK-3β) that may positively promote axonal elongation that contribute to the development of SCI 

pain[98-100]. In the excitotoxic SCI rats model using intraspinal quisqualic acid (QUIS), GSK-3β 

is inhibited by phosphorylation of the Sre-9 residue and directly promotes neurite outgrowth [101, 

102]. Biochemical and immunohistochemical approaches shows a significantly increased level of 

GSK-3β expression [99]. In addition, QUIS animals treated with LY294002 revealed manifest 

reductions in neurite formation and elongation compared to the sham-vehicle animals[103]. To 

demonstrate if alterations in GSK-3β were evident early (3 days), and if application of a GSK-3β 

activator could reverse these spinal injury induced changes, LY294002 was intrathecally delivered 

once daily for 3 consecutive days starting on the day of surgery. Results show that short term 

administration GSK-3β activator (LY294002) prevents the development of at-level spontaneous 

dysesthesias and reduces DRG outgrowth[103]. Therefore, this indicates that PI3K can mediate the 

development of neuropathic pain after SCI. 

 

PI3K/Akt Pathway and Inflammatory Pain 

Tissue injury is normally associated with inflammation and inflammatory pain. Inflammatory pain 

is induced by inflammatory mediators released in injured tissue, such as prostaglandin E2, NGF, 

and bradykinin [104, 105]. It is also well documented that peripheral tissue inflammation or injury 

causes two changes in the nociceptive system, peripheral sensitization and central sensitization[106]. 

Furthermore, enhanced synaptic transmission is considered to be essential for central sensitization 

after inflammatory stimuli [107]. Research demonstrates that PI3K is a key player in the 

establishment of central sensitization, the spinal cord phenomenon associated with persistent 

afferent inputs and contributes to chronic pain states in painful inflammatory conditions[41, 108]. 

Notably phosphorylation of the downstream kinase Akt at threonine 308 (pAkt-T) or at serine 473 

(pAkt-S) is used as a marker of PI3K activation [109, 110]. In addition, PI3K regulates secondary 

messengers that activate various effectors such as Akt and ERK via the generation of PIP3[111]. 

These results led to the conclusion that PI3K signaling is involved in the modulation of nociceptive 

information, central sensitization, and synaptic plasticity in the central nervous system [41, 112]. 

In the inflammatory heat hyperalgesia rat model induced by intradermal injection of capsaicin and 

NGF, the levels of pAkt-T and pAkt-S significantly increased compared with sham group. 



LY294002, a PI3K inhibitor, blocked the increase in pAkt-T and pAkt-S levels in a dose-dependent 

manner [113]. Furthermore, when LY294002 or wortmannin is injected intradermally before the 

capsaicin injection, spontaneous pain behaviors, such as lifting and licking the affected paw, were 

suppressed in a dose-dependent manner. Several lines of evidence suggest an involvement of PI3K-

linked cascades in the regulation of synaptic plasticity in CNS [114, 115]. Intraplantar injection of 

carrageenan produced a persistent thermal and tactile hyperpathia [116]. Our study found that spinal 

PI3K/Akt mediates pain behavior induced by plantar incision [13]. In addition to peripheral 

sensitization, evidence shows that spinal mechanisms also play a major role in this model [117, 118]. 

It has been observed that wortmannin dose-dependently attenuated carrageenan-induced thermal 

and tactile hyperalgesia, and reversed an established thermal hyperalgesia when given as a post-

treatment [89]. Moreover, LY294002 is reported to attenuate the phase I response which represents 

acute nociceptive processing [41].  

 

PI3K/Akt Pathway and Opioid Tolerance and hyperalgesia 

Despite a plethora of available potential treatment options for chronic pain, opioids are still the gold 

standard for its pharmacological management in the clinical setting. However, long-term use of 

these drugs is often limited due to the development of opioid tolerance or opioid-induced 

hyperalgesia(OIH), characterized as progressive loss of analgesic potency after continuous 

morphine exposure that necessitates dose escalation to achieve equal pain relief [119-123]. μ-opioid 

receptors (MOR) is a GPCR existing in the superficial dorsal horn of the spinal cord. As mentioned 

above, PI3Kγ can be regulated GPCR. Recent investigations have revealed that PI3K and Akt can 

be additional signaling mediators of MOR in sensory neurons. It was identified as a signaling 

pathway of MOR that involves PI3Kγ, with subsequent stimulation of Akt and neuronal NOS 

(nNOS) [124]. Additional evidence for a prominent role of PI3Kγ in opioid signal transduction has 

been obtained, plus the essential function of PI3Kγ in the development of long-term MOR 

desensitization and tolerance in the DRG [125]. Recent studies reveal that PI3Kγ is an essential 

element of pain- relieving opioid effects in neuronal cells [124, 125]. 

Glia, once thought to be merely supporting cells of the CNS, are now recognized to play a central 

role in the formation and maintenance of morphine tolerance[126]. It is suggested that morphine-

induced migration of reactive microglia produce locally elevated concentrations of proinflammatory 

cytokines and chemokines[127]. Morphine-induced microglial migration is an μ-opioid receptor 

and PI3K dependent [128]. It was reported that inhibiting PI3K reduces migration and ATP-induced 

Akt phosphorylation, implicating that the PI3K/Akt pathway in purinergic receptor mediated 

migration [129, 130]. The PI3K/Akt pathway have been demonstrated to be involved in ADP-

induced microglial migration and chemo taxis by the P2Y12 receptor, which contribute to the 

development of pain [130]. 

The contribution of opioid-induced neuroinflammation is well documented [131] among the 

extensive studies regarding the mechanism underlying morphine tolerance. It is considered that 

morphine tolerance and neuropathic pain share common cellular mechanisms [132]. In a chronic 

morphine tolerance rat model, it was observed that Akt phosphorylation, cleaved Caspase-1-

dependent NALP1 inflammasome activation and IL-1β maturation in spinal cord neurons were 

significantly enhanced by morphine. This revealed the role of μ-opioid/PI3K-Akt signaling/NALP1 

inflammasome cascade in the development of morphine tolerance, and how treatment with 

LY294002 significantly reduced Caspase-1 cleavage, NALP1 inflammasome activation and 



attenuated morphine tolerance[133]. It is well known that repeated and long-term exposure to 

opioids causes opioid receptor-mediated adaptive changes within the nervous system, including 

desensitization, internalization, downregulation, and phosphorylation of opioid receptors [134] or 

heterodimerization with other receptors[135]. The findings demonstrated that the μ opioid receptor-

triggered PI3K/Akt/mTOR pathway in promoting morphine-induced spinal protein translation 

changes and is associated with morphine tolerance and hyperalgesia [136]. Besides, inhibition of 

the spinal PI3K/Akt not only reduces morphine-induced increase in p-mTOR, but also attenuates 

the development of morphine tolerance [136]. Thus the PI3K/Akt pathway is likely a novel target 

for preventing and/or treating chronic morphine tolerance and morphine-induced hyperalgesia. 

 

Conclusion 

By reviewing the current evidence, we discussed the role of PI3K/Akt pathway in chronic pain 

(Figure 1, 2, 3 and 4). These studies provided solid evidence that the PI3K/Akt pathway plays a 

pivotal role in the pathogenesis of bone cancer pain, neuropathic pain and inflammatory pain. 

Treatment with PI3K or the Akt inhibitor could attenuate mechanical allodynia and thermal 

hyperalgesia caused by pathological pain, implying that they may be beneficial and more effective 

therapeutic tools for chronic pain management. However, future extensive exploration should be 

performed with more selective and clinically relevant drugs targeting PI3K/Akt pathway. 
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Figure legends 

 

Figure 1. Schematic illustration of potential mechanisms of PI3K/Akt pathway in the 

processing of bone cancer pain. MCP-1: monocyte chemoattractant protein-1; CCR2: CC 

chemokine receptor-2; MAPK: mitogen-activated protein kinases; ERK: extracellular signal-related 

kinase; PI3K: phosphatidylinositol 3-kinase; PKB/Akt: protein kinase B; TRPV1: transient receptor 

potential vanilloid subfamily member 1;  

 

Figure 2. Schematic illustration of potential mechanisms of PI3K/Akt pathway in the 

processing of neuropathic pain. ET-1: endothelin-1; ETA-R: endothelin type A receptor; MAPK: 

mitogen-activated protein kinases; ERK: extracellular signal-related kinase; PI3K: 

phosphatidylinositol 3-kinase; PKB/Akt: protein kinase B; MEK: mitogen-activated ERK-

regulating kinase; GSK3: glycogen synthase kinase 3; Smad1: drosophila mothers against 

decapentaplegic 1. 

 

Figure 3. Schematic illustration of potential mechanisms of PI3K/Akt pathway in the 

processing of inflammatory pain. TNF: tumor necrosis factor; NMDA receptor: N-methyl-D-

aspartic acid receptor; PAR-2: proteinase-activated receptor-2; SP: substance P; NKIR: neurokinin-

1 receptor; NGF: nerve growth factor; TrkA receptor: tropomyosin receptor kinase A receptor; PI3K: 

phosphatidylinositol 3-kinase; ERK: extracellular signal-related kinase; PKB/Akt: protein kinase B; 

PDK1: pyruvate dehydrogenase kinase 1; mTOR: mammalian target of rapamycin; PKC: protein 

kinase C; 4EBP: 4E-binding protein. 

 

Figure 4. Schematic illustration of potential mechanisms of PI3K/Akt pathway in the 

processing of morphine tolerance. PI3K: phosphatidylinositol 3-kinase; PKB/Akt: protein kinase 

B; mTOR: mammalian target of rapamycin; NALP1: neutrophilic alkaline phosphatase 1. 
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