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Abstract Next-generation cellular networks are expected to enable the coexistence of macro

and small cells, and to support differentiated quality-of-service (QoS) of mobile applica-

tions. Under such conditions in the cell, due to a wide range of supported services and high

dependencies on efficient vertical and horizontal handovers, appropriate management of

handover traffic is very crucial. Furthermore, new emerging technologies, such as cloud

radio access networks (C-RAN) and self-organizing networks (SON), provide good im-
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plementation and deployment opportunities for novel functions and services. We design a

multi-threshold teletraffic model for heterogeneous code division multiple access (CDMA)

networks that enable QoS differentiation of handover traffic when elastic and adaptive ser-

vices are present. Facilitated by this model, it is possible to calculate important performance

metrics for handover and new calls, such as call blocking probabilities, throughput, and ra-

dio resource utilization. This can be achieved by modelling the cellular CDMA system as

a continuous-time Markov chain. After that, the determination of state probabilities in the

cellular system can be performed via a recursive and efficient formula. We present the appli-

cability framework for our proposed approach, that takes into account advances in C-RAN

and SON technologies. We also evaluate the accuracy of our model using simulations and

find it very satisfactory. Furthermore, experiments on commodity hardware show algorithm

running times in the order of few hundreds of milliseconds, which makes it highly applicable

for accurate cellular network dimensioning and radio resource management.

Keywords quality of service · handover · cdma · cloud radio access network

1 Introduction

Future generation cellular networks are expected to support services that require varying

degrees of quality-of-service (QoS), but at the same time enabling a wide range of real-time

and data applications [1]. Furthermore, the appearance of highly promising technologies,

such as the cloud radio access networks (C-RAN) and self-organizing networks (SON),

can provide higher efficiency and greater scalability through the use of software-defined

networking (SDN), network function virtualisation (NFV), and data center processing capa-

bilities [2, 3]. On the other hand, the design and deployment of future cellular networks is

further complicated due to the heterogeneous nature of various coexisting communication
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technologies and protocols, especially when trying to satisfy tight energy consumption con-

straints [4–6]. In such environments, providing acceptable QoS under the conditions of high

user mobility is not a straightforward task. Call handovers from one small cell to another or

between macro and small cells can severely degrade the QoS of existing users if no proper

call admission control (CAC) is performed [7, 8].

Furthermore, future fifth generation (5G) cellular networks [9,10] are expected to simul-

taneously utilize multiple and different channel access methods, such as code division multi-

ple access (CDMA) [11,12] and frequency division multiple access (FDMA), in a multi-tier

fashion [13]. Recent advances in multicarrier CDMA (MC-CDMA) systems indicate good

robustness against multipath propagation channels and high performance in terms of data

transmission rates [11]. On the other hand, the radio resource planning and management

in CDMA-based systems is a difficult task due to the multiple access interference (MAI),

which is caused by both inter- and intra-cell mobile traffic [14,15]. This is especially true in

a heterogeneous wireless environment with dense small cell deployments and an increasing

number of end devices with dual connectivity [16].

In this work, we propose a teletraffic model that: a) takes into account the aforemen-

tioned requirements of next-generation cellular networks; b) enables derivation of important

performance metrics, both network-centric and user-centric; c) is easily implementable in

real world, with short running times; and d) requires minimal storage and computing re-

sources. Especially in the case of emerging wireless multimedia systems and video stream-

ing over wireless networks, fast estimations of video quality in real time is of major impor-

tance [17, 18].

To model a wide range of current and future applications, we distinguish the three fol-

lowing generic classes: fixed traffic, elastic traffic, and adaptive traffic [19]. Fixed traffic

refers to calls that demand a fixed amount of resources and service time (also referred to
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as holding time). This resource demand can not be reduced and the requesting user either

gets it all or nothing. A typical example is a fixed-rate real-time video streaming service.

Elastic and adaptive traffic refers to calls that have more than one contingency resource re-

quirements. The demanded amount of resources depends on the resource availability in the

system, but also on the varying radio conditions in the cell. The holding time of an elastic

call is inversely proportional to the amount of resources that the particular call has been

allocated. A typical example is the file transfer service, where the transfer completion time

depends on the available data rate. Finally, the holding time of an adaptive call remains

fixed, irrespective of the amount of allocated resources. A typical example is the adaptive

real-time video streaming service, where the video quality can be reduced in response to the

data rate reduction, but the completion/holding time remains fixed.

Furthermore, for each generic traffic type, we incorporate different QoS levels. Each

QoS level dynamically captures service requirements such as bandwidth, signal-to-noise

ratio (SNR), and service time. Our proposed mathematical model takes also into account

call handovers, dynamic CAC, and MAI, and results in analytical expressions for system

state probabilities and other important system parameters. Next, we develop a time- and

space-efficient algorithm for the calculation of state probabilities. Experiments on commod-

ity hardware show algorithm running times in the order of hundreds of milliseconds, which

makes it applicable in highly dynamic heterogeneous environments and even in cases of

fast moving users. This time- and space-efficiency has been achieved by introducing a num-

ber of approximations. However, as our evaluation shows, the impact of the approximations

is negligible and the accuracy of produced results is very good. Furthermore, by configur-

ing some parameters, it is possible to trade-off efficiency for accuracy. Having determined

state probabilities, call blocking probabilities (CBP), radio resource utilization (RRU), and

service throughput, can be easily calculated.



Title Suppressed Due to Excessive Length 5

The remainder of the paper is organised in the following way. Section 2 presents the

literature review. It also gives an overview of our proposed model and states the contri-

bution of this work. In Section 3, we review two existing models, proposed for wired,

connection-oriented networks. In Section 4, we propose our new mathematical model for

heterogeneous CDMA-based networks. Subsection 4.1 describes our Markov chain mod-

elling approach, provides a simple example that illustrates the basic concepts, and specifies

the adopted approximations that enable the derivation of recursive and efficient formulas.

A practical algorithm for determining the system state probabilities is proposed in Subsec-

tion 4.2. Subsection 4.3 calculates important performance metrics, such as CBP, RRU, and

service throughput. In Section 5, we present the applicability framework for our proposed

model. In particular, the applicability in C-RAN using SON, SDN, and NFV technologies

is discussed. Section 6, investigates three case studies aiming at evaluating our proposed

approach. In particular, the analytical results that are derived via the approximate model are

compared with simulation results and the accuracy is very good. For completeness, we also

compare our model with other proposed models in the literature. Section 7 concludes the

paper and gives future work directions.

2 Literature Review and Model Overview

Below we discuss the relevant teletraffic models proposed in the literature. We also provide

a descriptive overview of our proposed approach, leaving formal definitions to the sections

that follow. Finally, we state the contribution of this work, compared to other published

works.

The well-known Erlang multi-rate loss model (EMLM) has been extensively used for

performance modelling and analysis of multi-rate loss systems under the presence of Pois-
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son traffic [20], [21] (the EMLM is presented in Subsection 3.1). The EMLM results in a

recurrent formula, known as Kaufman-Roberts (K-R) recursion, that allows the CBP cal-

culation when the complete resource sharing (CRS) policy [22] is used. Following its first

inception several decades ago, numerous modifications of the EMLM have been proposed

for both wireline and cellular networks. These works are discussed below.

In [23], calls that are blocked due to unavailability of resources, may retry multiple

times, requesting for less resources. In the model of [24], arrived calls may have multiple

contingency resource demands and the appropriate amount of resources that is allocated

to each call depends on the total amount of occupied resources in the system and on a

set of predefined thresholds, common to all services. The connection-dependent threshold

model (CDTM) proposed in [25] can be seen as a generalization of the aforementioned retry

and threshold models. In particular, the CDTM allows the parameterization of individual

thresholds that can be defined on a per service basis (the CDTM is presented in Subsection

3.2). The aforementioned models are applicable to connection-oriented networks and are

not suitable for the modelling of cellular networks with sophisticated radio resource man-

agement (RRM) schemes. In [26], the CDTM is extended to allow call bandwidth compres-

sion/expansion. Later, the model of [26] was investigated under the bandwidth reservation

(BR) policy in [27], where some bandwidth is reserved for certain service-classes in order

to achieve CBP equalization.

In this work we concentrate on the uplink of heterogeneous CDMA systems. The cell

is modelled as a multirate loss system with a given amount of radio resources. The amount

of resources is not fixed and depends on the network conditions, the activity of accepted

calls (i.e., whether the call is on a transmission or a silent mode), and other factors. Hence,

we talk about the soft capacity. The demanded amount of resources of a particular service

can be derived from a number of service parameters such as the SNR, data transmission
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rate, and call activity [28]. Arriving calls are accepted into the system according to the CRS

policy. That is, a call is accepted if and only if there is sufficient amount of resources in the

system. In particular, a CAC mechanism performs an estimation of the required resources

by measuring the increase of radio interference (both intra- and inter-cell) as a result of

call’s acceptance into the system. CAC and other RRM functions can be implemented either

as distributed or as centralized SON functions, as discussed in Section 5. Due to MAI of

CDMA-based systems, if a call is accepted, the SNR of other calls in the system is reduced.

Hence, if according to estimations, the SNR of other calls is going to drop below a tolerable

level (dependent on the QoS of each call), the arriving call must not be accepted. In other

words, a call must not be accepted if it will cause an increase of the interference above a

certain level. Taking into account the aforementioned peculiarities of cellular CDMA mod-

elling, the EMLM has been enhanced in [29] (referred to as the W-EMLM) considering only

the fixed traffic generated by new calls. Later, the model of [29] was extended to take into

account handover traffic as well [30].

The above mentioned models result in recurrent formulas. Among other notable works,

[31] proposes a model for elastic traffic with fixed transmission rate slow down factors of

in-service calls. This work has been extended in [32] in order to have state-dependent rather

than fixed slow down factors. In particular, in-service elastic calls may change their occupied

resources, but having different resource requirements upon arrival is not allowed. In [33], an

analytical model for dynamic streaming systems is proposed. The wireless channel is mod-

elled as a continuous time Markov process and a set of differential equations is constructed

to characterize the buffer starvation probability. The proposed model enables determination

of QoS metrics for dynamic and adaptive streaming services. For the downlink of CDMA

systems, a number of efficient analytical models have been already proposed [34–37]. There-
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fore, in this work, we focus on the uplink direction. Our aim, among others, is to explicitly

incorporate the handover traffic into the analytical model.

The proposed model is called Wireless Handover Connection-Dependent Threshold

Model (WH-CDTM). As our analysis in Section 4 shows, the steady state probabilities

in the WH-CDTM do not have a product form solution (PFS) [38, 39]. Therefore, we in-

troduce appropriate approximations and obtain an equivalent reversible Markov chain, for

which a PFS exists. We also derive an approximate expression for the calculation of state

probabilities that enables the calculation of CBP for both new and handover traffic.

Compared to our previous paper [30], the contribution of this work is as follows: a) we

enhance the mathematical model with elastic and adaptive traffic types; b) we introduce dif-

ferent QoS levels for each traffic type; c) we propose a practical and easy implementable

algorithm for the determination of system state probabilities; d) in addition to CBP, we de-

rive expressions for other important performance metrics, such as RRU and service through-

put; e) having benefited by more available space, we present a more detailed description of

the mathematical model, providing more diagrams and examples, and much more detailed

calculations; f) we provide the applicability framework for our model using C-RAN and

SON technologies; g) the evaluation section has been substantially extended; h) we provide

both analytical and simulative comparison of our model with other existing models in the

literature.

3 Background

3.1 Overview of the Erlang Multi-rate Loss Model (EMLM)

Consider a system that has R discrete resources. Calls arrive to the system according to a

Poisson process. Assume that each call belongs to one of S independent services. The arrival
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rate of service s ∈ S calls is denoted by ars. A call of a service s ∈ S demands rs resources

from the system. If the number of demanded resources is available in the system, the call

occupies them for a generally distributed holding time with mean ts. On the other hand, if

the demanded resources are not available, the call is blocked and leaves the system without

further affecting it. This effectively implements the CRS policy, mentioned in Section 2. The

total number of occupied resources in the system is denoted by r and can be determined as

follows:

r =
S∑

s=1

csrs (1)

where cs is the number of service s calls in the system at any given moment. In the following,

r is also referred to as the system state.

From the above it is clear that r takes values between 0 and R (inclusive). When new

calls are accepted into the system, r increases, whereas when calls depart from the system

and release the previously occupied resources, r decreases. The probability that the system

state is r ∈ [0, ..., R] is denoted by P (r).

It has been proven that the following local balance exists in the EMLM [20]:

arsP (r − rs) =
acs(r)

ts
P (r) (2)

where acs(r) is the average number of service s calls in state r.

The above equation essentially says that when the system is in equilibrium, transitions

between adjacent states (r − rs and r in this case) occur at equal rates. Eq. (2) is often

re-written in the following way

tlsP (r − rs) = acs(r)P (r) (3)

where tls is the offered traffic-load of service s, defined as tls = arsts.

In many cases it is desirable to know the percentage of the total resources that is occupied

by a particular service. This is captured by the resource share of a service s, defined as
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Fig. 1: State transition diagram in the EMLM.

rss =
csrs
r

(instantaneous). The average resource share, arss(r), of service s in state r

can be calculated with the aid of (3) as follows:

arss(r) =
acs(r)rs

r
=
tlsP (r − rs)rs

P (r)r
(4)

The aforementioned concepts can be easier understood using a simple example. Con-

sider a system with R = 4 resources and S = 2 services. Resource demands per call are

r1 = 1 and r2 = 2 for the 1st and 2nd service, respectively. Figure 1 shows the state tran-

sition diagram for this system. We observe that r = 4 is a blocking state for both services,

since no available resources are left in this state. We also observe that r = 3 is a blocking

state for the 2nd service, but not for the 1st. This is due to the fact that 1 resource is available

(and 3 resources are occupied) in this state.

In the general case, a new service s call (that demands rs resources) is accepted in the

system if and only if r+ rs ≤ R. Hence, r = R− rs + 1, ..., R− 1, R are blocking states

for service s, whereas the remaining states are non-blocking states. The CBP of a particular

service s can be calculated by summing the state probabilities of all blocking states:

CBPs =
R∑

j=R−rs+1

P (r) (5)
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The state probabilities, P (r) (r = 1, ..., R), that are required in the above equations,

can be recursively determined by the well-known K-R formula [20], [21]:

rP (r) =
S∑

s=1

tlsrsP (r − rs) (6)

where P (r) = 0 for r < 0 and for r > R, using the normalization
∑R

r=0 P (r) = 1.

3.2 Overview of the Connection-Dependent Threshold Model (CDTM)

The EMLM, described in Section 3.1, supports only fixed traffic. That is, each call demands

a fixed number of resources. Below we describe the CDTM, which is an extension of the

EMLM that supports elastic traffic [25].

Consider a system with R discrete resources and S independent services. Calls arrive to

the system according to a Poisson process with the arrival rate of ars for service s ∈ S. A

call of service s hasD(s) contingency resource demands, denoted as rs,d, d ∈ [1, ..., D(s)].

By convention rs,d is a strictly increasing function with respect to d for every s. The choice

of a particular demand depends on the system state r (defined as in the EMLM) and the set

of resource thresholds of the particular service. The thresholds of service s are denoted as

THs,d, d ∈ [1, ..., D(s)] and are used as follows. If at the time of a call arrival r ≤ THs,1,

then the call demands rs,1 resources. If THs,d−1 < r ≤ THs,d (d ∈ [2, ..., D(s)]), then

the call demands rs,d resources. Finally, if r > THD(s) = R, then the call is blocked and

lost. Note that by convention R represents the highest threshold THD(s).

As mentioned in Section 1, one of the main characteristics of elastic traffic is that the

holding time of a call is inversely proportional to the amount of resources the call is given.

Hence, each of the aforementioned contingency resource demands has a corresponding hold-

ing time, denoted as ts,d, d ∈ [1, ..., D(s)]. Note that ts,d is a strictly decreasing function

with respect to d for every s.
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Fig. 2: Principles of the CDTM.

The aforementioned concepts are explained below with the aid of a simple example.

Consider a system with R = 5 resources and S = 2 services. Each service has two contin-

gency demands. That is D(1) = D(2) = 2. Consequently, (apart from the trivial threshold

THs,2 = R = 5) there is one threshold per service. Let us assume that TH1,1 = 2 and

TH2,1 = 3. Let us also assume the following contingency demands: r1,1 = 3, r1,2 = 1,

r2,1 = 3, and r2,2 = 2. This basic CDTM concept has also been illustrated in Fig. 2 and in

Fig. 3 we show the state transition diagram for the 1st service.

By ac1,1(r) and ac1,2(r), we denote the mean number calls of the 1st service in state

r, with resource demands r1,1 and r1,2, respectively. We observe that the 1st service has

one blocking state, r = 5. Similarly, the 2nd service (although not shown in Fig. 3) has two

blocking states, r = 4 and r = 5. We also observe that the corresponding Markov chain is

irreversible. This is obvious from the fact that while there are some transitions from higher

states to lower, there are no corresponding transitions from a lower state to higher in all

cases. This means that the CDTM system does not have a PFS and we will have to resort to

approximations in order to derive an efficient and recurrent formula for state probabilities,

P (r).

To approximate reversibility we assume the following:

1. The number of calls with resource demand rs,1 is negligible in states r > THs,1.
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Fig. 3: State transition diagram in the CDTM (1st service).

2. The number of calls with rs,d for 1 < d < D(s) is negligible in states r ≤ THs,d−1

and r > THs,d.

3. The number of calls with rs,D(s) is negligible in states r < THs,D(s)−1.

The purpose of the above approximations is to remove the “redundant” transitions so that

the remaining Markov chain becomes reversible.

In the system of Fig. 2 after the introduced approximations, the number of calls with

resource demand r2,1 in states r = 1, 2, and 3 is considered negligible. Hence, as indicated

with X’s, the transitions 3 → 2, 2 → 1, and 1 → 0 are removed. In a similar way, the

transitions 5→ 3 for calls with r2,1 are removed as well.

In addition to the above approximations, we also assume that local balance (eq. (7))

exists between adjacent system states (Fig. 4). This essentially means that the transition

rates from lower states to higher are equal to the corresponding transition rates from higher

states to lower.

arsδs,d(r − rs,d)P (r − rs,d) = ts,dacs,d(r)δr,d(r)P (r) (7)
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Fig. 4: Local balance in the CDTM.

where the parameters δs,d(r) are given by:

δs,1(r) =


1, if r ≤ THs,1

0, otherwise

(8)

δs,d(r) =


1, if THs,d−1 < r ≤ THs,d

0, otherwise

(d = 2, ..., D(s)− 1) (9)

δs,D(s)(r) =


1, if r > THs,D(s)−1

0, otherwise

(10)

Consequently, dividing both sides of (7) by rP (r) and substituting arsts,d = tls,d, the

resource share of service s with demand rs,d in state r can be calculated by:

arss,d(r) =
tls,dδs,d(r)P (r − rs,d)

rP (r)
(11)

Following the aforementioned approximations and calculations, the state probabilities

can be calculated by the recursion below [25]:

rP (r) =
S∑

s=1

D(s)∑
d=1

tls,drs,dδs,d(r)P (r − rs,d) (12)

for r = 1, ..., R and P (r) = 0 for r < 0, using the normalization
∑R

r=0 P (r) = 1.
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A new call of service s can be accepted to the system only if its smallest resource

demand, rs,D(s), is available. This means that the blocking states are r = R − rs,D(s) +

1, ..., R. Hence, the CBP of a given service s can be calculated by:

CBPs =
R∑

r=R−rs,D(s)+1

P (r) (13)

4 The proposed Wireless Handover Connection-Dependent Threshold Model

(WH-CDTM)

4.1 Markov chain modelling

Our aim is to model a CDMA system accommodating S independent services.

The system offers D(s) different QoS levels to each service s ∈ S. In the following, a

service s call of QoS level d, d ∈ [1, ..., D(s)], is referred to as a service s, d call. We also

distinguish between new and handover calls.

To characterize a new service s, d call, we use:

– DRN
s,d : data rate.

– tNs,d : holding time.

– SNRN
s,d : signal-to-noise ratio.

Similarly, to characterize a handover service s, d call, we use:

– DRH
s,d : data rate.

– tHs,d : holding time.

– SNRH
s,d : signal-to-noise ratio.

The aforementioned parameters can be used to define the load factor of a service s, d

call, as follows:

LF t
s,d =

SNRt
s,dDR

t
s,d

W + SNRt
s,dDR

t
s,d

(14)
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where W is the CDMA chip rate and t ∈ {N,H}.

In order to determine the resource demand of a service s, d call, we discretize its load

factor:

rts,d = bLFs,d

g
c (15)

where g is the discretization unit. The selection of g can be subject to optimization. A small

value of g will produce larger discretization error, while a larger value will produce a larger

state space. In our experiments, in Section 6, we use g = 0.001.

We classify the services as follows:

– fixed traffic: when D(s) = 1, meaning that a single QoS level is supported.

– elastic traffic: when D(s) > 1 and the holding time depends on the QoS level.

– adaptive traffic: when D(s) > 1 and the holding time is fixed and is independent of the

QoS level.

Calls of each service s arrive to the system according to a Poisson process with mean

arts. The traffic-load of service s, d is defined as tlts,d = artst
t
s,d.

One of the main characteristics of CDMA-based communication is that all calls utilize

the same frequency band and their signals are distinguished via different codes. Since in

practice the codes are non-orthogonal, signals generated by each call are perceived as noise

by other in-service calls.

In general, the noise/interference in CDMA systems can be classified into:

– Iintra: The intra-cell interference that is generated by the calls of the same cell.

– Iinter: The inter-cell interference that is generated by the calls of adjacent cells.

– Tnoise: The thermal noise generated at the receiver.
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A typical way of implementing CAC is by estimating the noise rise via the following

formula [28]:

NR =
Iintra + Iinter + Tnoise

Tnoise
(16)

A pre-defined upper bound for the noise rise,NRmax, is used for call blocking/admission

decisions.

Another and more convenient quantity for CAC modelling is the cell load, defined by:

CL =
Iintra + Iinter

Iintra + Iinter + Tnoise
(17)

Note that while NR can take arbitrarily high values, CL has a theoretical maximum value

of 1. In practice, however, a typical value is CLmax = 0.8 [29].

By manipulating (16) and (17) we can express CL in terms of NR:

CL =
NR− 1

NR
(18)

The cell load consists of the intra-cell load, CLintra, that is generated within the cell,

and the inter-cell load, CLinter , that is generated in the adjacent cells.

The calculation of CLintra is straightforward and is based on the load factors of ac-

cepted calls:

CLintra =
∑

t∈{N,H}

S∑
s=1

D(s)∑
d=1

acts,dLF
t
s,d (19)

On the other hand,CLinter can not be easily determined because load information from

adjacent cells is required. For this reason and similarly to other works (e.g., [30]) we model

CLinter as a log-normal random variable.

Having defined CL, the CAC mechanism can be based on the following conditions:

CL+ LFN
s,d ≤ CLN

max (20)

CL+ LFH
s,d ≤ CLH

max (21)
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Fig. 5: State Transition Diagram in the WH-CDTM.

where CLN
max and CLH

max are the CAC thresholds for new and handoff calls, respectively.

Below we present an example to explain the WH-CDTM. Consider the simple example

of Section 3.2 but with the following difference. Each state r is a conditionally blocking

state. In particular, the probability that a service s, d call is blocked in state r is referred to

as the local blocking factor (LBF) and denoted as LBt
s,d(r). Note that, the CDTM can be

seen as a special case of the WH-CDTM with LBFs of various states being either 0 or 1.

Figure 5 depicts the state transition diagram (STD) for the 1st service. It can be observed

that transitions to higher states occur at a reduced rate (due to the factor 1 − LBt
s,d(r))

compared to the the example of Fig. 3. The highest reachable state, rmax, is the one where

LBt
s,d(r)→ 1. This enables us to model the soft capacity feature of CDMA systems.

We also observe that the corresponding Markov chain is irreversible. This is obvious

from the fact that while there are some transitions from higher states to lower, there are

no corresponding transitions from lower states to higher. This means that the WH-CDTM

system does not have a PFS and we will have to resort to approximations in order to derive

an efficient and recurrent formula for state probabilities, P (r).

To approximate reversibility we assume the following:

1. The number of calls with resource demand rs,1 is negligible in states r > THs,1.
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2. The number of calls with rs,d for 1 < d < D(s) is negligible in states r ≤ THs,d−1

and r > THs,d.

3. The number of calls with rs,D(s) is negligible in states r < THs,D(s)−1.

The purpose of the above approximations is to remove the “redundant” transitions so that

the remaining Markov chain becomes reversible.

In the system of Fig. 5, after the introduced approximations, the number of calls with

resource demand r2,1 in states r = 1, 2, and 3 is considered negligible. Hence, as indicated

with X’s, the transitions 3 → 2, 2 → 1, and 1 → 0 are removed. In a similar way, the

transitions 5→ 3 for calls with r2,0 are removed as well.

Having defined the necessary approximations and before the calculation of state proba-

bilities, we need to introduce the notion of call activity and define another important metric

named resource occupancy.

In CDMA systems, a call during its lifetime can be modeled as a series of active and

passive periods. During the active periods, the call transmits data and occupies radio re-

sources. On the other hand, during the passive periods, the call does not transmit and does

not occupy any resources. The probability that a call of service s is active is called activity

factor and denoted as as. The system state r refers to the total number of occupied resources

in the system assuming that all users are active. Hence r is essentially an upper bound for

the actual number of occupied resources denoted by c. In particular, 0 ≤ c ≤ r with c = 0

if every call is passive and c = r if every call is active at a given moment.

The probability that c resources are occupied in state r is named resource occupancy

and can be determined via the following recursion:

RO(c|r) =
S∑

s=1

D(s)∑
d=1

∑
t∈{N,H}

arsts,d(r)[asRO(c− rts,d|r − rts,d)+

(1− as)RO(c|r − rts,d)]

(22)
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for r = 1, ..., rmax with RO(0|0) = 1 and RO(c|r) = 0 for c > r.

The derivation of (22) is explained as follows. To reach the state (c|r) there are two

potential previous states: (c− rts,d|r− rts,d) and (c|r− rts,d). If the system was previously

in state (c − rts,d|r − rts,d) then after the arrival of an active call (which happens with

probability as), both c and r are increased by rts,d. If the system was previously in state

(c − |r − rts,d) then after the arrival of a passive call (which happens with probability

1− as), only r is increased by rts,d. Hence, in both cases the system will reach state (c|r).

Having determined the resource occupancy of every state, we can now calculate the

LBFs as follows:

LBt
s,d(r) =

r∑
c=0

LBP t
s,d(c)RO(c|r) (23)

where LBP t
s,d(c) is the local blocking probability and can be determined via (24) and (25),

below [30].

LBP t
s,d(c) = b

1− CDFCL(x)

g
c (24)

with CDFCL(x) the cumulative distribution function of CL given by:

CDFCL(x) =
(
1 + erf(

lnx− E[CL]
VAR[CL]

√
2
)
)
/2 (25)

where E[CL] and VAR[CL] are the expected value and the variance of CL, respectively,

and erf(·) is the well-known error function.

The resource share in the WH-CDTM can be calculated similarly to (11) by incorporat-

ing LBFs:

arsts,d(r) =
acts,d(r)r

t
s,d

r
(26)

The parameters acts,d(j) of (26), are obtained from:

acts,d(r) =
tlts,dP (r − rts,d)(1− LBt

s,d(r − rts,d))
P (j)

(27)
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Finally, the probability of each state can be calculated as in (12) but with the incorpora-

tion of LBFs:

P (r) =
1

r

S∑
s=1

D(s)∑
d=1

∑
t∈{N,H}

[
(tlts,d(1− LBt

s,d(r − rts,d)rts,dδs,d(r)P (j − rts,d))
]

(28)

for r = 1, ..., rmax and P (r) = 0 for r < 0, with limrmax→∞
rmax∑
r=0

= 1. As it is shown

below in Subsection 4.2, jmax is the state in which the local blockings LBt
k,l(j) are practi-

cally equal to 1.

4.2 Recursive Algorithm for the Calculation of State Probabilities

Below we present our proposed algorithm for the calculation of state probabilities. The

algorithm is based on the analysis presented in the previous subsection.

Input

1: S,D(s), THs,d, tl
t
s,d, CL

t
max

Precalculation

2: determine each rts,d from (14) and (15)

Initialization

3: P̂ (0)← 1

4: acts,d(0)← 0

5: arsts,d(0)← 0

6: RO(0|0)← 1

7: LBt
s,d(0)← 0

8: r ← 0

9: ε← 10−4
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10: While |1− LBt
s,d(r)| < ε do

11: r ← r + 1

12: determine δts,d(r) from (8) and (9)

13: determine P̂ (r) from (28); print P̂ (r)

14: determine acts,d(r) from (27)

15: determine arsts,d(r) from (26)

16: For c ∈ [1, ..., r] do

17: determine RO(c|r) from (22)

18: determine LBP t
s,d(c) from (24) and (25)

19: End for

20: determine LBt
s,d(r) from (23)

21: End while

22: rmax ← j

The algorithm calculates the so-called un-normalized state probabilities, denoted by

P̂ (r). It assigns an arbitrary (un-normalized) probability, P̂ (0) = 1, to state r = 0 and,

subsequently calculates all the probabilities in the while loop (lines 10-21). We observe that

the algorithm runs until LBt
s,d(r) ≈ 1. Which essentially means that higher states are un-

reachable due to local blockings having a blocking probability of almost 1. The algorithm’s

running time and its accuracy depends on the selected parameter ε. The smaller is ε the

better is the accuracy (i.e., LBt
s,d(rmax) is closer to 1). The bigger is ε the shorter is the

algorithm’s running time. Our experiments show that for practical purposes ε = 10−4 is a

good choice.
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Having determined P̂ (j)’s, the state probabilities are calculated as follows:

P (r) =
P̂ (r)∑rmax

r=1 P̂ (r)
, for r = 1, ...rmax (29)

Below, we briefly discuss the algorithm’s steps. It starts by reading input, and precalculat-

ing and initializing various parameters (lines 1-9). Then it enters the while loop, where in

each iteration the state j is increased by 1. The determination of parameters δ (line 12) is

straightforward, as it is based on known quantities. Next, the calculation of P̂ (r) (line 13)

is based on state probabilities and LBFs of previous states, which have been already cal-

culated in previous steps. The calculation of acts,d(r) requires knowledge of current and

previous sate probabilities, which have been calculated before, and of local blockings from

previous states, which are also known at this step. The average resource share, arsts,d(r),

is determined using acts,d(r) from the previous step. Similarly, recursive calculations of

RO(c|r) (lines 16-19) require arsts,d(r), calculated in previous step and RO(c|r)’s of pre-

vious states. Finally, the local blockings, LBt
s,d(r), can also be determined (line 20), since

all other required parameters of current and previous states are already known.

As it can be observed, the computational complexity, in terms of required mathematical

operations, of the proposed algorithm is very low. Furthermore, our experiments on com-

modity hardware show algorithm running times in the order of few hundreds of millisec-

onds, which makes it highly applicable for cell dimensioning and dynamic radio resource

allocation (RRA), even under challenging conditions.

4.3 Performance Metrics

In this subsection, we derive analytical expressions for a number of important performance

metrics. In particular, we determine the CBP, RRU, and service throughput. All of them use

as a basis the state probabilities calculated in Subsection 4.2.
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To determine the CBP of service s we add all the state probabilities multiplied by the

corresponding LBFs:

CBP t
s =

rmax∑
r=1

D(s)∑
d=1

P (r)δs,d(r)LB
t
s,d(r) (30)

Recall, that the system state r essentially corresponds to the amount of occupied radio

resources in the cell at a given time. Having previously determined the state probabilities,

we can now determine the average RRU, U , which essentially corresponds to the average

system state r and is given by:

U =
rmax∑
r=1

rP (r) (31)

Finally, the throughput, T t
s , of service s calls is determined as follows:

T t
s =

∑rmax
r=1

∑D(s)
d=1 r

t
s,dac

t
s,d(r)δs,d(r)P (r)∑rmax

r=1

∑D(s)
d=1 ac

t
s,d(r)δs,d(r)P (r)

(32)

The numerator represents the average resource consumption per call of a given service-

class. It takes into account the mean number of calls of a particular service and different QoS

levels. Hence, the numerator is calculated by adding, for all states, the resource requirements

rts,d multiplied with the average number of calls, acts,d(r), per state r. The denominator

represents the average number of calls of a particular service across all system states. Hence,

T t
s , represents the average amount of radio resources occupied by a call.

5 Applicability Framework

In this section we present the applicability framework for our proposed model. Initially, we

introduce our considered C-RAN architecture that has been enhanced with the concepts of

SDN and NFV. Next, we briefly introduce the SON technology. Finally, we describe how

our approach could be applied to enable RRM by utilizing the hybrid SON technology in

C-RAN.
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5.1 The Considered C-RAN Architecture

Our considered network architecture is presented in Fig. 6. Three main parts are distin-

guished: a pool of remote radio heads (RRHs), a pool of baseband units (BBUs), and the

evolved packet core (EPC). RRHs are connected to BBUs via the common public radio in-

terface (CPRI) with a high-capacity fronthaul using microwave E-band, millimeter wave, or

optical fiber. BBUs form a centralized pool of data center resources and denoted as C-BBU.

C-BBU is connected to the EPC via the backhaul connection.

To further benefit from the advances in the areas of NFV, we consider virtualized BBU

resources (V-BBU) [40] where the BBU functionality and services have been abstracted

from the underlying infrastructure and virtualized in the form of virtual network functions

(VNFs). To realize the virtualization, a virtual machine monitor (VMM) is used to manage

the execution of BBUs. The possibility to run the control programs on general purpose

computing/storage resources [41,42], as facilitated by NFV, enables the deployment of very

flexible control functions for different mobile users (MUs), as required.

To benefit from the advances in the areas of SDN, an SDN controller (SDN-C) has been

placed on top of the VMM. The SDN-C is responsible for routing decisions and config-

ures the packet forwarding elements to forward packets to/from MUs. The applicability of

SDN to mobile networks is intended to bring a systematic abstraction and modularity of

the functions within the RAN, enabling a hierarchical control architecture in which the high

control layer controls lower layers through defining behaviors without the need to know

their specific implementation [43–45].
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Fig. 6: Reference architecture.

5.2 Self-Organizing Network

SON refers to a set of features and capabilities for automating the operation of a network

so that operating costs can be reduced and human errors minimized [46]. The incorporation

of SON features in cellular networks can support and/or replace common activities, such as

manual planning, deployment, optimization, and maintenance activities. These features can

make network operations simpler and faster by enabling more autonomous and automated

processes.

SON functions can be categorized as follows: self-planning, self-optimization, and self-

healing. Our proposed WH-CDTM model mainly targets the self-optimization objective,

but can also greatly facilitate the self-planning objective. The goal of self-optimization is as

follows. Once the network is in operational state, the self-optimization includes the set of
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processes intended to improve or maintain the network performance in terms of coverage,

capacity, and QoS by tuning the different network settings [47, 48]. SON functions might

automatically tune global operational settings of the base station (BS) (e.g., maximum trans-

mit power and channel bandwidth) as well as specific parameters corresponding to the RRM

functions (e.g., CAC thresholds and handover offsets).

5.3 Realizing a RRM function using hybrid SON

In this subsection we provide specific information on how our proposed approach could

be realized using the SON technology in C-RAN. Let us consider the hybrid SON (hSON)

where a part of the SON functionalities are centralized (cSON) at the EPC level, while others

are distributed (dSON) at the RAN level (Fig. 7). The cSON sends configuration parameters

to the dSON, whereas the dSON replies with performance measurements and alarms. The

cSON determines the configuration parameters based on a number of performance-related

objectives. In the case of the WH-CDTM, these objectives specify upper bounds for CBP

per service, a target RRU, and a target throughput per service, as defined in (30), (31), and

(32), respectively. The dSON is configured to report to the cSON at regular time intervals

various relevant measurements, such as the SNR, SNRt
s,d, that is used in (14) for deter-

mining the service load factor, LF t
s,d. The cSON, upon receiving these measurements, will

execute the recursive algorithm of Subsection 5.2 to determine the new state probabilities.

The latter will then be used to identify whether any of the objectives has been violated (e.g.,

the CBP of a particular service, as determined in (30), is above the predefined level). The

dSON is also configured to send an alarm message when the observed measurements for

a performance-related objective, such as the CBP or the RRU, are outside the acceptable

values. In response to the alarm message, the cSON will execute the recursive algorithm
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Fig. 7: Realizing a RRM function using hybrid SON in C-RAN.

of Subsection 5.2 for different sets of input parameters until the desired outcome has been

reached. The updated configuration parameters that will be sent to the dSON could be for

example the thresholds THs,d or the data rates DRt
s,d. Note that our derived algorithm has

been particularly optimized for time-constrained operations and can operate on very short

timescales (in the order of seconds).

In order to enable sharing of virtualized BBU resources among MUs, based on the ar-

chitectural model of Fig. 6, the RRM function (e.g., CAC, RRA, and handover) must be

implemented as a VNF. For this to be achieved, appropriate open control interfaces must

be established [41]. Then, the RAN customization model can be facilitated by instantiating

different VNFs of a RRM function even on a per multiple operator basis. That is, in scenar-

ios where multiple (real or virtual) mobile network operators (MNOs) are sharing the same

physical RAN infrastructure. For the realization of the NFV-based implementation, the cur-

rent management architecture can be extended to incorporate the management of virtualized

networks. In the context of 3GPP this is addressed in [49].
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6 Numerical Examples

To evaluate the applicability and the accuracy of our proposed model, we consider three

use cases. The 1st use case concerns two services and different levels of inter-cell interfer-

ence. The 2nd use case concerns three services and a fixed level of inter-cell interference.

The 3rd use case concerns two services with handover traffic and a fixed level of inter-cell

interference.

We present analytical and simulation results for the WH-CDTM. The simulation tool

used in our experiments is SIMSCRIPT III [50]. To produce simulation results we perform

each experiment 6 times and calculate the mean value with 95% confidence interval. For

comparison with other proposed models, we also present the analytical CBP results of the

W-EMLM [29].

Finally, we have tested the speed of analytical calculations on commodity hardware. In

all cases, we get running times in the order of hundreds of milliseconds. This property makes

the derived recursive algorithm highly applicable for accurate cellular network dimensioning

and RRM.

6.1 Use Case 1

Consider a cellular CDMA system that accommodates two services with the following pa-

rameters (shown in Table 1):

– 1st service: adaptive video streaming with two contingency data rates DR1,1 = 12.2

Mbps and DR1,2 = 6.2 Mbps. The selection of the rate is performed according to

threshold TH1,1 = 0.7. The activity factor for this service is a1 = 0.67 and the SNR is

SNR1 = 5 dB.
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– 2nd service: elastic data transfer with two contingency data rates of DR2,1 = 64 Mbps

andDR2,2 = 32 Mbps, with threshold TH2,1 = 0.6. The activity factor for this service

is a2 = 0.8 and the SNR is SNR2 = 4 dB.

We generate traffic for both services based on 8 different traffic sets, as shown in Table

2. Each value of the table represents the total offered traffic-load of a particular service in

Erlangs. We consider thermal noise Tnoise = −174 dBm/Hz and two levels of inter-cell

interference: E[Iinter] = 3× 10−18 mW and E[Iinter] = 5× 10−18 mW.

In Figs. 8 and 9 we present our experimental CBP results for both the WH-CDTM and

the W-EMLM versus the offered traffic. Figure 8 shows the comparative results for the 1st

service, whereas Fig. 9 the results for the 2nd service. For the WH-CDTM, we present both

analytical and simulation results. The fact that analytical and simulation results are very

close to each other, indicates that introduced approximation errors in the WH-CDTM are

negligible and the accuracy of the analytical model is very satisfactory. This is especially

true when the traffic-load is small or moderate. Also, even when increasing the inter-cell

interference, the model’s accuracy remains satisfactory.

The comparison of the WH-CDTM with the W-EMLM in Figs. 8 and 9, reveals that the

WH-CDTM can achieve lower CBP compared to the W-EMLM. The difference is bigger in

the cases of high traffic. This is because when the offered traffic is high and the population

of calls in the system increases, the W-EMLM is not able to reduce the fixed amount of

resources occupied by in-service calls. On the other hand, the WH-CDTM by utilizing the

rate thresholds, is able to accommodate more calls with reduced resources. Another obser-

vation is that the WH-CDTM significantly outperforms the W-EMLM when the inter-cell

interference is low.
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Table 1: Use case 1: Service parameters.

1st service 2nd service

Description Adaptive video streaming Elastic data transfer

Data rate (Mbps)
DR1,1 = 12.2

DR1,2 = 6.2

DR2,1 = 64

DR2,2 = 32

Rate threshold TH1,1 = 0.7 TH2,1 = 0.6

Activity a1 = 0.67 a2 = 0.8

SNR (dB) SNR1 = 5 SNR2 = 4

6.2 Use Case 2

Consider a cellular CDMA system that accommodates three services with the following

parameters (shown in Table 3):

– 1st service: adaptive video streaming with two contingency data rates DR1,1 = 12.2

Mbps and DR1,2 = 8.4 Mbps. The selection of the rate is performed according to

threshold TH1,1 = 0.7. The activity factor for this service is a1 = 0.5 and the SNR is

SNR1 = 5 dB.

– 2nd service: elastic data transfer with two contingency data rates of DR2,1 = 64 Mbps

andDR2,2 = 32 Mbps, with threshold TH2,1 = 0.6. The activity factor for this service

is a2 = 1.0 and the SNR is SNR2 = 4 dB.

– 3rd service: adaptive video streaming with three contingency data rates DR3,1 = 144

Mbps, DR3,2 = 128 Mbps, and DR3,2 = 112 Mbps. The selection of the rate is
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Table 2: Use case 1: Offered traffic (erl).

1st service 2nd service

1 5 2.5

2 10 4.0

3 15 5.5

4 20 7.0

5 25 8.5

6 30 10.0

7 35 11.5

8 40 13.0

performed according thresholds TH3,1 = 0.4 and TH3,2 = 0.6. The activity factor for

this service is a3 = 0.3 and the SNR is SNR3 = 3 dB.

We generate traffic for the three services based on 8 different traffic sets, as shown in

Table 4. Each value of the table represents the total offered traffic-load of a particular service

in Erlangs. We consider thermal noise Tnoise = −174 dBm/Hz and inter-cell interference

E[Iinter] = 3× 10−18 mW.

In Figs. 10 and 11 we present our experimental CBP results for the WH-CDTM and

the W-EMLM versus the offered traffic. Figure 10 shows the comparative results for the 1st

and the 3rd services, whereas Fig. 11 the results for the 2nd service. For the WH-CDTM, we

present both analytical and simulation results. We observe that the introduced approximation
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Fig. 8: Call blocking probabilities for the WH-CDTM and the W-EMLM: use case 1 (1st

service).

errors are negligible and the accuracy of the analytical model is very satisfactory in all cases.

Also, the comparison of Figs. 10 and 11, reveals that the WH-CDTM can achieve lower

CBP compared to the W-EMLM. We observe that the difference is bigger in the cases of

high traffic.

6.3 Use case 3

Consider a cellular CDMA system that accommodates two services and handover traffic

with the following parameters (shown in Table 5):

– 1st service: fixed-rate live video streaming with data rate DR1,1 = 144 Mbps. The

activity factor for this service is a1 = 0.67 and the SNR is SNR1 = 3 dB.
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Fig. 9: Call blocking probabilities for the WH-CDTM and the W-EMLM: use case 1 (2nd

service).

– 2nd service: elastic data transfer with two contingency data rates of DR2,1 = 384

Mbps and DR2,2 = 320 Mbps, with threshold TH2,1 = 0.6. The activity factor for

this service is a2 = 1.0 and the SNR is SNR2 = 4 dB.

We generate traffic for both services based on 6 different traffic sets, as shown in Table

6. Each value of the table represents the total offered traffic-load of a particular service

in Erlangs. We consider thermal noise Tnoise= −174 dBm/Hz and inter-cell interference

E[Iinter] = 2 × 10−18 mW. The CAC thresholds for new and handover calls are CLN
max

= 0.75 and CLH
max = 0.8, respectively.

Figures 12 and 13 present our experimental CBP results for the two services, for both

new and handover traffic, respectively. We observe that the analytical and simulation results
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Table 3: Use case 2: Service parameters.

1st service 2nd service 3rd service

Description Adaptive video streaming Elastic data transfer Adaptive video streaming

Data rate (Mbps)

DR1,1 = 12.2

DR1,2 = 8.4

DR2,1 = 64

DR2,2 = 32

DR3,1 = 144

DR3,2 = 128

DR3,3 = 112

Rate threshold TH1,1 = 0.7 TH2,1 = 0.6

TH3,1 = 0.4

TH3,2 = 0.6

Activity a1 = 0.5 a2 = 1.0 a3 = 0.3

SNR (dB) SNR1 = 5 SNR2 = 4 SNR3 = 3

are very close to each other. This shows that accuracy of the analytical model is very satis-

factory. We also observe that, due to higher CAC thresholds, the CBP for handover traffic is

lower compared to the CBP of new traffic.

7 Conclusion and Future Work

In this paper, we present a novel teletraffic model for heterogeneous CDMA-based cellular

systems. Different QoS requirements as well as the handover traffic have been explicitly

incorporated into the model. The call arrival process has been modelled as a Poisson dis-

tribution and a complete radio resource sharing policy is assumed. Handover calls, having

relatively low CAC threshold, receive higher priority compared to new calls. The cellular

system has been described as a continuous-time Markov chain and provides an efficient
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Table 4: Use case 2: Offered traffic (erl).

1st service 2nd service 3rd service

1 2 1 0.75

2 6 2 1.0

3 10 3 1.25

4 14 4 1.5

5 18 5 1.75

6 22 6 2.0

7 26 7 2.25

8 30 8 2.5

expression for state probabilities. Next, important performance metrics, such as call block-

ing probabilities, radio resources utilization, and service throughput, can be determined. We

present an applicability framework for C-RAN, which can exploit our proposed approach

using SDN, NFV, and SON technologies. We evaluate the accuracy of our model using sim-

ulations and find it very satisfactory. Finally, experiments on commodity hardware show

algorithm running times in the order of few hundreds of milliseconds. This property makes

our algorithm highly applicable for accurate cellular network dimensioning and radio re-

source management.

As a future work we intend to extend the proposed model to include both the Poisson and

the batched Poisson traffic types. When the connection requests arrive in batches, a batch

can be either fully or partially accepted in the cell, depending on the availability of radio
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Table 5: Use case 3: Service parameters.

1st service 2nd service

Description Live video streaming Elastic data transfer

Data rate (Mbps) DR1,1 = 144

DR2,1 = 384

DR2,2 = 320

Rate threshold — TH2,1 = 0.6

Activity a1 = 0.67 a2 = 1.0

SNR (dB) SNR1 = 3 SNR2 = 4

Table 6: Use case 3: Offered traffic (erl).

1st service 1st service 2nd service 2nd service

(new) (handover) (new) (handover)

1 1.0 0.1 0.2 0.05

2 1.25 0.2 0.3 0.1

3 1.5 0.3 0.4 0.15

4 1.75 0.4 0.5 0.2

5 2.0 0.5 0.6 0.25

6 2.25 0.6 0.7 0.3
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Fig. 10: Call blocking probabilities for the WH-CDTM and the W-EMLM: use case 2 (1st

and 3rd services).

resources. In the second case, some calls of the batch will be serviced and the rest will be

blocked. Other possible extensions of our model are the incorporations of different resource

sharing policies, such as the bandwidth reservation (BR) and the multiple fractional channel

reservation (MFCR) policies. The BR policy introduces a service priority to benefit high-

speed calls and can be used to achieve CBP equalization among calls of different services

[51, 52]. On the other hand, the MFCR policy enables a fine-grained QoS assessment by

allowing the reservation of real (not integer) number of channels [53, 54].
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Fig. 11: Call blocking probabilities for the WH-CDTM and the W-EMLM: use case 2 (2nd

service).

References

1. Shuminoski, T. and Janevski, T. (2015). 5G mobile terminals with advanced QoS-based user-centric ag-

gregation (AQUA) for heterogeneous wireless and mobile networks. Wireless Networks 22(5), 1553-1570.

2. Ericsson (2015). Cloud RAN: The benefits of virtualisation, centralisation, and coordination. Ericsson

White Paper.

3. Fujitsu (2014). The benefits of cloud-RAN architecture in mobile network expansion. Fujitsu White Paper.

4. Kyriazis, G. and Rouskas, A. (2016). Design and operation of energy efficient heterogeneous mobile

networks. Wireless Networks 22(6), 2013-2028.

5. Galinina, O., Andreev, S., Turlikov, A., and Koucheryavy, Y. (2014). Optimizing energy efficiency of a

multi-radio mobile device in heterogeneous beyond-4G networks. Performance Evaluation 78, 18-41.

6. Peng, C., Lee, S.-B., Lu, S., and Luo, H. (2014). GreenBSN: Enabling energy-proportional cellular base

station networks. IEEE Transactions on Mobile Computing 13(11), 2537-2551.



40 Vassilios G. Vassilakis et al.

Fig. 12: Call blocking probabilities for the WH-CDTM: use case 3 (new traffic).

7. Abdulova, V. and Aybay, I. (2015). Performance evaluation of call admission control schemes with new

call reattempts in wireless cellular networks. Wireless Personal Communications 84(4), 1-21.

8. Hwang, H.Y., Lee, H., Roh, B., and Kim, S. (2016). Joint resource allocation, routing and CAC for uplink

OFDMA networks with cooperative relaying. Wireless Networks 22(5), 1493-1503.

9. Chavez-Santiago, R., Szydelko, M., Kliks A., Foukalas, F., Haddad, Y., Nolan, K. E., Kelly, M. Y., Ma-

sonta, M. T., and Balasingham, I. (2015). 5G: The convergence of wireless communications. Wireless

Personal Communications 83(3), 1-26.

10. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K., Stavroulaki, V., Lu, J., Xiong, C.,

and Yao, J. (2013). 5G on the horizon: Key challenges for the radio-access network. IEEE Vehicular Tech-

nology Magazine 8(3), 47-53.

11. Al-Junaid, A.F. and Al-Kamali, F.S. (2016). Efficient wireless transmission scheme based on the recent

DST-MC-CDMA. Wireless Networks 22(3), 813-824.

12. Wang, Z., Fan, S., and Rui, Y. (2014). CDMA-FMT: A novel multiple access scheme for 5G wireless

communications. In: IEEE 19th International Conference on Digital Signal Processing (DSP), 898-902.



Title Suppressed Due to Excessive Length 41

Fig. 13: Call blocking probabilities for the WH-CDTM: use case 3 (handover traffic).

13. Hossain, E., Rasti, M., Tabassum, H., and Abdelnasser, A. (2014). Evolution toward 5G multi-tier cel-

lular wireless networks: An interference management perspective. IEEE Wireless Communications 21(3),

118-127.

14. Ravindrababu, J., Rao, K., and Rao, R. (2014). Interference and complexity reduction in multi-stage

multi-user detection in DS-CDMA. Wireless Personal Communications 79(2), 1385-1400.

15. Mahadevappa, R. H. and Proakis, J. G. (2002). Mitigating multiple access interference and intersym-

bol interference in uncoded CDMA systems with chip-level interleaving. IEEE Transactions on Wireless

Communications 1(4), 781-792.

16. Wang, H., Rosa, C., and Pedersen, K.I. (2016). Dual connectivity for LTE-advanced heterogeneous net-

works. Wireless Networks, 22(4), 1315-1328.

17. Aguiar, E. et al. (2014). A real-time video quality estimator for emerging wireless multimedia systems.

Wireless Networks 20(7), 1759-1776.

18. Su, G.M., Su, X., Bai, Y., Wang, M., Vasilakos, A.V., and Wang, H. (2015). QoE in video streaming over

wireless networks: Perspectives and research challenges. Wireless Networks 22(5), 1571-1593.



42 Vassilios G. Vassilakis et al.

19. Vassilakis, V. G., Moscholios, I. D., and Logothetis, M. D. (2008). Call-level performance modelling of

elastic and adaptive service-classes with finite population. IEICE Transactions on Communications 91(1),

151-163.

20. Kaufman, J. S. (1981). Blocking in a shared resource environment. IEEE Transactions on Communica-

tions 29(10), 1474-1481.

21. Roberts, J. W. A service system with heterogeneous user requirements. Performance of Data Communi-

cations Systems and Their Applications, Amsterdam, The Netherlands: North-Holland 29(10), 423-431.

22. Yang, S.-T. and Ephremides, A. (1996). On the optimality of complete sharing policies of resource

allocation. In: IEEE Conference on Decision and Control, 299-300.

23. Kaufman, J. S. (1992). Blocking in a completely shared resource environment with state dependent

resource and residency requirements. In: Eleventh Annual Joint Conference of the IEEE Computer and

Communications Societies INFOCOM’92., 2224-2232.

24. Kaufman, J. S. (1992). Blocking with retrials in a completely shared resource environment. Performance

Evaluation 15(2), 99-116.

25. Moscholios, I. D., Logothetis, M. D., and Kokkinakis, G. K. (2002). Connection-dependent threshold

model: A generalization of the Erlang multiple rate loss model. Performance Evaluation 48(1), 177-200.

26. Vassilakis, V. G., Moscholios, I. D., and Logothetis, M. D. (2007). Call-level performance modelling of

elastic and adaptive service-classes. In: IEEE International Conference on Communications (ICC), 183-

189.

27. Vassilakis, V. G., Moscholios, I. D., and Logothetis, M. D. (2012). The extended connection-dependent

threshold model for call-level performance analysis of multi-rate loss systems under the bandwidth reser-

vation policy. International Journal of Communication Systems 25(7), 849-873.

28. Holma, H. and Toskala, A.(2006). WCDMA for UMTS, Chichester: John Wiley & Sons.
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