
UWL REPOSITORY

repository.uwl.ac.uk

An infrastructure service recommendation system for cloud applications with

real-time QoS requirement constraints

Zhang, Miranda, Ranjan, Rajiv, Menzel, Michael, Nepal, Surya, Strazdins, Peter, Jie, Wei ORCID: 

https://orcid.org/0000-0002-5392-0009 and Wang, Lizhe (2017) An infrastructure service 

recommendation system for cloud applications with real-time QoS requirement constraints. IEEE 

Systems Journal, 11 (4). pp. 2960-2970. ISSN 1932-8184 

http://dx.doi.org/10.1109/JSYST.2015.2427338

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/1731/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: 

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


1

An Infrastructure Service Recommendation System
for Cloud Applications with Real-time QoS

Requirement Constraints
Miranda Zhang, Rajiv Ranjan, Michael Menzel, Surya Nepal, Peter Strazdins,

Wei Jie, and Lizhe Wang, Senior Member, IEEE

Abstract—The proliferation of cloud computing has revolu-
tionized the hosting and delivery of Internet-based application
services. However, with the constant launch of new cloud services
and capabilities almost every month by both big (e.g., Amazon
Web Service and Microsoft Azure) and small companies (e.g.,
Rackspace and Ninefold), decision makers (e.g., application de-
velopers and chief information officers) are likely to be over-
whelmed by choices available. The decision-making problem is
further complicated due to heterogeneous service configurations
and application provisioning QoS constraints. To address this hard
challenge, in our previous work, we developed a semiautomated,
extensible, and ontology-based approach to infrastructure service
discovery and selection only based on design-time constraints (e.g.,
the renting cost, the data center location, the service feature, etc.).
In this paper, we extend our approach to include the real-time
(run-time) QoS (the end-to-end message latency and the end-
to-end message throughput) in the decision-making process. The
hosting of next-generation applications in the domain of online
interactive gaming, large-scale sensor analytics, and real-time
mobile applications on cloud services necessitates the optimization
of such real-time QoS constraints for meeting service-level agree-
ments. To this end, we present a real-time QoS-aware multicriteria
decision-making technique that builds over the well-known ana-
lytic hierarchy process method. The proposed technique is appli-
cable to selecting Infrastructure as a Service (IaaS) cloud offers,
and it allows users to define multiple design-time and real-time
QoS constraints or requirements. These requirements are then
matched against our knowledge base to compute the possible best
fit combinations of cloud services at the IaaS layer. We conducted
extensive experiments to prove the feasibility of our approach.

L. Wang was supported by the Natural Science Foundation of Hebei Province
under Grant F2014203093. The work of R. Ranjan was supported by the
Australia–India Strategic Research Grant titled “Innovative Solutions for Big
Data and Disaster Management Applications on Clouds” under Grant AISRF-
08140. (Corressponding author: Lizhe Wang.)

M. Zhang and P. Strazdins are with the Commonwealth Scientific and
Industrial Research Organisation, Dickson, ACT 2602 Australia, and also with
the Australian National University, Canberra, ACT 2601 Australia (e-mail:
miranda.zhang.q@gmail.com; Peter.Strazdins@cs.anu.edu.au).

R. Ranjan and S. Nepal are with the Commonwealth Scientific and Industrial
Research Organisation, Dickson, ACT 2602 Australia (e-mail: rranjans@gmail.
com; Surya.Nepal@csiro.au).

M. Menzel is with the Karlsruhe Institute of Technology, 76021 Karlsruhe,
Germany (e-mail: michael.menzel@kit.edu).

W. Jie is with the School of Computing and Technology, University of West
London, London W5 5RF, U.K. (e-mail: jie.wei@hotmail.co.uk).

L. Wang is with the School of Information Science and Engineering, Yanshan
University, Hebei 066004, China (e-mail: Lizhe.Wang@computer.org).

Index Terms—Decision support, optimization, service selection,
web-based services.

I. INTRODUCTION

IN a cloud computing model, users access services according
to their requirements without the need to know where the

services are hosted or how they are delivered. The increas-
ing number of information technology vendors (e.g., Amazon,
GoGrid, and Rackspace) is promising to offer applications, stor-
age, and computation resources as cloud hosting services. As a
result, a large number of competing services are available for
users [1] to choose from. Naturally, it is challenging for users to
select the right services that meet their QoS requirements in the
service cycle from selection and deployment to orchestration
(e.g., determining an optimal web service when making service
selection, identifying suitable virtual machine (VM) servers for
deploying web service instances, etc.) [2]. Effective service
recommendation techniques are becoming important to help
users (including developers) in their decision-making processes
for critical application developments and deployments [3]. Such
applications can include interactive games, real-time social
networks, data analytics, scientific computing, business, the
Internet of Things (IoT), and other mobile applications, as
discussed in the following. All these applications have different
needs and requirements.

A. Motivation

We next provide a few examples to demonstrate different
types of applications with the need to cater for real-time QoS
requirements during their deployment lifecycle.

Interactive Online Games: In the gaming industry, World
of Warcraft counts over six million unique players on a daily
basis. The operating infrastructure of this massively multiplayer
online role-playing game (RPG) comprises more than 10 000
computers [4]. Depending on the game, typical response times
to ensure fluent play must remain below 100 ms in online first-
person shooter action games [5] and below 1–2 s for RPGs.
A good game experience is critical for keeping the players
engaged, and it has an immediate consequence on the earnings
and popularity of game operators. Failing to deliver timely
simulation updates leads to a degraded game experience and
triggers player departure and account closures [6]. A start-up
gaming company with no existing infrastructure could launch a

mailto: miranda.zhang.q@gmail.com
mailto: Peter.Strazdins@cs.anu.edu.au
mailto: rranjans@gmail.com
mailto: rranjans@gmail.com
mailto: Surya.Nepal@csiro.au
mailto: michael.menzel@kit.edu
mailto: jie.wei@hotmail.co.uk


2

new game using a public cloud infrastructure as cloud services
offer the flexibility to scale on demand with no upfront in-
vestment. Using cloud services, game application services can
be dynamically allocated or deallocated according to demand
fluctuations. Game companies can also better serve diverse
international users with the global presence of data centers
owned by cloud providers.

Real-Time Mobile Applications: There is an explosion of
(primarily mobile-based) communication applications. For ex-
ample, WhatsApp, which was acquired by Facebook, has
450 million users [7]; Viber, which was acquired by Rakuten,
has 200 million users [8]; and WeChat, which is a Chinese rival,
has 270 million users [9]. For these applications, low latency
(a QoS constraint) is very important for the real-time collabora-
tion experience. For example, video conferencing has a limit
of about 200–250 ms of delay for a conversation to appear
natural [10]. These applications have similar requirements as
game applications. They require a large number of servers to
support millions of users, and they need optimization on the
latency, the speed, and the throughput. It is worth noting that,
even for a generic web application, there are experiments in
delaying the page in increments of 100 ms, and they found that
even very small delays would result in substantial and costly
drops in revenue [10].

Big Data, IoT, and eScience: We are closing in on the
transfer of a zettabyte of data annually [11], which results
from Internet searches, social media, business transactions,
and content distribution. Similarly, scientific disciplines in-
creasingly produce, process, and visualize data sets gath-
ered from sensors [12]. If the prediction holds true, then
the Square Kilometer Array radio telescopes will transmit
400 000 PB (∼400 EB) per month or a whopping 155.7 TB/s
[13]. Furthermore, the European Space Agency will launch
several satellites in the next few years [14], which will col-
lect data about the environment, such as air temperatures
and soil conditions, and stream that data back in real time
for analysis [44]–[46]. Similarly, in the finance industry, the
New York Stock Exchange creates 1 TB of market and refer-
ence data per day, covering the use and exchange of financial
instruments. On the other hand, Twitter feeds generate 8 TB of
data per day of social interactions [15]. Such “Data Explosions”
have led to research issues such as how to effectively and opti-
mally manage and analyze such large amount of data. This issue
is also known as the big data problem [16], which is defined
as the practice of collecting complex data sets so large that
they become difficult to analyze and interpret manually or using
on-hand data management applications (e.g., Microsoft Excel).
Both storing and analyzing the data require a massive amount
of storage capacity and processing power. Companies and/or
institutions may want to offload the complexity of managing a
hardware infrastructure to cloud providers who are specialized
in that, thus eliminating the need to wait for facilities to be built.

Others: Apart from the aforementioned scenarios, there are
many more cases where our proposed solution would be useful.

A stock investor, an individual, or a firm may want to test
out a new strategy for monitoring and analyzing data that
automatically triggers an alert when a certain price pattern or
keyword is identified in the source data. This may require a lot

of compute resources periodically. System administrators and
developers may need a lot of simulated clients from all around
the world for a website load testing before its official release.

A bitcoin [17] (or some other similar cryptocurrencies [18])
miner may decide to invest on some additional resource in
mining when the price of the currency is high and stop the
mining when the profit no longer justifies the expense.

B. Problem

Although the elastic nature of cloud services makes it suit-
able for provisioning the aforementioned applications, the het-
erogeneity of cloud service configurations and their distributed
nature raises some serious technical challenges. In particular,
we deal with the following research problems.

Selecting Optimal Service Configuration: The cloud com-
puting landscape is evolving with multiple and diverse options
for compute (also known as VMs) and storage services. Hence,
application owners are facing a daunting task when trying to
select cloud services that can meet their constraints. According
to Burstorm [19], there are over 426 various compute and
storage service providers with deployments in over 11 072
locations. Even within a particular provider there are different
variations of the services. For example, Amazon Web Service
(AWS) has 674 different offerings differentiated by price, QoS
features, and location [1]. In addition, every quarter, they add
about four new services, change business models (price and
terms), and sometimes even add new locations. To be able to
select the best mix of service offerings from an abundance of
possibilities, application owners must simultaneously consider
and optimize complex dependence and heterogeneous sets of
criteria (price, features, location, QoS, etc.). For instance, it
is not enough to just select an optimal cloud storage service;
corresponding computing capabilities are essential to guarantee
that one is able to process the data as fast as possible while
minimizing the cost.

Incorporating Network QoS Awareness in Service Selection
Process: As cloud data centers are distributed across the In-
ternet, the network QoS (the data transfer latency) varies. This
variation is dependent on the location of the data center and the
location of the input data stream. Current approaches do not
differentiate between the QoS of compute and storage services
and the QoS of the wide-area network that interconnects the
input data stream sources to the cloud data centers. This raises
the research question as to how to optimize the process of
choosing the best compute and storage services, which are not
only optimized in terms of price, availability, and processing
speed but also offer a good QoS (e.g., the network throughput
and the response delivery latency).

C. Our Contributions

We propose a new technique that aids in the network-QoS-
aware selection of cloud services for provisioning mobile (or
a device with Internet access but limited processing capability
and storage), real-time, and interactive applications. We build
upon our previous work [3], where we have developed an
automated approach, along with a unified domain model that
is capable of fully describing infrastructure services in cloud



TABLE I
BRIEF COMPARISON OF CLOUDRECOMMENDER WITH OTHER EXISTING SOLUTIONS

computing [20] [21]. Although our previous approach sup-
ports simple cloud infrastructure service selection based on a
declarative Structured Query Language (SQL), it does not take
into account real-time and variable network QoS constraints.
Furthermore, a declarative-SQL-based selection approach only
allows users to compare and select a cloud service based on a
single criterion (e.g., the total cost, the maximum size limit for
storage, and the memory size for compute instance). In other
words, our previous approach was not capable of supporting
a utility function that combines multiple selection criteria per-
taining to storage, compute, and network services. In this paper,
we make the following concrete contributions.

1) Problem Formulation: We provide a clear formulation
of the research problem by identifying the most important
cloud service selection criteria relevant to specific real-time
QoS-driven applications, selection objectives, and cloud service
alternatives.

2) Multicriteria QoS Optimization: We adopt and imple-
ment an analytic hierarchy process (AHP)-based decision-
making (service selection) technique that handles multiple
quantitative (i.e., numeric) and qualitative (a descriptive and
nonnumeric, such as location, CPU architecture, i.e., a 32- or
64-bit operating system) QoS criteria. The AHP determines
the relative importance of criteria to each user by conducting
pairwise comparisons.

3) Network-Aware QoS Computation: We implement a
generic service that helps in collecting network QoS values
from different points on the Internet (modeling a big data source
location) to the cloud data centers.

This paper is structured as follows. In Section II, we survey
the state of the art in cloud service selection and comparison
techniques. We also highlight their significant limitations and
their relationship and dependence on some of the prior concepts
from other fields in computing. In Section III, we present the
extension we made to our previously proposed decision-making
framework. We also explain the benefits of applying the AHP
and the importance of considering the QoS. In Section IV,
we present evaluations (conducted in a real-world context) of
the proposed decision support tool and techniques, which will
automate and map users’ specified application requirements to
specific cloud service configurations. In Section V, we conclude
and point out open research questions and future directions in
this increasingly important area.

II. BACKGROUND AND RELATED WORK

Although branded calculators are available from individual
cloud providers, such as Amazon [22] and Azure [23], for

calculating the service leasing cost, it is not easy for users to
generalize their requirements to fit different service offers (with
various quota and limitations), let alone compute and compare
costs. A number of research [24] and commercial projects
(mostly in their early stages) provide simple cost calculation
or benchmarking and status monitoring, but none is capable of
consolidating all aspects and providing a comprehensive rank-
ing of infrastructure services. For instance, CloudHarmony [25]
provides up-to-date benchmark results without considering the
cost, and Cloudorado [26] calculates the price of Infrastructure
as a Service (IaaS)-level CPU services based on static features
(e.g., the processor type, the processor speed, the input/output
capacity, etc.) while ignoring dynamic QoS features (e.g., the
latency, the throughput, etc.). Yuruware [27] used to provide
a compare service during its beta version in 2012 (now re-
moved or integrated into another service). Although they aim
to provide an integrated tool with monitoring and deploying
capabilities, they are still under development. One other similar
system is Swinburne University’s Smart Cloud Broker Service
[28]; from the screencast they released, we can tell that their
benchmarking is done in real time, which means that users
have to wait for the results to come back. We have considered
this kind of situation but decided to collect the benchmarking
result beforehand. This is because this way, no matter how
many cloud providers users want to compare against, they can
still get the result with minimum (or no) waiting time. Another
reason we choose to do it this way is because, at any particular
point in time, the network benchmark result is not conclusive as
performance fluctuates during time; thus, we use an aggregated
average, which is a more reliable overall indication.

To further distinguish ourselves from others, we offer the
following two innovative features when ranking, selecting,
and comparing various vendor services, i.e., allowing users to
choose to include the QoS requirements during comparison and
applying the AHP to aggregate numerical measurements and
nonnumerical evaluation when users want to take into account
mixed qualitative (e.g., the hosting region and the operating
system type) and quantitative criteria. Results are personalized
according to each user’s preferences because the AHP takes
users’ perceived relative importance of criteria (pairwise com-
parisons) as inputs.

Table I shows a brief comparison of CloudRecommender
with other existing products we discussed previously. We have
to clarify that we are more interested in the first three features.
Yuruware had claimed to have comparison features in the past
but were removed later.

Menzel and Ranjan [29] introduced a framework called
“CloudGenius” that supports a decision-making process on web



4

server migration into the cloud. Our system supplements and
partially extends their work. Although CloudGenius focuses on
VM selection, which means that it considers the software re-
quirements (i.e., the operating system version and the supported
languages), our study focuses more on the hardware require-
ments (i.e., the size of memory and hard disk). Although we
have borrowed the idea of using the AHP (with simplification)
for rank calculation from CloudGenius, we used it differently as
we applied the method in our declarative program that mainly
handles data and calculation with a database and the SQL. That
means that it may be easier to scale out the solution using Hive
[30] with minimal change as opposed to rewriting the java code
to fit the MapReduce framework [31].

Queuing theory is one of the much studied methods in QoS
modeling and control from the infrastructure system adminis-
trator perspective [32], but our case is different because we have
no control of the infrastructure. Since we can only measure the
QoS, we collected the statistics using the “speedtest” service
provided by CloudHarmony due to the easy adoption and ever-
evolving nature of this service. Klein et al. [33] proposed a
highly theoretical model based on the Euclidean distance for
estimating the latency, which we believe have omitted too many
details to be practically accurate. However, we can use this
model to estimate the latency when QoS data are not available
for a new client location.

There are methods proposed for network-aware service com-
position [34]–[36] considering a generic web service, i.e., at the
Software-as-a-Service and Platform-as-a-Service levels. How-
ever, the compatibility constraints at the IaaS level are different
from those at the web service. For example, generic web
services are distinguished by their features, QoS, and prices.
It does not make sense to include two exact same services in
one composition as one job does not need to be done twice, but
using multiple quantities of an IaaS offer is perfectly valid.

III. SYSTEM DESIGN

This section will describe our system’s architecture and give
details on how it is realized, i.e., formulas on how the weight,
the rating, and the cost are calculated. We keep all the formulas
in Section III-A. In the previous section, we provide the illustra-
tions of the overall system design and include any details worth
discussing that does not fit into the previous sections.

A. Formal Model

To give a conceptual explanation of our approach to address
the QoS optimization problem, we define a formal model in
this section. Based on the formal model, we can describe the
involved concepts that are incorporated in the algorithm pre-
sented later. In particular, we define a cost estimation function
using resource utilization estimations and a cost–benefit-ratio-
based evaluation function that considers weights. Furthermore,
we present a pairwise comparison method to calculate normal-
ized weights. For more precise resource utilization estimations,
we show how variable resource utilization patterns can be
incorporated into cost estimation.

TABLE II
SYMBOLS USED IN THE FORMULAS

1) Cost Estimation: Let a be the resource usage of a partic-
ular resource from a data center location of a cloud provider.
For example, we can use astorage,any,any = 50 GB to represent
a user’s need to store 50 GB of data in the cloud. The symbols’
meanings are summarized in Table II. The following equation
means that the usage of compute resource r from provider c at
location l is between 0 and n:

ar,c,l ∈ {0, 1, . . . , n}. (1)

This value is usually suggested by users. Our assumption is that
users may have a rough estimate of how much resources they
might need. To calculate the cost (represented by function ℘)
for one kind of resource used at one point in time, we multiply
its usage with the corresponding unit price (P) as

℘(t) = ar,c,lPr,c,l. (2)

After initial filtering in which options are appropriate for
users, we can calculate the total (minimum) price per unit time
for the desired resource(s) (assuming a constant resource usage
pattern throughout time) as follows:

ar,c,lPr,c,lTr,c,l. (3)

We assume that users will choose the time period (T ) they want
to estimate the price for, e.g., 1 h or 30 days.

2) Cost–Benefit Ratio: In our decision-making framework,
we consider the following QoS statistics: the download latency
(ζ), the download speed (D), and the upload speed (μ). These
characteristics are important for end users’ experience and
satisfaction. It is possible to have options that have a small
price difference or when having high quality service is more
important than saving money. Hence, we offer to calculate the
cost–benefit ratio for the resources requested as follows:

w1

∑
ac,l,rPc,l,rTc,l,r + w2ζ̄c,l,r
w3μ̄c,l,r + w4D̄c,l,r

. (4)



Fig. 1. Criteria taken into consideration during comparison. There are two
categories, i.e., the benefit and the cost. “Benefit” groups the “good” criteria
that are meant to be maximized. Similarly, “Cost” groups the “bad” criteria to
be minimized. The actual values to be collected and stored are at the “leaf” (i.e.,
a node/criterion with no children) of the “tree.” For example, under Benefit,
the numeric values are collected for the “Download/Upload Speed,” the “CPU
Speed,” and the “Number of Cores.” “QoS to maximize” is the parent/big
category that Download/Upload Speed belongs to, and there is no value stored
for this node. (a) Criteria to maximize. (b) Criteria to minimize.

Since users are likely to select a combination of compute
storage and network services, the summation over resources
when calculating the cost is done.

Note that the network QoS values of both compute and
storage services are collected and then separately stored since a
user maybe only interested in one of the services. For example,
transferring files from (and to) the compute instance’s relatively
“local” mounted storage is different from downloading or up-
loading files from or to a dedicated-storage-only service (like
AWS S3 [37]). In case a user selects both, we use the average.
For instance, in (4), we used D̄ to denote that we take the
average of Dcompute (the download speed measured from the
compute service) and Dstorage (the download speed measured
from the storage service).

Symbol w represents the weight, which measures users’
perceived importance on a parameter, and w1 + w2 = 1 and
w3 + w4 = 1 means that the sum of the weights of the benefits
and the cost each equals to 1. Fig. 1 shows the criteria to be
optimized. They are categorized into two groups, i.e., to be
maximized or to be minimized.

As we named this ratio the cost–benefit ratio, we put the
cost on the numerator and the benefit in the denominator. As a
result, we will be looking for a smaller ratio as a better option.

TABLE III
ABSOLUTE VALUE AND CORRESPONDING DESCRIPTIVE SCALE

REPRESENTING THE RELATIVE IMPORTANCE

Reversing the numerator and the denominator can still work,
which just means bigger ratios indicating a better option.

3) Weight Computed by Pairwise Comparison: The weight
is calculated based on the AHP’s pairwise comparison method.
We choose the commonly used scale [38], [39] shown in
Table III. In case a user chooses to treat all options equally,
(4) becomes

0.5
∑

ar,c,lPr,c,lTr,c,l + 0.5ζc,l,r
0.5μ̄c,l,r + 0.5D̄c,l,r

. (5)

Otherwise, the weight is calculated, as shown in Table IV.
The meaning of the symbols is explained in Table V.

The fully fledged AHP method consists of repeated matrix
squaring to compute the eigenvector as follows:

⎡
⎢⎢⎣

y1

τ
y2

τ
y3

τ
y4

τ

⎤
⎥⎥⎦ . (6)

Every time the eigenvector gains a tiny improvement on the
precision at the cost of expensive computation, this is supposed
to be repeated until no big enough difference (i.e., up to four
decimal places) can be observed. In our case, we noticed that
the improvement is so small that this rule can be relaxed to omit
iterations on matrix squaring.

For example, a user may have a preference as that shown in
Table VI. It will produce preference matrix M1, i.e.,

M1 =

⎡
⎢⎢⎣
1 1

3
1
5

1
5

3 1 3 5
5 1

3 1 3
5 1

5
1
3 1

⎤
⎥⎥⎦ . (7)

Table VII shows the step breakdown to compute the eigen-
vector from (7) before matrix squaring.

The result eigenvector would be

v1 =

⎡
⎢⎢⎣
0.0566
0.4248
0.3050
0.2135

⎤
⎥⎥⎦ . (8)



6

TABLE IV
MATRIX ILLUSTRATING HOW TO TURN THE PAIRWISE PREFERENCE INTO THE GLOBAL WEIGHT

TABLE V
SYMBOLS USED IN THE WEIGHT EXPLANATION

TABLE VI
EXAMPLE USER PREFERENCE

TABLE VII
EXAMPLE EIGENVECTOR CALCULATION

If we square matrix M1, we get

M2 =

⎡
⎢⎢⎣

4 58
75

22
15

8
3

46 4 124
15

98
5

26 44
15 4 26

3
184
15

98
45

34
15 4

⎤
⎥⎥⎦ (9)

The eigenvector calculated from M2 is
⎡
⎢⎢⎣
0.0597
0.5223
0.279
0.1389

⎤
⎥⎥⎦ . (10)

The change in the value in the new eigenvector is very
small, and this is why we decide to omit this step and just

use the original weight values (v1). In addition, we assume
that the preferences for the cost and the latency are 0.8 and
0.2, respectively; thus, we can calculate the overall rank as
follows:

(
0.8

∑
ac,l,rPc,l,rTc,l,r+0.2ζ̄c,l,r

)
×
(
0.0566μ̄c,l,r

+0.4248D̄c,l,r + 0.3050
∑

Mc,l,r + 0.2135
∑

Sc,l,r

)−1

(11)

where M represents the memory size, and S is the storage size.

B. Implementation

Fig. 2 shows the top-level dataflow of the system we imple-
mented. The data are initially collected from the web page by
profiler nodes, and we use the HtmlUnit library [40]. The whole
system consists of multiple agents at geographically dispersed
locations to collect and process the data, as shown in Fig. 3. If
we look at individual slave nodes, we can see that every node
profiles the QoS statistics to various clouds from each location.
Bashed scripts are written to export data from each node. A
master node pulls data from its children nodes, and access keys
are required for this operation. Then, the comma-separated-
value-formatted data are imported to the master database, where
an appropriated merge operation is performed.

Fig. 4 shows the overview of our system architecture. We
use Dropbox for this prototype implementation to demonstrate
the feasibility of our innovation. As long as data are properly
backed up in a separate location, other mechanisms can be used.

The price data are collected from providers’ websites. The
problem with automatic data collection can be solved if
providers release more structured data with a sufficient meta-
data description, and we have proposed an ontology in previous
work [20].

Initially, the QoS data were collected every 2 h by running
the speedtest service of CloudHarmony. A single run takes more
than 1 h to finish; hence, we are collecting it at the maximum
possible granularity. Later, by analyzing the data, we conclude
that such a high frequency is not necessary as the average QoS
from a particular location to a particular data center most of the
time fluctuates between a resealable range. That means that the
average would be pretty stable. We can use the historical data
as a pretty reliable indication. Note that the difference between
data centers and various locations is still huge, as expected (see
Fig. 5). In the future, we may allow a combination of real-time
and offline values to be used if necessary.



Fig. 2. Abstract system dataflow. This figure is better looking together with
Fig. 3 for better understanding. We have used several (slave) servers to collect
data from different locations. Then, we transfer them to a central server for
processing and backup, and the data on this server were also archived and
manually cleared every time after we imported the newly collected data into
the local offline system for postprocessing and cleaning up. We only use
the (summarized) average QoS data for real-time querying via API and web
graphical UI as this allows us to provide a response faster.

Fig. 3. QoS monitoring service network topology. We have used two clouds,
i.e., The National eResearch Collaboration Tools and Resources (NeCTAR)
cloud and AWS. Since the NeCTAR cloud is free for researchers, we kept the
instances running all the time; hence, we made the decision to put the master
in the NeCTAR cloud. Because there is a limit of quota in the NeCTAR cloud,
Amazon has greater geographical coverage in terms of data center locations.
We use an additional spot instance from Amazon as slave data crawlers. A QoS
monitoring node profiles the download speed, the latency, and the upload speed
at each data center in various clouds from different locations.

IV. EXPERIMENT

A. Setup

We run our system and proposed algorithmic technique
across a range of hardware systems to understand the impli-
cation of a hardware resource configuration (see Table VIII) on
the performance of the approach.

To summarize, Environment 1 is the local machine used
during the development of the program, which is capable of
running the database and other system modules.

Environment 2 is the server from the NeCTAR cloud [41],
where our system can be deployed as a service that is easily
accessible over the Internet. It is a virtualized environment;

Fig. 4. Master node system architecture. In the reasoning module, the main
functions and operations are broken down into different blocks. There are some
other tasks that cannot be strictly categorized into existing modules, and those
are put into the “Other Tasks” section; the very-light-grey block contains the
evolving part of the system so it cannot be considered a stable component of the
system. Although it is possible to back up the whole server, it is not necessary
at this stage, and the most valuable data are stored in the MySQL database,
which can be backed up much easier and cheaper by creating an “SQL dump.”
This dump file is created daily and simply stored in a Dropbox folder that is
free to use and keeps a history of the file stored in it for 30 days, which is
sufficient for our case. The presentation layer (UI and API implementation)
and the monitoring module are omitted to keep the diagram simple.

Fig. 5. Download speed from Amazon data centers to Melbourne.

thus, the CPU speed labeled may not accurately reflect the
actual allocation. NeCTAR’s infrastructures are located at eight
different organizations (node sites) around Australia. It operates
as one cloud system under the OpenStack framework. This
makes it have different user and application program interfaces



8

TABLE VIII
EXPERIMENT ENVIRONMENTS

Fig. 6. Download speed against the distance.

(UI and API, respectively) compared with AWS. Being a col-
laborative research cloud, it is only open to affiliated members
(i.e., Australian researchers and students from a participating
university). Although the access is free, there is a limitation of
two instances per member and a cap on the total resource usage.

Environment 3 is the spot instance type (from Amazon) we
used to collect the QoS statistics from additional locations, but
to cut down the cost, we kept the usage minimal.

Environment 4 is the compute-optimized spot instance type
we used to test the program performance under a powerful
CPU, or vertical scalability in short.

B. Network QoS Data

Fig. 5 shows that a geographically close data center has
(as high as 25 times) better network performance; hence, this
validates the fact that location is one of the important criteria
that should be considered during the selection process. Our
measurements also indicate that distance is not the only factor
that affects the network performance, as shown in Fig. 6, and
data centers are ordered from closest to furthest from left to
right; Tokyo and Brazil clearly perform poorly than expected.

TABLE IX
INPUT PARAMETERS

Hence, we consider the need for the active probing and profiling
of the network QoS from users’ endpoint connection to the
cloud data centers. By doing so, we get a clear picture of a data
center’s network QoS from users’ devices that may be deployed
across topologically distributed network locations. Note that we
have left out Sydney in Fig. 6 on purpose. Fig. 5 shows the
exponential increase in speed between Sydney and Melbourne
compared with overseas locations, whereas Fig. 6 shows the
linear relationship between the downloading speed and the dis-
tance among overseas locations. We are aware that, although it
is generally true that the geographical distance between any pair
of servers (or users) on the Internet affects the route trip time,
the bandwidth between them is not necessarily determined by
the distance, and many other aspects can affect the user end
QoS, such as the last-mile home-connecting technology and
the local Internet traffic condition. Our measurements are only
providing a suggestive base for further optimization, and a
user’s actual experience will vary.

C. Case Study

1) Input Parameters: Table IX shows the primary config-
urable parameters of our algorithm. Everyone’s requirements
regarding the compulsory parameters usually vary. Therefore,
we choose a range of values to mimic different selection
scenarios. In future work, we may conduct a user survey to
understand the most concerned factors for different types of
users, e.g., we can expose all possible constrainable parameters
via the API, but it may not be necessary (not to mention also
slows down the processing); it will only overwhelm the users
who only use the visual interface. Optional parameters are those



Fig. 7. Results in ascending order by the (cost–benefit) ratio.

Fig. 8. Results in ascending order by the cost.

that tend to be hard to specify (particularly for users with less
technical background). A default value column shows what we
use when not specified.

2) Results: Fig. 7 shows the top 5% of the result we get
from the inputs in Table IX. It is in ascending order of the
ratio (the cost over the benefit), as indicated by the dotted
(blue) line, because a lower cost over a higher benefit gives
us a smaller ratio that represents a better choice. If we look
at the ranking by only considering the cost, as illustrated by the
solid (red) line, the GoGrid offers dominate over the Windows
offers. If the order results in ascending price order (which
means that the network QoS constraints are not considered), as
shown in Fig. 8, Azure disappears from the top 10% of choices.
Similarly, we can see that, although the price change is small
in solutions, their overall rankings are greatly different (the
dotted blue line). What this means to users is that, although we
can save money by ignoring the network QoS, they should be
ready for degraded network performance Note that, although
we tried our best in using real-world data, sometimes, cloud
providers vary their prices as frequent as weekly. However, in
future work, we intend to implement a price crawler service that
will automatically parse a provider’s web pages and update our
system’s database.

V. CONCLUSION AND FUTURE WORK

The cloud has great potential for a large variety of users with
diverse needs, but the selection of the right provider is crucial to
this end. Aiming to eliminate potential bottlenecks that limit the
ability of general users to take advantage of cloud computing,
we present an improved system (which extended our previous
work) that further allows a user to make multicriteria selection
and comparison on IaaS offers considering the QoS. We hope
that our research will drive the even greater adoption of the
cloud and boost the expansion of cloud-hosted applications.
Furthermore, the system we are proposing will also benefit a
cloud provider by providing the analyses of the market and the
demand, and our system can potentially recommend what price
the providers can set their service to.

In the future, we would like to provide a smarter decision
support by including service-level agreements and legal com-
pliance [42] into consideration. We are also improving the data
gathering and updating mechanism. Furthermore, we plan to
conduct our experiments on network QoS data collected in real
time rather than based on archived QoS (as has been done in
this paper). This will allow us to analyze the performance of
the proposed technique under uncertainties such as network



10

congestion and network link failures. There are also other inter-
esting ordinal-optimization-based techniques [43], [44] worth
looking at.

REFERENCES

[1] Burstorm, “Think vertical—Layered tech official blog.” [Online].
Available: http://www.layeredtech.com/blog/think-vertical/

[2] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, and P. Strazdins,
“Investigating decision support techniques for automating cloud service
selection,” in Proc. IEEE 4th Int. Conf. CloudCom, 2012, pp. 759–764.

[3] M. Zhang et al., “Investigating techniques for automating the selection of
cloud infrastructure services,” Int. J. Next-Gener. Comput., vol. 4, no. 3,
pp. 1–18, 2013.

[4] V. Nae, A. Iosup, and R. Prodan, “Dynamic resource provisioning in
massively multiplayer online games,” IEEE Trans. Parallel Distrib. Syst.,
vol. 22, no. 3, pp. 380–395, Mar. 2011.

[5] T. Beigbeder et al., “The effects of loss and latency on user performance in
unreal tournament 2003,” in Proc. 3rd ACM SIGCOMM Workshop Netw.
Syst. Support Games, 2004, pp. 144–151.

[6] A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha, “On demand
platform for online games,” IBM Syst. J., vol. 45, no. 1, pp. 7–19, 2006.

[7] “The real problem of Facebook Inc.’s WhatsApp acquisition,” Mar. 27,
2014. [Online]. Available: http://www.fool.com/investing/general/2014/
03/24/two-real-problems-of-facebooks-whatsapp-acquisitio.aspx

[8] “Viber,” Mar. 27, 2014. [Online]. Available: http://en.wikipedia.org/wiki/
Viber

[9] “What’s all the fuss about WhatsApp? China’s WeChat is a worthy rival
| time.com,” Mar. 27, 2014. [Online]. Available: http://time.com/8873/
whats-all-the-fuss-about-whatsapp-chinas-wechat-is-a-worthy-rival

[10] J. Weinman, “As time goes by: The law of cloud response time,” to
be published. http://www.JoeWeinman.com/Resources/Joe_Weinman_As
_Time_Goes_By.pdf

[11] “2016: The year of the zettabyte [infographic]” 2016. [Online].
Available: http://dailyinfographic.com/2016-the-year-of-the-zettabyte-
infographic.

[12] L. Wang et al., “MapReduce across distributed clusters for data-intensive
applications,” in Proc. IEEE 26th IPDPSW, May 2012, pp. 2004–2011.

[13] “Signal transport and networks—Ska telescope,” Sep. 18, 2013.
[Online]. Available: http://www.skatelescope.org/the-technology/signal-
processing/

[14] “ESA future missions—Earthnet,” ESA, Paris, France. [Online].
Available: https://earth.esa.int/web/guest/missions/esa-future-missions#
_56_INSTANCE_hH2r_matmp

[15] “Big data: Where we at?” [Online]. Available: https://www.
centrodeinnovacionbbva.com/en/magazines/innovation-edge/
publications/20-big-data/posts/147-big-data-where-we-at

[16] T. Hey and A. Trefethen, “The data deluge: An e-science perspective,”
in Grid Computing: Making the Global Infrastructure a Reality, ch. 36.
Hoboken, NJ, USA: Wiley, 2003, pp. 809–824.

[17] M. B. Taylor, “Bitcoin and the age of bespoke silicon,” in Proc. Int. Conf.
CASES, 2013, pp. 1–10.

[18] “Cryptocurrency,” Mar. 25, 2014. [Online]. Available: http://en.
wikipedia.org/wiki/Cryptocurrency

[19] “Burstorm,” Sep. 18, 2013. [Online]. Available: http://www.burstorm.
com/

[20] M. Zhang et al., “An ontology based system for cloud infrastructure
services discovery,” in Proc. IMECS, 2012, pp. 1–6.

[21] M. Zhang, R. Ranjan, S. Nepal, M. Menzel, and A. Haller, “A declarative
recommender system for cloud infrastructure services selection,” in Proc.
Econ. Grids, Clouds, Syst., Serv., 2012, pp. 102–113.

[22] “Amazon web services simple monthly calculator,” Sep. 9, 2013.
[Online]. Available: http://calculator.s3.amazonaws.com/calc5.html

[23] “Pricing calculator | windows azure,” Sep. 20, 2013. [Online]. Available:
http://www.windowsazure.com/en-us/pricing/calculator/

[24] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing
public cloud providers,” in Proc. 10th ACM SIGCOMM Conf. Internet
Meas., 2010, pp. 1–14.

[25] “CloudHarmony,” Sep. 20, 2013. [Online]. Available: http://
cloudharmony.com/

[26] “Cloud computing price comparison | Cloudorado—Find best cloud
server from top cloud computing companies,” Sep. 20, 2013. [Online].
Available: http://www.cloudorado.com/

[27] “Yuruware—Disaster recovery and migration tools for AWS,” Sep. 20,
2013. [Online]. Available: http://www.yuruware.com/

[28] “IAT—Intelligent agent technology: CB,” Sep. 20, 2013. [Online].
Available: http://www.ict.swin.edu.au/centres/success/iat/tiki-index.php?
page=CB

[29] M. Menzel and R. Ranjan, “CloudGenius: Decision support for web
server cloud migration,” in Proc. 21st Int. Conf. World Wide Web, 2012,
pp. 979–988.

[30] “Apache hive tm,” May 1, 2014. [Online]. Available: http://hive.apache.
org/

[31] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[32] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queueing model based
network server performance control,” in Proc. 23rd IEEE RTSS, 2002,
pp. 81–90.

[33] A. Klein, F. Ishikawa, and S. Honiden, “Towards network-aware service
composition in the cloud,” in Proc. 21st Int. Conf. World Wide Web, 2012,
pp. 959–968.

[34] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web services
selection with end-to-end QoS constraints,” ACM Trans. Web (TWEB),
vol. 1, no. 1, p. 6, May 2007.

[35] L. Zeng et al., “QoS-aware middleware for web services composition,”
IEEE Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, May 2004.

[36] H. Zheng, W. Zhao, J. Yang, and A. Bouguettaya, “QoS analysis for
web service compositions with complex structures,” IEEE Trans. Serv.
Comput., vol. 6, no. 3, pp. 373–386, Jul./Sep. 2013.

[37] “AWS | Amazon Simple Storage Service (S3)—Online cloud storage for data
& files.” Feb. 5, 2015. [Online]. Available: http://aws.amazon.com/s3/

[38] S. H. Ghodsypour and C. O’brien, “A decision support system for sup-
plier selection using an integrated analytic hierarchy process and linear
programming,” Int. J. Prod. Econ., vol. 56, pp. 199–212, 1998.

[39] R. Haas and O. Meixner, “An illustrated guide to the analytic hierarchy
process,” in Proc. Instit. Marketing Innovation, Univ. Natural Resources
Appl. Life Sci., Vienna, Australia, 2005, pp. 10–13.

[40] “HtmlUnit:GUI-less browser for java programs,” Nov. 20, 2014. [Online].
Available: http://htmlunit.sourceforge.net/.

[41] “home | nectar,” May 5, 2014. [Online]. Available: https://nectar.org.au/
[42] H. Mouratidis, S. Islam, C. Kalloniatis, and S. Gritzalis, “A framework

to support selection of cloud providers based on security and privacy
requirements,” J. Syst. Softw., vol. 86, no. 9, pp. 2276–2293, Sep. 2013.

[43] F. Zhang et al., “Evolutionary scheduling of dynamic multitasking work-
loads for big-data analytics in elastic cloud,” IEEE Trans. Emerging
Topics Comput., vol. 2, no. 3, pp. 338–351, Sep. 2014.

[44] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, “Multi-objective
scheduling of many tasks in cloud platforms,” Future Gener. Comput.
Syst., vol. 37, no. 0, pp. 309 – 320, 2014. Special Section: Innova-
tive Methods and Algorithms for Advanced Data-Intensive Computing
Special Section: Semantics, Intelligent processing and services for big
data Special Section: Advances in Data-Intensive Modelling and Simu-
lation Special Section: Hybrid Intelligence for Growing Internet and its
Applications.

[45] J. Zhang et al., “Climate impacts of stochastic atmospheric perturba-
tions on the ocean,” Int. J. Climatology, vol. 35, no. 15, pp. 3900–3912,
2014.

[46] X. Xin et al., “How much of the NAO monthly variability is from Ocean-
Atmospheric coupling: Results from an interactive ensemble climate
model,” Climate Dyn., vol. 44, no. 3/4, pp. 781–790, 2014.

[47] L. Li et al., “The flexible global ocean-atmosphere-land system model,
grid-point Version 2: FGOALS-G2,” Adv. Atmosp. Sci., vol. 30, no. 3, pp.
543–560.

Miranda Zhang received the Bachelor’s degree
from the University of New South Wales, Sydney,
Australia. She is currently working toward the
Ph.D. degree at the Australian National University,
Canberra, Australia.

She was a Research Intern with OpenStack;
Commonwealth Scientific and Industrial Research
Organisation; and the Chinese Academy of Sciences,
Beijing, China. Her research interest is in cloud
computing.

http://www.layeredtech.com/blog/think-vertical/
http://www.fool.com/investing/general/2014/03/24/two-real-problems-of-facebooks-whatsapp-acquisitio.aspx
http://www.fool.com/investing/general/2014/03/24/two-real-problems-of-facebooks-whatsapp-acquisitio.aspx
http://en.wikipedia.org/wiki/Viber
http://en.wikipedia.org/wiki/Viber
http://time.com/8873/whats-all-the-fuss-about-whatsapp-chinas-wechat-is-a-worthy-rival
http://time.com/8873/whats-all-the-fuss-about-whatsapp-chinas-wechat-is-a-worthy-rival
0
0
http://dailyinfographic.com/2016-the-year-of-the-zettabyte-infographic
http://dailyinfographic.com/2016-the-year-of-the-zettabyte-infographic
http://www.skatelescope.org/the-technology/signal-processing/
http://www.skatelescope.org/the-technology/signal-processing/
https://earth.esa.int/web/guest/missions/esa-future-missions#_56_INSTANCE_hH2r_matmp
https://earth.esa.int/web/guest/missions/esa-future-missions#_56_INSTANCE_hH2r_matmp
https://www.centrodeinnovacionbbva.com/en/magazines/innovation-edge/publications/20-big-data/posts/147-big-data-where-we-at
https://www.centrodeinnovacionbbva.com/en/magazines/innovation-edge/publications/20-big-data/posts/147-big-data-where-we-at
https://www.centrodeinnovacionbbva.com/en/magazines/innovation-edge/publications/20-big-data/posts/147-big-data-where-we-at
http://en.wikipedia.org/wiki/Cryptocurrency. Accessed: 25-Mar-2014
http://en.wikipedia.org/wiki/Cryptocurrency. Accessed: 25-Mar-2014
http://www.burstorm.com/
http://www.burstorm.com/
http://calculator.s3.amazonaws.com/calc5.html
http://www.windowsazure.com/en-us/pricing/calculator/
http://cloudharmony.com/
http://cloudharmony.com/
http://www.cloudorado.com/
http://www.yuruware.com/
http://hive.apache.org/
http://hive.apache.org/
http://aws.amazon.com/s3/
http://htmlunit.sourceforge.net/Accessed:
https://nectar.org.au/
http://www.ict.swin.edu.au/centres/success/iat/tiki-index.php?page=CB
http://www.ict.swin.edu.au/centres/success/iat/tiki-index.php?page=CB


Rajiv Ranjan received the Ph.D. degree in engineer-
ing from The University of Melbourne, Parkville,
Australia, in 2009.

He is currently a Research Scientist and a Julius
Fellow with the Computational Informatics Division
(formerly known as CSIRO ICT Centre), Common-
wealth Scientific and Industrial Research Organisa-
tion (CSIRO), Dickson, Australia. He has published
62 scientific and peer-reviewed papers (7 books,
25 journals, 25 conferences, and 5 book chapters).
His h-index is 20, with a lifetime citation count of

more than 1660 (Google Scholar). His papers have also received more than 140
ISI citations. In addition, 70% of his journal papers and 60% of conference
papers have been A*/A-ranked ERA publication. His expertise is in data center
cloud computing, application provisioning, and performance optimization.

Dr. Ranjan has been invited to serve as the Guest Editor for leading
distributed systems journals, including the IEEE TRANSACTIONS ON CLOUD

COMPUTING, Future Generation Computing Systems, and Software Practice
and Experience. One of his papers was in 2011’s top computer science journal,
the IEEE COMMUNICATION SURVEYS AND TUTORIALS.

Michael Menzel received the Diploma in informa-
tion systems (business informatics; Wirtschaftsin-
formatik) from the University of Mannheim,
Mannheim, Germany, in 2009. During his stud-
ies of information systems at the University of
Mannheim, he focused on distributed and mobile
systems, database systems, and logistics. Further-
more, he acquired knowledge about eBusinesses
and eGovernments, business administration, organi-
zational aspects of businesses, and marketing. He
wrote his diploma thesis on the subject “Design

and Implementation of a Tool to create Queries in Complex Event Process-
ing Systems” in cooperation with the Research Department of webMethods
Software AG, Darmstadt, Germany, at the chair of the Assistant Professor
for Computer Science and Information Systems, Prof. Carl-Christian Kanne.
Since November 2009, he has been working toward the Doctoral degree in
the Institute of Applied Informatics and Formal Description Methods (AIFB),
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. His doctoral
thesis is about cloud migration, and he is part of the organization chair of
Prof. Stefan Tai.

Since November 2009, he has been a Research Scientist with the Information
Process Engineering Group, Forschungszentrum Informatik (FZI). He has been
active in multiple research projects related to the disruptive technology cloud
computing. At KIT and FZI, he is involved in the field of cloud computing,
particularly in the process and decisions made over a migration into the cloud.

Surya Nepal received the Master’s degree from
the Asian Institute of Technology, Klong Luang,
Thailand, in 1996 and the Ph.D. degree from RMIT
University, Melbourne, Australia, in 2000?

He is currently a Principal Research Scientist
with the Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Dickson, Australia.
His research interests include cloud computing, Web
service, and distributed computing.

Peter Strazdins is currently an Associate Professor
with the Computer Systems Group, Research School
of Computer Science (RSCS), Australian National
University (ANU), Canberra, Australia. He is the
Convener of the Bachelor of advanced computing.
From 2009 to 2013, he was the Associate Director
of Education of RSCS, ANU. Up to 2009, he was
the Convener of the Coursework Masters programs,
the Computer Science and Information Technology
(CSIT) Safety Coordinator, the Chair of the CSIT
Occupational Health and Safety Committee, and Co-

ordinator of the CSIT Ride to Work Group.
Dr. Strazdins is also a Green Rep, a Delegate to the National Tertiary

Education Union.

Wei Jie received the Ph.D. degree in computer en-
gineering from Nanyang Technological University,
Singapore.

He is currently a Senior Lecturer with the School
of Computing and Technology, University of West
London, London, U.K. Prior to this, he was a Re-
search Fellow with The University of Manchester,
Manchester, U.K., and a Senior Research Engineer
with the Institute of High Performance Computing,
Singapore. He has been actively involved in the area
of parallel and distributed computing for many years

and published more than 40 papers in international journals and conferences.
His current research interests include cloud computing, big data processing and
analytics, computing security technologies, and multidisciplinary research.

Lizhe Wang (M’05–SM’09) received the B.E. and
M.E. degrees from Tsinghua University, Beijing,
China, and the Doctor of Engineering degree (magna
cum laude) from Karlsruhe Institute of Technology,
Karlsruhe, Germany.

He is currently a Professor with the Institute
of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing, and a Chutian Chair
Professor with the School of Computer Science,
China University of Geosciences, Wuhan, China.
His main research interests include cloud computing,

high-performance computing, e-Science, and spatial data processing.
Prof. Wang is a Fellow of The Institution of Engineering and Technology

and the British Computer Society. He serves as an Associate Editor for the
IEEE TRANSACTIONS ON COMPUTERS and the IEEE TRANSACTIONS ON

CLOUD COMPUTING.


