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ABSTRACT

Continuous ambulatory cardiac monitoring plays a critical role in early detection of abnormality

in at-risk patients, thereby increasing the chance of early intervention. In this study, we present

an automated ECG classification approach for distinguishing between healthy heartbeats and

pathological rhythms. The proposed lightweight solution uses quantized one-dimensional deep

convolutional neural networks and is ideal for real-time continuous monitoring of cardiac

rhythm, capable of providing one output prediction per second. Raw ECG data is used as the

input to the classifier, eliminating the need for complex data preprocessing on low-powered

wearable devices. In contrast to many compute-intensive approaches, the data analysis can be

carried out locally on edge devices, providing privacy and portability. The proposed lightweight

solution is accurate (sensitivity of 98.5% and specificity of 99.8%), and implemented on a

smartphone, it is energy-efficient and fast, requiring 5.85mJ and 7.65ms per prediction,

respectively.
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1. INTRODUCTION

According to the World Health Organization, cardiovascular diseases are the cause of death for

17.9 million people yearly, totaling 31% of global deaths, where 80% of premature heart diseases

are preventable [1]. ECG provides rich information regarding the patient’s heart activity,

enabling the diagnosis of a variety of cardiac abnormalities ranging from acute coronary

syndrome to arrhythmias [2]. ECG monitoring in daily life is, therefore, a necessary way for

early diagnosis of heart disease.

The conventional methods of long-time ECG monitoring are, however, invasive and expensive,

and it hinders the daily activity of the patients. Additionally, heart activity is usually recorded for

24 to 48 hours. Therefore, unless the heart condition manifests within this period, the results may

be inclusive.

Hardware and software advancements have led to the development of wearable devices (e.g

wristwatches, patches, smartphones, and vests), which are both practical and affordable, and

enable continuous monitoring of cardiac rhythms in vulnerable populations from the comfort of

their homes, while at the same time providing critical alerts for events requiring prompt medical

attention or hospitalization [3].

The collected ECG data can be analyzed in two ways (figure 1); cloud-based and local. In

cloud-based solutions, the ECG signal is usually transmitted using wireless transmission

techniques such as Wi-Fi or Bluetooth. The data is then analyzed on the cloud and feedback is

sent back to the user or care providers.



In this study, however, our approach was to locally process the ECG signal by executing the

arrhythmia classifier on patients’ personal smartphones. The benefit of the processing is

three-fold: it allows for continuous operation regardless of the network availability/speed; it can

provide an immediate alarm to the patient in case anomalies are suspected; it allows avoiding

privacy issues of cloud processing by keeping the patients’ data on their personal devices.

However, continuous monitoring on wearable devices requires the ECG classification algorithm

to be optimized for the competing objectives of accuracy and low energy consumption. In this

study, therefore, our aim was to propose an energy-efficient and accurate deep neural network

model to detect arrhythmia anomalies for energy-constrained platforms such as wearable

devices.

Figure 1. Concept of continuous ambulatory cardiac monitoring using wearable technology.



1.1. Related Work

Traditional machine learning methods use various hand-engineered features to obtain

representations of input data. Since the ECG waveform and its morphological characteristics,

such as the shapes of QRS complex and P waves, significantly vary under different

circumstances and for different patients, the fixed features employed in such algorithms are not

sufficient for accurately distinguishing among different types of arrhythmia for all patients [4].

As the feature extraction process is automated with convolutional neural networks (CNNs), the

use of CNN has become widespread in this field. These networks are used to classify

patient-specific beats [5] and long duration ECG signals containing multiple rhythm classes [6],

to detect different interval ECG segments [7], different types of ECG beats [8], and atrial

fibrillation [9].

Most related works have aimed at enhancing the accuracy of heartbeats classification [5,8,10],

and focused less on the issues of energy consumption. Here, we have mainly focused on the

studies aimed at designing low-cost solutions for continuous monitoring using wearable sensors.

An ECG monitor system based was reported where the ECG signal is transmitted to an Android

phone and then be forwarded to a remote server [11]. Using a PC, the clinicians can view the

ECG after logging in to the server. The addition of an alarm program was also proposed via SMS

or email [12]. Another ECG monitoring and alarming system were proposed [13], where an

Android phone detects alarms that come from the ECG device and sends them to the cloud alarm



server. However, the system lacked any predictive capabilities, assisting the clinicians in

diagnosing the heart condition.

An IoT-based low-cost ECG monitoring system was developed in which Raspberry Pi 2 was

used for signal processing. Real-time data plotting for visual inspection by the physicians was

achieved using a cloud system [14].

An automatic wearable ECG classification and monitoring system was reported which would

require preprocessing the ECG data using a stack denoising autoencoder, and then beat detection

[15]. A wireless sensor device was used to retrieve ECG data and send it to a Bluetooth 4.2

computer. The same authors later adopted CNNs and active learning to improve their

classification performance [16].

Another energy-efficient ECG monitoring for wearable devices was also proposed which again

would require several steps of data preprocessing such as denoising, R-peak detection, and

heartbeat segmentation [17]. Long short-term memory recurrent neural networks [18], and

spiking neural networks [19,20] have also been proposed for energy-efficient ECG classification.

1.2. Main Contributions

In this study, we propose a quantized convolutional neural network designed to reliably classify

arrhythmia using the ECG signals, while being lightweight enough for implementation on

low-powered edge devices and achieving short prediction (inference) time. Unlike most existing



works that require complex preprocessing methods, such as denoising [21], isolation of the

heartbeats using R–R intervals [22], and wavelets [23], raw ECG signals are used directly as

input to the arrhythmia classifier, removing the requirement of all preprocessing steps.

We examined the feasibility of the real-time continuous monitoring of the heart by conducting a

simulated scenario. Where feasible, we have provided a performance comparison between our

proposed approach and the existing work highlighted in the previous section.

2. DATASET

2.1. MIT-BIH Arrhythmia Database

In this study, the publicly available PhysioNet MIT-BIH ECG Arrhythmia Database was used

[24]. The database contains 48 half-hour excerpts of ambulatory ECG recordings, obtained from

47 subjects. Twenty-three recordings were chosen at random from a set of 4000 24-hour

ambulatory ECG recordings collected from a mixed population of inpatients The remaining 25

recordings were selected from the same set to include less common but clinically significant

arrhythmias that would not be well-represented in a small random sample.

The recordings were digitized at 360 samples per second. Two or more cardiologists

independently annotated each record, resulting in reference annotations for each beat; with

approximately 110,000 annotations in the entire database. The annotations are divided into 5

categories as per guidelines of the Association for the Advancement of Medical Instrumentation

(AAMI) EC57 standard in 1998 [25]. Table 1 shows examples of each category.



Category AAMI
Classes

Annotation ECG Sample

N Normal Beat Normal
Left/Right bundle branch
block
Atrial escape
Nodal escape

S Supra-
Ventricular
Beat

Atrial premature
Aberrant atrial premature
Nodal premature
Supra-ventricular premature

V Ventricular
Ectopic Beat

Premature ventricular
contraction
Ventricular escape

F Fusion of
Ventricular
and Normal

Fusion of ventricular and
normal

Q Unclassifiable
Beat

Paced
Fusion of paced and normal
Unclassifiable

Table 1. AAMI recommended classes and corresponding ECG signal samples.



2.2. Data Organization

In each recording, the first channel is the modified-lead II (MLII), and the second is fixed as one

of V1, V2, V4, and V5 depending on the recording. Since MLII is available in all recordings and

considering the fact it has been shown that the use of this lead would be sufficient to achieve

high accuracy [26], we, therefore, adopted MLII data in this study.

In order to make the processing feasible with limited computational resources (e.g., edge

computing), the long recordings were fragmented into time windows of 1s, thus each containing

a fixed length of 360 data points. Based on the cardiologist annotations assigned to the original

ECG, each time window was labeled as follows: if the entire segment was annotated as one class,

the time window was assigned to that class; if there was a change in the expert annotation within

the 1s time-window, then the predominant class was assumed as the label for the entire segment.

Examples of the ECG segments are shown in Table 1. This resulted in a total number of 101,526

segments. No further preprocessing of the raw data was carried out.

The relative distribution of arrhythmia classes labeled by the expert cardiologist is shown in

figure 2, and indicates an imbalanced dataset, with a ratio of 0.5% (Fusion of Ventricular and

Normal as the least represented class) to 88% (Normal Beat as the dominant class). A detailed

account of the number of classes present in each recording has been provided in the Appendix.



Figure 2. Distribution of heartbeat classes in the dataset.

3. METHODOLOGY

3.1. Neural Network Arrhythmia Classifier

A 1D convolutional neural network was trained for the task of arrhythmia classification. The 1D

convolutional layer input array is component-by-component multiplied by the kernel then the

resulting products are summed as demonstrated in the following equation.

𝑓(𝑖) = Σ
𝑛=1

𝑣
𝑘 𝑆(𝑖 + 𝑛)𝐾(𝑛)

Additionally to the sum of these values is added a bias value then fed to an activation function to

find the output value. This process is repeated along the input temporal axis until the entirety of

the input array is processed. The input array width shares the same value as the kernels. Thus

kernel values are manually assigned and composed of number, length, and sliding window size.

During the training process, the network optimizer continuously updates the kernel weights.

Convolutional layers are composed of attributes that enhance machine learning systems namely:

parameter sharing, equivalent representations, and sparse weights [27]. The aforementioned



attributes lead to improvements in the statistical efficacy of automated feature extraction and

learning of local features residing within the data. Convolution layers have 32 kernels of size 5.

The CNN model, illustrated in figure 3, employs connections in a similar manner to Residual

Connections, introduced by He K et al. [28]. Each convolution layer is followed by 5 residual

blocks composed of 2 convolution layers, 2 ReLU (Rectified Linear Unit) activations, and a

max-pooling of stride 2 and size 5 in all pooling layers, the operation that extracts the maximum

value output within the specified size-shifting along the direction of the time-series. Followed by

one fully connected (FC) layer containing 32 neurons. The fully connected layer is

interconnected to all units in the forward layer. FC layer is calculated as follows:

𝑦 = 𝑓(Σ𝑢 × 𝑤 + 𝑏)

The input is multiplied by the weights then products are totaled, and bias is added. The𝑢 𝑤 𝑏 

activation function receives as input the result, which will calculate the output. The biases𝑓 𝑏

and weights are trainable variables, in contrast, the activation function is manually selected 𝑤

(ReLU) and calculated as follows:

𝑦 = 𝑚𝑎𝑥(0, 𝑢)

To predict the output class probabilities, a softmax layer is applied to output structural-state

identification results. The probabilities of all predictive prospects are measured, thus the final

result represents the one with the highest possibility. Calculated using the following equation:



.𝑦
𝑖

=
𝑒𝑥𝑝(𝑢

𝑖
)

Σ
𝑖=1
𝑛 𝑒𝑥𝑝(𝑢

𝑖
)

Figure 3. The 1D deep convolutional neural network architecture, adopted for the arrhythmia
classification task. Resulting in a 12-layer model.

3.2. Implementation and Training

It is evident from figure 2 that the dataset is fairly imbalanced with unequal distribution of

different arrhythmia classes. To prevent potential biases towards more dominant classes, the

approach of random over-sampling examples (ROSE) was adopted [29], which augments the

data after removing the baseline. This resulted in a balanced dataset, with 76,607 samples for

each arrhythmia class. The dataset was then randomly split into training (287,276 samples) and

validation (95,759 samples), with testing samples selective split prior to over-sampling (3500

samples).

The network was implemented using the Tensorflow library [30]. Our source code is available

Online [31]. The loss function used was cross-entropy on the softmax predicted outputs. Adam



optimizer [32] was applied with decaying learning rates reducing at a factor of 0.75 for every ten

thousand iterations. Training the entire network takes less than 15 minutes with a mini-batch

size of 256 samples over 100 epochs using an Nvidia Tesla P100 processor. The validation

dataset was used for early stopping to avoid redundant training and overfitting, with patience of

10 epochs. The model was trained until the validation loss plateaued.

3.3. Network optimization for edge computing

Edge and wearable devices have relatively much smaller, low-power, and slower processors,

compared to desktop processors. Therefore, for the continuous execution of the arrhythmia

classifier on such devices with limited memory and computational power and in order to meet

the timing requirements, further optimization of the model was applied to reduce its size (smaller

storage size and less memory usage) and latency, while maintaining (or with little degradation in)

the model accuracy.

To this end, post-training full integer quantization was adopted and applied to the CNN model

developed using Tensorflow Lite deep learning library [33]. The full integer (8-bit) quantization

technique [34], approximates floating-point values in the trained model, layer by layer, as

𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = (𝑖𝑛𝑡8_𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡) × 𝑠𝑐𝑎𝑙𝑒

Per-channel weights are represented by int8 two’s complement values in the range [-127, 127]

with zero-point equal to 0. Per-tensor activations/inputs are represented by int8 two’s

complement values in the range [-128, 127], with a zero point in the same range [35]. In this



process, only floating-point weights are quantized to 8-bit integer precision in a bit-by-bit

operation [35], in an iterative process until the network is fully mapped.

As a proof of concept, two hardware platforms were used as examples of edge low-powered

processors for running the quantized neural network: ARM Cortex A53 and ARM Cortex A55.

Further details for the platforms are provided in Table 5.

Device

Raspberry Pi v2 Huawei P30 Pro

Chipset Broadcom BCM2836 Kirin 980

CPU ARM Cortex A53 ARM Cortex A55/A76

Mean Inference Time 4.76 ms 7.65 ms

Table 2. Two hardware platforms are used as low-powered edge processing devices.

3.4. Real-time Continuous Monitoring

In order to investigate whether our proposed approach can be employed for real-time

applications, a continuous monitoring scenario was simulated where previously acquired ECG

signals were transmitted as segments of contiguous time windows over Bluetooth from a laptop.

The duration of each time window was 1s, and one segment was transmitted every second to



mimic a real-time acquisition from the patient. Transmitted data was received by the mobile

phone device running the quantized classifier (figure 4), updating the predicted arrhythmia class

every second.

Figure 4. Simulated real-time continuous monitoring scenario: a laptop transmitting previously recorded
ECG signal over Bluetooth to a mobile phone which is predicting an arrhythmia class every second.

3.5. Evaluation Metrics

The classification was evaluated using the standard measures: classification accuracy (Acc),

sensitivity (Sen), specificity (Spe), score, and confusion matrix.𝐹
1

Besides accuracy, execution time (computational intensity) and power consumption of the

arrhythmia classifier were also measured as the other two important factors, particularly for the

application of continuous monitoring on wearable devices.



The inference time was measured by recording the average time in milliseconds for all

predictions made on the test dataset. In order to be able to measure the battery usage by the

smartphone application, the fully charged phone was left idle in flight mode for 12 hours, and the

dropped battery percentage was recorded at the end of this period. The battery was then fully

charged again, and the application was kept continuously running for the same period of time,

and the battery percentage was recorded. The difference in the two percentages was assumed to

be the quicker battery drainage due to the application. The energy E(Wh) in Watt-hours was then

estimated as

E(Wh) = Q(mAh) × V(V) / 1000

where Q(mAh) is equal to the electric charge (capacity of the battery) in milliamp-hours, and V(V)

is the voltage in volts. This process was repeated several times and average power consumption

was calculated.

Additionally, the energy consumption E per prediction (i.e., classifying each ECG segment) was

estimated in Joules as

E(J) = P(W) × t(s)

where P is the nominal power rating of the ARM Cortex A55 in Watts, and t is average inference

time per prediction [36].

4. RESULTS AND DISCUSSION

This section provides and discusses the results obtained at each stage of the development

described previously.



4.1. Arrhythmia Classification

The mean inference time per classification (i.e., for each ECG segment) was ~30 ms using an

Nvidia Tesla P100 processor and ~16 ms using an Nvidia RTX 3090 processor.

Table 3 and figure 5 provided the prediction results for the arrhythmia classifier (non-quantized)

when applied to the test dataset. It shows that the model was able to correlate the characteristics

with the correspondent arrhythmia. The model detected all of the anomalous segments for

Ventricular Ectopic Beat (V class) reliably. Only for one anomaly, Fusion of Ventricular and

Normal (F class), the detection was relatively less reliable with a sensitivity of 99.70%, probably

because of the F class being the least represented class in the dataset (0.5% of the dataset).

Overall, 99.88% of anomalous segments in the test set were detected. Of the normal heartbeats,

0.25% were falsely indicated as being anomalous.

Class

Original neural network Quantized neural network

Acc Sen Spe 𝐹
1

Acc Sen Spe 𝐹
1

N 99.9% 99.8% 99.9% 99.8% 99.4% 99.8% 99.3% 98.6%

S 99.9% 99.9% 99.9% 99.8% 99.7% 99.1% 99.9% 99.4%

V 99.9% 100% 99.9% 99.9% 99.6% 99.5% 99.7% 99.3%

F 99.9% 99.7% 100% 99.8% 99.5% 99.4% 99.9% 96.7%

Q 99.9% 99.9% 100% 99.9% 99.9% 99.9% 100% 99.9%

Table 3. Results of arrhythmia classification for the test dataset.



Figure 5. Original neural network confusion matrix.

In order to visualize the proximity between the feature vectors, the t-distributed stochastic

neighbor embedding (t-SNE) is plotted in figure 6, which displays a planar representation of the

internal high-dimensional organization of the 5 ECG classes within the network’s final hidden

layer (i.e., input data of the fully connected layer). As can be seen, the colors, representing the

extracted features of different types of ECG labels, clearly separated into five clusters with minor

overlap, indicating that the features learned by the model are discriminative for classifying

different arrhythmia classes. The most pronounced overlapping is in distinguishing F from V

signals (0.3% misclassified).



Figure 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization for five AAMI classes.
Each dot represents an ECG signal sample from the test subset extracted from the MIT-BIH arrhythmia
database for each category; different colors represent different arrhythmia classes (best viewed in color).

4.2. Network Performance on Edge Devices

The quantized classifier showed a small degradation in performance as shown in Table 3; a

minute drop in accuracy (≤0.3%) across all class types; sensitivity and specificity were above

99.1% and 99.3% for all anomaly types, respectively. Figure 7 displays a relative confusion

matrix demonstrating the difference between the two (original and quantized) classifiers.

Figure 7. Relative confusion matrix displaying the difference in predictions between the original
(non-quantized) and quantized classifiers.



As shown in figure 9, the quantized model however achieved significant improvements in

inference (prediction) time, with a reduced inference time per classification of 12.13±0.61

(11.99, 31.14) and 7.69±0.58 (7.00, 24.00) and 4.76±0.04 (4.70, 12.17) milliseconds on the GPU,

smartphone, and Raspberry Pi processors, respectively. The reduction in the model size was also

noticeable; the size of the quantized model was 93 kB, compared to 853 kB for the original

model.

4.3. Performance Evaluations in Presence of Noise

Since the MIT-BIH arrhythmia database contains solely signals recorded from an ambulatory

device in a controlled environment, it may not represent all the artifacts present in the ECG data

acquired from mobile devices. Therefore, in order to demonstrate the feasibility of our approach

in a wearable deployment scenario, synthetic noise was added to the ambulatory ECG

recordings.

Contaminated signals were generated replacing baseline ambulatory ECG signals with a

matching signal-to-noise ratio for low amplitude noise, and high-frequency noise overlapping

PQRST complex for artifacts such as motion and muscle contraction.

Four different types of noise and artifacts consistent with mobile devices [37], depicted in Table

4, were considered. A band-pass filter was applied to attenuate signal frequencies, anti-aliasing,

and limit saturation [38], equating to similar signal morphologies, apart from edge cases due to

external signal interference such as noise/artifacts.



Since these artifacts (e.g., motion) are not always present, three scenarios were considered in

which different percentages of the entire dataset were randomly selected and contaminated by the

noise; 20%, 50%, and 100% indicating that noise is always present. Care was taken to ensure the

same percentage of noisy signals was present in both training and testing datasets.

The classifier was then trained and tested using the noisy data using the same methodology

detailed in section 3.

Noise / Artifact Signal Sample

Electrode contact noise

Power line interference

Instrumentation noise



Motion / Muscle contraction

Table 4. Examples of the synthetic noise added to the ambulatory ECG recordings to mimic the artifacts
in mobile devices; the added noise is overlaid on the original ECG signal.

An expected degradation in the performance of the classifier can be observed when exposed to

noisy data. Figure 8 demonstrates a relative confusion matrix for the classifier when exposed to

the noisy data with 20% corrupted signals when compared to baseline ambulatory ECG

recordings. A drop of 3.3% in the average accuracy was observed. However, the sensitivity

remained above 90.1% for categories N, V, Q, and over 78.3% for S and F; and the specificity

was still above 98.4% for all anomaly types. When half the signals are corrupted (i.e., 50%

noisy), the average accuracy degrades to 7.7%. With sensitivity above 84.6% for categories N

and Q, 76.5% for V, and above 61.7% for S and F; specificity above 99.4% for all anomaly

types. Finally, when exposed to 100% noisy data, the average accuracy drops by 12.9%. With

sensitivity for each category of 99.9% (N), 43.1% (S), 62.9% (V), 32.6% (F), and 71.9% (Q);

and specificity above 98.4% for all anomaly types.



Figure 8. The relative confusion matrix indicates a small deterioration in the performance of the classifier
when exposed to the noisy data (20%) when compared to baseline ambulatory ECG recordings.

4.4. Continuous Arrhythmia Monitoring

The home screen of the Android smartphone application is shown in figure 10. The application

has a simple and intuitive interface; the user must click on the CONNECT button first, which

will instruct the phone to look for and connect to the device transmitting the ECG signal (here,

the laptop) via Bluetooth. With the connection established, the application is ready for

continuous classification, which will be started after clicking the PREDICT button. The

predicted arrhythmia class by the quantized model is displayed in the middle of the screen. This

is updated in real-time as soon as the next ECG segment has arrived and been analyzed.



Figure 9. Inference time distributions per prediction for GPU Nvidia RTX3090, Raspberry Pi (ARM
Cortex A53), and smartphone (ARM Cortex A55) for the original (non-quantized) and quantized neural

networks: non-quantized GPU, 16.26±3.92ms; quantized GPU, 12.13±0.61ms; non-quantized A53,
198.75±59.11ms; quantized A53, 4.76±0.04ms; quantized smartphone 7.65±0.58ms.

Figure 10. Smartphone application running the quantized model for the continuous ECG arrhythmia
detection. Left: normal sinus rhythm predicted and displayed on the home screen. Middle: irregular

heartbeat detected and displayed, also triggering a pop-up window. Right: the pop-up window when the
application is running in the background.



When an abnormal arrhythmia class is predicted, a message is shown on the home screen and the

predicted class together with the corresponding ECG signal and timestamp will be saved for

further scrutiny (figure 10, middle panel). The application can also perform while not in the

foreground, in which case the user is notified by triggering a pop-up window when an anomaly is

detected (figure 10, right panel). This process is repeated indefinitely or until the user chooses to

stop the execution of the application.

The smartphone activity interacting with the application over a period of 1s is displayed in figure

11, providing a breakdown of the application’s CPU usage. The prediction plus producing the

output display is carried out in less than 300ms, leaving the application idle >70% of the time for

the next segment of the ECG signal to arrive. This clearly demonstrates the time constraint for a

real-time application is satisfied.

Figure 11. The average percentage of total execution time for each ECG segment on the smartphone
application. Data collected using Android OS Systrace tool [39], logging system changes, running over

1000 ms. Sleeping represents the application's idle time (710 ms). Uninterruptible Sleep is the
system-locked block that cannot be interrupted (8 ms). Runnable indicates the application scheduler's

intent to run the designated thread (2 ms). Running is the representation of the application's active
execution time (280 ms) when running inference and displaying results.



The battery usage for the arrhythmia classification application using the quantized classifier was

2.04Wh for 12 hours of continuous running. Considering only the nominal power rating of

0.765W for the smartphone CPU used in this study and the average inference time of 7.65ms, the

energy consumption per prediction was 5.85mJ.

The energy consumption for the Raspberry Pi CPU with a nominal power rating of 0.9W and

average inference time of 4.76ms was 4.28mJ, compared with 178.88mJ for the non-quantized

classifier with an average inference time of 198.75ms.

4.5. Comparison With Existing Work

Table 5 compares the proposed lightweight solution with the existing work, in terms of

classification performance, and when the 5 AAMI classes were of interest; studies with binary

(normal vs abnormal) classification were excluded. The proposed classifier has comparable

classification performance with respect to the existing counterparts.

Work Acc Sen Spe Ppr 𝐹
1

Type

Kachuee et al.
[40]

93.4% - - - - CNN

Acharya et al.
[8]

93.5% 96.0% 91.6% 97.87 - CNN

Martis et al.
[41]

93.8% 99.5% 97.4% 99.1% - DWT + SVM

Li et al. [42] 94.6% - - - - DWT +
Random Forest

Martis et al.
[43]

99.3% 99.9% 99.8% 99.2% - Probabilistic
NN

Proposed 99.6% 98.5% 99.8% 99.2% 98.8% CNN



Proposed /
20% noise

96.4% 89.3% 97.6% 94.2% 90.6% CNN

Proposed /
50% noise

91.9% 77.5% 94.8% 88.8% 80.2% CNN

Proposed /
100% noise

86.7% 62.1% 91.4% 85.5% 65.1% CNN

Table 5. Classification performance comparison between the proposed lightweight solution and previous
works using 5 AAMI classes.

5. CONCLUSION

In this study we proposed a deep convolutional neural network for automated classification of

five different categories of arrhythmia. In all anomalous cases, the classification accuracy

achieved an F1 score of ≥99.8%.

The proposed model uses raw ECG signals, without the need for any preprocessing steps of noise

removal or beat detection. This facilitated the optimization of the classifier, which was achieved

by quantizing the neural network using a post-training 8-bit integer quantization technique. This

resulted in a lightweight model with a smaller footprint in terms of memory and latency, and

with small degradation classification accuracy, in relation to its non-quantized counterpart.

The employed arrhythmia database contains solely signals recorded from an ambulatory device

in a controlled environment. In order to represent artifacts consistent with the wearable devices,

different types of synthetic noise were added to the ambulatory ECG recordings. However, in our

follow-up studies, we will use signals acquired from mobile devices.



To demonstrate the feasibility of real-time 24h continuous arrhythmia monitoring, we produced a

working prototype using an ordinary smartphone as an edge processing device, with 7.65ms

inference time and 5.85mJ energy consumption, per prediction.

The availability of such low-cost systems for continuous ambulatory cardiac monitoring would

provide privacy, energy efficiency, low latency, low storage usage, and portability, empowering

clinicians in the accurate diagnosis of early cardiac diseases, and constant monitoring of patients.

Using such wearable devices on a continuous basis will potentially be highly beneficial in early

detection and prevention of medical complications and emergencies, particularly in cardiac

patients and among elderly populations [43].
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Appendix

Number of heartbeats belonging to each class present in each recording, as determined by the

expert cardiologists:

AAMI category



Record id N S V F Q

100 2237 33 1 0 0

101 1859 3 0 0 2

103 2081 2 0 0 0

105 2526 0 41 0 5

106 1507 0 520 0 0

107 2077 0 59 0 0

108 1738 5 17 2 0

109 2490 0 38 2 0

111 2123 0 1 0 0

112 2535 2 0 0 0

113 1787 6 0 0 0

114 1820 12 43 4 0

115 1951 0 0 0 0

116 2301 1 109 0 0

117 1533 1 0 0 0

118 2165 96 16 0 0

119 1543 0 444 0 0

121 1859 1 1 0 0

122 2474 0 0 0 0

123 1514 0 3 0 0

124 1530 36 47 5 0

200 1742 30 826 2 0

201 1624 138 198 2 0

202 2060 55 19 1 0

203 2528 2 444 1 4

205 2570 3 71 11 0

207 1542 107 210 0 0

208 1585 2 992 372 2



209 2620 383 1 0 0

210 2421 22 195 10 0

212 2747 0 0 0 0

213 2639 28 220 362 0

214 2001 0 256 1 2

215 3193 3 164 1 0

217 244 0 162 0 1802

219 2082 7 64 1 0

220 1952 94 0 0 0

221 2031 0 396 0 0

222 2060 421 0 0 0

223 2028 89 473 14 0

228 1687 3 362 0 0

230 2254 0 1 0 0

231 1567 1 2 0 0

232 397 1383 0 0 0

233 2229 7 830 11 0

234 2699 50 3 0 0
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TABLES

Table 1.

Category AAMI
Classes

Annotation ECG Sample

N Normal Beat Normal
Left/Right bundle branch
block
Atrial escape
Nodal escape

S Supra-
Ventricular
Beat

Atrial premature
Aberrant atrial premature
Nodal premature
Supra-ventricular premature

V Ventricular
Ectopic Beat

Premature ventricular
contraction
Ventricular escape

F Fusion of
Ventricular
and Normal

Fusion of ventricular and
normal

Q Unclassifiable
Beat

Paced
Fusion of paced and normal
Unclassifiable



Table 2.

Device

Raspberry Pi v2 Huawei P30 Pro

Chipset Broadcom BCM2836 Kirin 980

CPU ARM Cortex A53 ARM Cortex A55/A76

Mean Inference Time 4.76 ms 7.65 ms

Table 3.

Class
Original neural network Quantized neural network

Acc Sen Spe 𝐹
1

Acc Sen Spe 𝐹
1

N 99.9% 99.8% 99.9% 99.8% 99.4% 99.8% 99.3% 98.6%

S 99.9% 99.9% 99.9% 99.8% 99.7% 99.1% 99.9% 99.4%

V 99.9% 100% 99.9% 99.9% 99.6% 99.5% 99.7% 99.3%

F 99.9% 99.7% 100% 99.8% 99.5% 99.4% 99.9% 96.7%

Q 99.9% 99.9% 100% 99.9% 99.9% 99.9% 100% 99.9%



Table 4.

Noise / Artifact Signal Sample

Electrode contact noise

Power line interference

Instrumentation noise

Motion / Muscle contraction



Table 5.

Work Acc Sen Spe Ppr 𝐹
1

Type

Kachuee et al.
[39]

93.4% - - - - CNN

Acharya et al.
[8]

93.5% 96.0% 91.6% 97.87 - CNN

Martis et al.
[40]

93.8% 99.5% 97.4% 99.1% - DWT + SVM

Li et al. [41] 94.6% - - - - DWT +
Random Forest

Martis et al.
[42]

99.3% 99.9% 99.8% 99.2% - Probabilistic
NN

Proposed 99.6% 98.5% 99.8% 99.2% 98.8% CNN

Proposed /
20% noise

96.4% 89.3% 97.6% 94.2% 90.6% CNN

Proposed /
50% noise

91.9% 77.5% 94.8% 88.8% 80.2% CNN

Proposed /
100% noise

86.7% 62.1% 91.4% 85.5% 65.1% CNN


