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Abstract 

Brain functional connectivity (FC) analyses based on magnetoencephalographic (MEG) signals have 

yet to exploit the intrinsic high-dimensional information. Typically, these analyses are constrained to 

regions of interest to avoid the curse of dimensionality, which leads to conservative hypothesis 

testing. We removed such constraint by extending cluster-permutation statistics for high-

dimensional MEG-FC analyses. We demonstrated the feasibility of this approach by identifying MEG-

FC resting-state changes in mild cognitive impairment (MCI), a prodromal stage of Alzheimer’s 

disease. We found dense clusters of increased connectivity strength in MCI compared to healthy 

controls (hypersynchronization), in delta (1-4 Hz) and higher-theta (6-8 Hz) bands oscillations. These 

clusters mainly consisted of interactions between occipitofrontal and occipitotemporal regions in the 

left hemisphere and could potentially be used as neuromarkers of early progression in Alzheimer’s 

disease. Our novel approach can be used to generate high-resolution statistical FC maps for 

neuroimaging studies in general. 
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Introduction 

Functional connectivity (FC) analyses are continuously evolving, helping us to shape our 

understanding of network organization in healthy and unhealthy brains1–4. Typically, FC studies are 

conducted in resting-state since the associated spontaneous brain activity recruits multiple brain 

regions and networks, which can also be observed during active cognitive states5–9. Due to the 

consistency of resting-state FC results across multiple datasets, it also makes the study of brain 

disorders possible2–5,10. Furthermore, the use of resting-state functional magnetic resonance imaging 

(rs-fMRI) has attracted most attention given an excellent spatial resolution of fMRI to map brain 

function differences between conditions6,7. However, rs-fMRI analyses provide only an ultra-low 

frequency filtered and indirect representation of the underlying neural dynamics, as fMRI is based 

on the slow blood-oxygen-level dependent (BOLD) signal11. In contrast, 

electro/magnetoencephalography (EEG/MEG) imaging resolves such limitations by directly reflecting 

transient neural dynamics and allowing to infer communication among brain regions12. 

In any case, either using fMRI7–9 or EEG/MEG13–16 data, analyses are heavily reliant on the use of 

regions of interest (ROIs) for reducing dimensionality, with a trade-off between the advantages of 

faster computations, simpler and less-conservative statistical tests, versus the possible loss of 

information and biased results16,17. Conversely, FC studies in the last decade have shown the 

feasibility of high-dimensional approaches to study network dynamics in greater detail12,17–23; e.g. 

using cluster-permutation statistics, with the critical advantage that significant network clusters 

ensure strong evidence of inter-regional connectivity17–19,22. Therefore, high-dimensional FC analysis 

could enhance the evaluation of FC differences between healthy and unhealthy brain conditions19,22. 

However, the state-of-the-art applications of cluster-permutation statistics are mostly limited to 

non-EEG/MEG data17–19,21,22 and low-dimensional analysis23, and hence not fully exploiting the 

advantages of the latter approach. 
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In this work, we extended the application of cluster-permutation statistics to truly high-dimensional 

scenarios, e.g. using a source-based FC analysis after solving the EEG/MEG inverse problem. 

Specifically, we estimated source pairwise FC using our recently proposed connectivity measure to 

control for volume conduction effects24. By concurrently dealing with FC analysis in the intrinsic high-

dimensional space while controlling for volume conduction, we demonstrated increased sensitivity 

of post-hoc statistical analyses. This approach was applied to a dataset of 30 healthy control (HC) 

and 30 mild cognitive impairment (MCI) participants, where MCI was diagnosed according to 

standard criteria25. Statistical tests for the estimated MEG-FC networks differences between the HC 

and MCI groups, and for the covariation of these networks with respect to measured cognitive tests, 

were evaluated. We found significantly increased activation of occipitotemporal and occipitofrontal 

networks in MCI with respect to HC participants (hypersynchronization) in the left hemisphere, 

possibly associated with cognitive decline, and showed that significant source MEG-FC clusters can 

potentially be used for biomarker research in Alzheimer’s disease (AD). 

Results 

We will focus on source MEG-FC analysis to demonstrate our application with very high dimensional 

data, although our proposed approach is sufficiently broad for general application. Specifically, the 

MEG data was collected from 30 HC and 30 MCI participants, using an Elekta Neuromag acquisition 

system with a sensor array of 102 magnetometers and 204 planar gradiometers (Fig. 1A, top). MEG 

signals were band-pass filtered (0.5-48 Hz) and segmented into nonoverlapping epochs (90 segments 

of 2s length). A Bayesian minimum norm was applied to estimate source time series in 8196 

locations of the individual cortical surface26, separately for each participant (Fig. 1A, bottom; Fig. 1B, 

top). After the spectral analysis of the source activity using Fourier transform, FC maps were derived 

using the envelope of the imaginary coherence (EIC), a novel technique that we have previously 

developed as an alternative to traditional imaginary coherence methods24. 
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Here, the FC maps were computed directly for all the source pairs, an upper-triangular matrix of 

8196 × 8195 2⁄  elements, and averaged across frequency bands (Fig. 1B, bottom): 0.5-4 Hz (𝛿), 4-6 

Hz (lower-theta, 𝜃1), 6-8 Hz (upper-theta, 𝜃2), 8-10.5 Hz (lower-alpha, 𝛼1), 10.5-13 Hz (upper-alpha, 

𝛼2), 13-20 Hz (lower-beta, 𝛽1), 20-30 Hz (upper-beta, 𝛽2), and 30-48 Hz (gamma, 𝛾). Thus, resulting 

in a total of 8 × 8196 × 8195 2⁄  FC measures, or about 0.27 billion features. The calculations were 

performed separately for each participant, and the outcome consisting of a matrix of 60 rows and 

about 0.27 billion columns was submitted for post-hoc statistical analyses (Fig. 1C). Data processing 

steps and analyses were implemented using automated pipelines (Online Methods). 

High-dimensional FC analysis can detect brain-wide communication  

The EIC method produces a normalised measure of FC strength with values between 0 and 1, similar 

as the coherence measure24. Our analyses also include neuropsychological tests scores for the 

assessment of participants’ cognitive abilities, namely, the Mini-Mental State Examination27 (MMSE), 

and Immediate and Delayed Recall Memory28 (IRM and DRM) tests. Typically, these measures have a 

skewed distribution, heavy tails and other features that do not comply with the normal assumption. 

Therefore, to avoid assumptions over the data distribution, the nonparametric Wilcoxon rank-sum 

test was used to compare the FC differences between HC and MCI participants, while the Spearman 

rank-correlation test was used to measure the monotonic relationship between the FC strength and 

neuropsychological tests scores. 
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Figure 1: Flowchart from MEG data to functional connectivity (FC) and statistical analysis. (A) Top: MEG signals are 
collected from 102 magnetometers and 204 planar gradiometers, for a dataset of 30 HC (HC: S1-30, left) and 30 MCI (MCI: 
S1-30, right) participants. Bottom: After pre-processing, source activity is estimated using Bayesian minimum norm for 
source reconstruction. (B) Time-series of estimated source activity segmented into nonoverlapping epochs to produce FC 
maps for 8196 sources. (C) Wilcoxon rank-sum analysis of FC differences between HC and MCI participants (top). P-values 
are computed for these statistics and submitted to cluster-permutation statistical analysis for detecting significant clusters 
while controlling for multiple comparisons (bottom). 
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With about 0.27 billion features, the effect size of these statistical analyses must be noticeable to be 

successfully measured while controlling for multiple comparisons18. For this purpose, we first used 

false discovery rate (FDR)29 and found significant relations in the rank-correlation analyses only 

between FC and DRM/IRM scores. In the analysis with DRM, we used FDR parameter 𝑞 = 0.05 and 

found the significant p-values lower than 10−7 (𝑝 < 10−7) with correlation coefficients 0.63 < 𝑟 <

0.69 and −0.75 < 𝑟 < −0.63 for the positive and negative correlations, respectively. In contrast, 

using 𝑞 = 0.05 in the analysis with IRM did not produce results. But we found significant results for 

𝑞 = 0.2, with 𝑝 < 10−6, 0.59 < 𝑟 < 0.69 and −0.72 < 𝑟 < −0.59. 

Above results were summarised by counting the number of significant brain-wide connections. 

Specifically, Table 1 shows the outcome separately for the DRM and IRM tests, the positive and 

negative correlations, and for each frequency band. Notice that the number of significant negative 

correlations was much more prominent for lower frequencies for both cognitive tests, whereas 

positive correlations were more prominent for higher frequencies. Interestingly, lower values of the 

cognitive tests are expected for participants showing a mild or advanced stage of dementia with 

respect to age-matched HC. Consequently, our results showed a significant relationship between the 

number of significant connections, or increased FC strength, with cognitive decline, in the lower 

frequency bands. Thus, cortical hypersynchronization (i.e. higher FC strength in MCI with respect to 

HC participants) in the lower frequency bands could be associated with mild cognitive decline, as 

previously reported in the literature13,30–32.  

Table 1: Number of significant FC links correlated with IRM and DRM scores. Positive and negative correlations are 
counted separately for each considered frequency band: 0.5-4 Hz (𝛿), 4-6 Hz (lower-theta, 𝜃1), 6-8 Hz (upper-theta, 𝜃2), 8-
10.5 Hz (lower-alpha, 𝛼1), 10.5-13 Hz (upper-alpha, 𝛼2), 13-20 Hz (lower-beta, 𝛽1), 20-30 Hz (upper-beta, 𝛽2), and 30-48 Hz 
(gamma, 𝛾). More relevant negative interactions were found in lower frequency bands, particularly 𝛿 and 𝜃2 bands 
(highlighted in blue colour in the online version), whereas more relevant positive interactions were found in higher 
frequency bands, particularly 𝛼2 band (red colour). 

 FC↔DRM correlation (FDR 𝒒 = 𝟎. 𝟎𝟓) FC↔IRM correlation (FDR 𝒒 = 𝟎. 𝟐) 

 𝜹 𝜽𝟏 𝜽𝟐 𝜶𝟏 𝜶𝟐 𝜷𝟏 𝜷𝟐 𝜸 𝜹 𝜽𝟏 𝜽𝟐 𝜶𝟏 𝜶𝟐 𝜷𝟏 𝜷𝟐 𝜸 

Positive 0 0 0 0 30 6 1 2 0 0 0 4 34 20 2 28 

Negative 21 14 419 5 0 0 0 0 175 59 541 143 4 0 2 0 
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Our results are also consistent with the notion that the DRM score seems to provide a more 

sensitive measure of cognitive decline than IRM and other tests33. As mentioned above, in contrast 

to the analysis with DRM, no significant associations were found for the analysis with IRM when FDR 

was applied with 𝑞 = 0.05. Furthermore, both DRM and IRM scores exhibited very similar trend 

information, as the Spearman rank-correlation analysis between both scores produced an almost 

perfect relationship (𝑟 = 0.94, with negligible p-value). To some extent, this is also consistent with 

our previous analysis (albeit using a different dataset) that showed a probabilistic causal relationship 

between immediate and delayed recall memory scores34. 

The results for both the DRM and IRM analyses were further explored using high-dimensional FC 

mapping of the significantly correlated connections (Fig. 2A). From the FC maps, we could clearly see 

the increased details as compared to traditional ROI-based approaches. Our results revealed that the 

strongest correlations were predominantly found within a bundle of connections among 

occipitofrontal, occipitotemporal and parietotemporal regions in the left hemisphere in 𝛿 band (Fig. 

2A-B), whereas two separated connection bundles could be observed connecting central and 

occipitotemporal regions in the left hemisphere in 𝜃2 band (Fig. 2C-D). Significant correlations were 

also exhibited with connections in the right hemisphere and between both hemispheres, but these 

networks seemed to be much less organized in comparison with the left-hemispheric connectivity. 

The substantial overlap of the FC cortical maps for both the DRM and IRM corroborated the above-

mentioned tight relationship between DRM and IRM scores. 
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Figure 2: Cortical maps of FC significantly correlated with cognitive (DRM or IRM) scores. Each FC map is topographically 
presented in three views: left/right lateral views of the cortical hemispheres and frontal view. The left/right view only 
shows connections between regions in the same hemisphere, whereas the frontal view shows all the significant FC. (A-B) 
Significant FC in 𝛿 band (see Table 1). (C-D) Significant FC in 𝜃2 band. Significant correlation of FC strength with cognitive 
scores was tested using FDR for both DRM and IRM tests, with FDR parameter 𝑞 = 0.05 for DRM and 𝑞 = 0.2 for IRM test. 
A higher value of 𝑞 was needed for IRM test as it was less sensitive than DRM. 

Next, we summarised our results using a parcellation of the cortical surface into ROIs only for 

comparison purposes with the literature. Specifically, we employed the Desikan-Killiany atlas35 and 

reported the significant inter-regional FC derived from the high-dimensional source FC analyses. 

Figure 3 showed a schema ball summarization of the correlation analysis between the FC and DRM 

scores for the more relevant interactions reported in Table 1. In this representation, the number of 

connections between any two ROIs was estimated as the number of significant connections between 

the ROI sources. As shown in each schema, this number was normalised with respect to the highest 

value within each representation. 
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Figure 3: Inter-regional FC significantly correlated with DRM score. The connectivity strength between two regions of the 
Desikan-Killiany atlas is estimated as the number of significant connections between the two regions in the corresponding 
high-dimensional correlation analysis. Region labels are shown separately for the left hemisphere (blue) and right 
hemisphere (red). Colourmap indicates the inter-regional connectivity strength (values between 0 and 1), where this value 
is normalised as the number of connections divided by its highest value. (A-B) Graphs of hypersynchronized connectivity 
(FC strength significantly higher in MCI with respect to HC participants, MCI>>HC) as identified in 𝛿 and 𝜃2 frequency 
bands. All significant connections in these bands showed negative correlations (see Table 1). (C) Graph of 
hyposynchronised connectivity (MCI<<HC) as identified in 𝛼2 frequency band. All connections in this band showed positive 
correlations (see Table 1). 

For the FC hypersynchronization, the most prominent associations were found between the lateral 

occipital and medial orbitofrontal regions in 𝛿 band (Fig. 3A, 5 connections between ROI #11 and ROI 

#14 in the left hemisphere, or L11↔L14), and between the adjacent postcentral and superior 

frontal regions in 𝜃2 band (Fig. 3B, L22↔L28 with 86 connections). Otherwise, the most relevant 

hyposynchronization (FC strength is decreased in MCI with respect to HC) was found between the 

left-hemispheric postcentral regions and right-hemispheric isthmus cingulate cortex in 𝛼2 band (Fig. 

3C, L22↔R10 with 21 connections). 
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Cluster-permutation statistic more consistently detects brain-wide communication 

To recall, the proposed high-dimensional analyses involved about 0.27 billion features. Therefore, 

Bonferroni and FDR tests can be expected to produce conservative results. In this situation, it has 

been shown that the cluster-permutation could serve as a less conservative statistic since it can 

exploit the spatial structure in the data18,19. By clustering together spatially-related features in 

combination with a permutation approach that preserves the spatial structure, the cluster-

permutation statistic can automatically reduce dimensionality while increasing the sensitivity of 

post-hoc statistical analyses. 

We shall next portray its implementation by proposing a novel measure of spatial neighbourhood. 

Briefly, a neighbourhood relationship between any two connections, or edges, can be evaluated by 

requiring that the edges share one point while the other (dissimilar) endpoints are neighbours in the 

cortical surface (Supplementary Fig. 2). Then, a cluster partition of the estimated FC is created from 

neighbouring edges using breadth-first search (Online Methods). 

The cluster-permutation statistic was computed after defining thresholds for selecting relevant 

features at both the lower and upper tails, separately (Online Methods). The thresholds were 

empirically selected as corresponding to p-values of 𝑝1 = 10−7,  𝑝2 = 10−6, and 𝑝3 = 10−5. This 

selection was based on the reasoning that with about 0.27 billion features, the expected number of 

spuriously selected features is about 27, 270, and 2700, correspondingly to the defined thresholds. 

However, the probability for these “false positive” connections to agglomerate in clusters by chance 

or, similarly, the probability to observe a cluster with high cardinality by chance, is expected to be 

much lower than for the discovered FC corresponding to the actual networks, which is the critical 

advantage of using cluster-permutation statistic. Moreover, we expect to obtain significant clusters 

of different sizes depending on the specific chosen supra-threshold value. Specifically, we could 

obtain narrower extended clusters for more conservative values (𝑝1 = 10−7), while wider clusters 

could be obtained for higher values (𝑝3 = 10−5). 
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For computing the cluster-permutation statistic using the actual data, after the pruning of edges 

with p-values that exceeded one of the mentioned supra-thresholds, we partitioned the surviving 

edges into clusters by using the defined neighbourhood measure and annotated each cluster 

extension (number of connections). For the identification of the significant clusters, we repeated the 

same procedure for randomly shuffled (surrogate) data and annotated only the maximum size of the 

produced clusters for each replication18,23. The surrogate data was generated based on the null 

hypothesis of having no difference between the contrast groups (MCI vs. HC) under the Wilcoxon 

rank-sum analysis, or no monotonic relationship between the FC strength and MMSE/DRM/IRM 

scores under the Spearman rank-correlation analyses. According to the hypotheses, we can assume 

that the labels and ranking of the measures are redundant and our data can be reshuffled20. As a 

result, we calculated a distribution for the maximum-cluster-size statistic using 1000 Monte-Carlo 

replicas of this process, and selected the 95th percentile of this distribution as the cut-off value. Thus, 

this value was used to remove all the clusters with lower extension that were estimated from the 

actual data, thus controlling for multiple comparisons. 

When we applied this technique, we obtained significant results only for the correlation analysis 

with DRM in the 𝜃2 band, and for the MCI vs. HC contrast in the 𝛿 band. Figure 4 showed the cortical 

FC maps of the whole set of connections surviving the pruning according to the defined supra-

threshold p-values (Fig. 4A), ordered from the most (top) to less conservative (bottom) supra-

thresholds. The distribution of the maximum-cluster-size is shown in the middle column together 

with the 95th percentile of the distribution, correspondingly from top to bottom for each threshold 

(Fig. 4B). Unsurprisingly, this value increases dramatically from more conservative analysis (95th 

percentile of maximum-cluster-size, 𝑀𝐶𝑆 = 59.0) to less conservative ones (𝑀𝐶𝑆 = 603.5). As 

explained above, only those clusters estimated from the actual data exceeding the corresponding 

critical value (𝑀𝐶𝑆) were retained (Fig. 4C). 
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Figure 4: Significant clusters detected using the cluster-permutation statistic for the Spearman rank-correlation analysis 
between FC strength and DRM score in 𝜽𝟐 band. Three different supra-threshold values were tested as represented per 
row. (A) Cortical maps of all connections surviving after pruning for each supra-threshold value. (B) Normalised histograms 
of the probability distributions of the maximum-cluster-size statistic (horizontal-axis) with corresponding arrow-annotated 
95th percentile, which is the critical value for selecting the significant clusters in the actual data. The distribution upper tail 
is highlighted in orange. The vertical axis represents the relative probability values in the range 0-1, shown in a log-scale for 
clear visibility. (C) Significant clusters that remain after removing the clusters with extension lower than the corresponding 
critical value. 

In Figure 4C, notice that the same cluster with different extensions, involving the communication 

among the central regions, was significant for the more conservative supra-threshold values (top 

two rows). For the most conservative (𝑝1 = 10−7), it survived with extension of 135 connections 

(𝑀𝐶𝑆 = 59.0), whereas for a less conservative threshold (𝑝2 = 10−6) it survived with extension of 

227 connections (𝑀𝐶𝑆 = 187.0). Interestingly, for the least conservative supra-threshold (𝑝3 =

10−5) this cluster vanished while a completely different cluster appeared with a much higher 

extension of 1019 connections (𝑀𝐶𝑆 = 603.5), which involved the communication between 

occipital and temporal regions in the left hemisphere (Fig. 4C, bottom). The results were consistent 
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with a previous observation that more conservative thresholds could reveal spatially focal clusters, 

whereas the lesser conservatives reveal widely extended clusters17,36. Notice also that these clusters 

involved hypersynchronized connections indicating that an increased FC in these regions was a sign 

of memory impairment, as they were negatively rank-correlated with DRM (−0.75 < 𝑟 < −0.58 for 

the bigger cluster of central regions, and −0.69 < 𝑟 < −0.53 for the occipitotemporal cluster). 

Complementarily, it is interesting to study the inter-group FC differences (MCI vs. HC), as it can 

reveal further information about the possible network changes associated with cognitive decline. 

Using the Wilcoxon rank-sum method within the cluster-permutation approach, we found a 

significant cluster of hypersynchronized FC between occipitofrontal regions in the left hemisphere in 

𝛿 band (Fig. 5), i.e. communication between these regions was significantly increased in MCI with 

respect to HC participants. However, this cluster was only significant for 𝑝2 = 10−6, which further 

illustrates that selecting an appropriate supra-threshold value could be challenging when using the 

cluster-permutation technique. 

 

Figure 5: Significant clusters detected using the cluster-permutation statistic for the Wilcoxon rank-sum analysis (MCI vs. 
HC) in 𝜹 band. (A) Connections surviving after pruning for a selected supra-threshold value (10−6). (B) Only a cluster 
involving occipitotemporal regions (111 connections) survived after the correction by maximum-cluster-size statistics. See 
Figure 4 caption for further details. 

Interestingly, in the last result, we found a nice overlap between the occipitofrontal cluster obtained 

with the Wilcoxon analysis (Fig. 5B) and the connections obtained with the Spearman analysis (Fig. 

2A) in the same frequency band (𝛿), where the latter analysis used DRM and FDR statistic, thus 

demonstrating consistency. Likewise, a detailed inspection of the significant clusters obtained from 
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the Spearman analysis with DRM also revealed consistency between the significant clusters of the 

central and occipitotemporal regions (Fig. 4C) with the significant connections obtained using the 

FDR statistic in 𝜃2 band (Fig. 2C). Overall, this suggested the significance of these interactions at both 

the cluster and connection levels in our study. However, the analysis using cluster-permutation 

statistic has the advantage of providing a more robust evidence about the actual communication of 

involved brain regions. 

High-dimensional source MEG-FC analysis for neuromarkers of cognitive dysfunctions 

Consistent with previous MEG-FC research on Alzheimer’s disease32, we consider that the 

hyperconnectivity patterns in the lower frequency bands could be linked to early signs of cognitive 

decline. In our study, we found that the hypersynchronization of critical regions in the brain, such as 

those involved in occipitotemporal and occipitofrontal networks, could be associated with ongoing 

AD pathology37. Thus, we shall below further investigate whether it is possible to derive a source 

MEG-FC neuromarker of MCI. 

Beforehand, the above statistically significant clusters were mapped into ROI connectivity maps 

using the Desikan-Killiany atlas. Thus, the clustered brain-wide FC was used to produce a 

connectivity weight matrix for the atlas ROIs. Figure 6A exposed the weight matrix for the cluster of 

central regions in 𝜃2 band, obtained from the Spearman rank-correlation analysis with DRM (Fig. 4C, 

middle row). This cluster revealed that the strongest interaction was observed between postcentral 

and superior frontal regions (126 connections). Figure 6B exposed the weight matrix for the cluster 

of occipitotemporal FC links in 𝜃2 band, obtained from the same analysis (Fig. 4C, bottom row), 

where the strongest association was found between the lateral occipital area with the middle, 

superior, and transverse temporal regions with 340, 350 and 139 connections, respectively. Figure 

6C exposed the weight matrix for the cluster of occipitofrontal connections in 𝛿 band, obtained from 

the Wilcoxon rank-sum analysis (Fig. 5B), in which the strongest FC was between the lateral occipital 

region with the lateral and medial orbitofrontal regions, with 25 and 69 connections, respectively. 
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These brain regions are known to be critical for memory, emotion, object and face processing, which 

are among the principal cognitive functions affected during AD progression38–42. 

 

Figure 6: Biomarker evaluation of cluster-strength index for prediction of cognitive decline. (A-C) Clusters derived from 
Spearman rank-correlation and Wilcoxon rank-sum analyses are further scrutinised (cluster FC maps were plotted in Fig. 
4C, middle and bottom row, and Fig. 5B, correspondingly in the same order). For each cluster, inter-regional weight 
connectivity matrices were obtained by counting the number of significant connections within two different regions of the 
Desikan-Killiany atlas, while a cluster-strength index was estimated as the average of all the cluster connections separately 
for each participant. Note that each cluster only connects a few number of ROIs as shown in the matrices. (A, left-side 
column) The first cluster mostly connects postcentral with posterior cingulate and adjacent superior frontal regions. (B, 
left-side column) The second cluster contains a hub located in the lateral occipital cortex, with a significant number of 
connections to inferior, middle, superior, and transverse temporal gyrus, and insula. (C, left-side column) The third cluster 
mostly connects lateral occipital with lateral and medial orbitofrontal cortex. (A-C, right-side column) Each cluster-strength 
index is used to evaluate cognitive decline. (A-B, right-side column) For the first two clusters, ROC analysis, with estimation 
of the 95% confidence interval and AUC, was conducted by providing the cluster-strength index and the corresponding 
HC/MCI label per participant. (C, right-side column) For the last cluster, Spearman rank-sum correlation analysis was 
conducted between the cluster-strength index and DRM test scores. Red open circle: HC participant; blue cross: MCI. 
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To evaluate whether these clusters could be used to predict cognitive decline, we first proceeded to 

average all the cluster connections to produce a single-valued cluster-strength index, separately for 

each cluster and participant, i.e. averaging the 227, 1019 and 111 connections, corresponding to the 

central (Fig. 6A), occipitotemporal (Fig. 6B) and occipitofrontal (Fig. 6C) networks. Subsequently, we 

evaluated the predictive value for the first two clusters using receiver operating characteristic (ROC) 

analysis. For simplicity, we provided the classification targets (HC or MCI) and the cluster-strength 

index as parameters for estimating the ROC curves, their 95% confidence interval (CI), and 

corresponding area under curve (AUC) values, using 𝑁 = 1000 bootstrap replications. We found 

that the cluster-strength index showed a high classification performance with 𝐴𝑈𝐶 = 0.81, 𝐶𝐼 =

[0.69; 0.90], and 𝐴𝑈𝐶 = 0.79, 𝐶𝐼 = [0.65; 0.89], for the  corresponding clusters (Fig. 6A-B, right-

side column). Finally, we conducted Spearman rank-correlation analysis between the third cluster-

strength index and DRM test scores, which revealed a strong negative correlation with  𝑟 = −0.67 

and 𝑝 < 10−8 (Fig. 6C, right-side column), reinforcing the view that networks hypersynchronization 

may be an early sign of cognitive decline. Notice that the first two clusters cannot be used in the 

latter analysis, nor the third cluster can be used in the former analysis, without incurring in statistical 

circularity. Overall, these results demonstrated the high predictive value and sensitivity of using the 

cluster-strength index, despite its simplicity of being just a single feature, and provided an optimistic 

prospect for the development of a source MEG-FC neuromarker in AD research. 

Discussion 

To the best of our knowledge, this is the first time that EEG/MEG analyses have been conducted on 

such a large scale with about 0.27 billion features. In the current applications, FC analyses are often 

limited to the use of coarse brain regional parcellation, falling short of fully exploiting the ample 

information of the original data1,9,16,18,32, and thus leading to information loss, reduced statistical 

sensitivity, and consequently to potential bias in research findings16,19. To avoid such limitations, 

here we study the brain functional networks, with its intrinsic high-dimensional characteristics, using 
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a robust FC measure24 and a novel extension of the cluster-permutation statistic17–19. We 

demonstrate our approach based on source MEG-FC analysis, using a database of 30 HC and 30 MCI 

participants that included MEG and neuropsychological data. The MCI participants had memory 

impairment and hippocampal atrophy (as detected by structural MRI scans, Supplementary Table 1), 

thereby the MCI can be linked to AD pathology with an intermediate likelihood25. Our application is 

of utmost importance to show the prospect of source MEG-FC analysis for studying neuromarkers of 

Alzheimer’s disease (AD) and its earlier progression.  

Extension of cluster-permutation statistical analysis for high-dimensional FC analyses 

As an important contribution, we developed an extension of the cluster-permutation statistic17–23 to 

make possible our study involving a huge number of connections in source MEG-FC analysis. This 

was achieved by developing a new neighbourhood measure for cortico-cortical connections through 

the exploitation of their smooth spatial distribution patterns (see Fig. 4,5 and Online methods). Our 

approach was unlike previous studies that used high-dimensional FC analysis or cluster-permutation 

statistic in a reduced space, by: (i) conducting the analysis among the sources of selected regions 

based on prior information43; (ii) analysing significant connected components18; (iii) considering the 

connectivity mapping of a seed point within the brain12; or (iv) using coarser grids to avoid the 

possible spurious estimation of FC among nearby sources17,19. Thus, we have used most of the 

available information in a source MEG-FC manifold to render less-biased conclusions. 

Given the similarity of our approach with the spatial pairwise clustering (SPC) technique17, our 

cluster-permutation statistic could be considered as an extension of the SPC approach, especially 

regarding our definition of a novel cortico-cortical FC neighbourhood measure. Importantly, our 

work has shown that the cluster-permutation statistic can be applied to high-dimensional data 

without much computational burden, thus refuting previous considerations17 (see Online Methods). 

Furthermore, it should be noted that our method controls the family-wise error rate by testing 

significance at the cluster instead of individual connections, similar to other cluster-based 
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permutation techniques17–20. Therefore, when applying our approach to source MEG-FC analyses, we 

focused on the significant detected FC clusters and proposed a cluster-strength index. Not only our 

significant clusters revealed critical networks involved in memory and cognitive processing (Figs. 4-

5), our cluster-strength index also showed high performance and sensitivity in evaluating the 

cognitive status of the participants (Fig. 6). 

ROI vs large-scale brain-wide based FC analysis 

It would have been possible to apply our approach to similar sensor-level FC analyses32, with the 

advantages that the number of sensors is considerably smaller than the number of sources. As 

nearby sensors record similar oscillations emanating from the underlying neuronal population, it is 

appropriate to use cluster statistics to exploit the smooth spatial FC patterns. However, a sensor can 

also identify significant activity from multiple sources located at distant sites, thus hindering the 

results interpretation. Less negative issues occur when using ROI-based source FC analyses. One 

extreme case is when the ROIs are coarsely defined by the brain lobes, in which case it resembles 

the sensor-level analysis. At the other extreme, FC analyses based on a very fine ROI parcellation43,44 

could produce results comparable with those using a high-dimensional approach. 

However, despite the observation that ROI analysis may provide robustness against inter-participant 

functional and anatomical variability16, it certainly leads to loss of information with the associated 

degraded sensitivity of post-hoc statistical analyses and biased results16–18. In contrast, our approach 

uses most of the available information in a high-dimensional manifold while dealing with volume 

conduction in source FC analysis24. Furthermore, the inter-participant variability is controlled in our 

approach due to the characteristic spatial blurriness of estimated source activities26, which may be 

conveyed to the FC analysis. Altogether, our cluster-permutation approach may lead to increased 

robustness of statistical analyses, and the significantly detected FC clusters should reasonably 

increase our confidence in having discovered actual brain networks. 
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In contrast to ROI analysis, the use of large-scale brain-wide FC approach also allows for direct 

comparisons with ECoG analysis to measure FC in the brain12,45. Particularly, with the use of the EIC 

method or an imaginary coherence index24,46, which are robust to volume conduction, we ameliorate 

the risk that the measured interactions are spurious and allow for the robust estimation of short-

range connectivity in the brain. Critically, EIC can also measure true interactions caused by zero-lag 

(modulus 𝜋) phase interactions that are neglected by other imaginary coherence measures24, which 

is an advantage inherited by our implementation. 

Prospective neuromarker importance of source MEG-FC analysis 

Consistent with our findings (Figs. 2-6 and Table 1), the state-of-the-art in AD research using 

EEG/MEG data have established a relationship between hypersynchronized FC and memory 

decline10,13,14,31,32. Particularly, our high-dimensional FC analyses exposed significant 

hypersynchronized communication of occipitotemporal and occipitofrontal regions (Fig. 6, left-side 

column). Such hypersynchronization phenomenon could be attributed to overall neuronal excitatory 

enhancement47, reduced disinhibition of neurons30, or as a compensatory mechanism related to 

brain plasticity changes triggered by AD synaptic and neuronal loss48,49. 

Among the significantly found connected regions, there is a consensus that the insula and temporal 

areas (e.g. transverse temporal, Fig. 6B) are critically involved in episodic memory processes38,39. 

Other significantly connected regions in the frontal (lateral and medial orbitofrontal cortex), lateral 

occipital, and inferior parietal cortices (Fig. 6C), are important for decision making, reward 

evaluation, face/object and emotion processing40–42. 

Furthermore, our main results (Figs. 4-6) overlapped with previously reported hypersynchronization 

in similar brain regions14,15,32. Although, in our case, the identification of significant FC clusters 

provides stronger evidence for this claim, as clusters can more robustly support the evidence of 

inter-regional communication in contrast to the sparse FC patterns exposed in previous works13–16,32, 

with the additional advantage that the smooth characteristic of FC clusters also brings robustness 
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against inter-subject anatomical and functional variability. Therefore, we suggest that these two 

properties of FC clusters are important for a source MEG-FC neuromarker in dementia. Here, we 

further supported the importance of cluster analysis by showing that a cluster-strength index can be 

used to evaluate cognitive decline with promising results (Fig. 6, right-side column). However, note 

that these results must be interpreted with caution because the limited sample size in our study. 

Thus, our results must be further scrutinised using different databases in future studies. 

Overall, we have successfully developed a novel analytical pipeline involving cluster-permutation 

statistics for analysing high-dimensional brain-wide FC maps, while avoiding the biases that come 

along with standard brain parcellation approaches. Such high-resolution FC maps can be estimated 

without high computational cost (see Online Methods) and could be important to advance research 

in healthy and unhealthy neural information processing. Our proposed approach can, in general, be 

applied to a variety of neuroimaging studies, including translational clinical research. 

Data Availability 

The data of the present study would be available through an institutional repository and under a 

previous request to the authors.  

Code Availability 

The MATLAB code is available at the following GitHub repository: 

https://github.com/JMSBornot/High-Dimensional-Source-MEG-FC 
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Online methods 

Participants. Data were collected from a total of 60 participants at Hospital Universitario de San 

Carlos (Madrid, Spain), including MEG recordings and neuropsychological tests scores to evaluate 

cognitive and memory abilities (MMSE Spanish version27, and DRM/IRM scores from Wechsler 

Memory Scale-III28). Inclusion criteria: recruitment age of 65-85 years, right-handed as verified using 

Edinburgh Handedness Inventory50, native Spanish speakers, a modified Hachinski score ≤ 451, a 

Geriatric Depression Scale short-form score ≤ 552, and no indication of comorbidities or brain trauma 

according to MRI inspection31. MCI participants showed signs of hippocampal atrophy as quantified 

using their anatomical MRI, and therefore it was considered that their cognitive impairment was 
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related to AD pathology with an intermediate likelihood25. HC group: N=30, 16 females, ages 66-80 

years. MCI group: N=30, 15 females, ages range 65-78 years (see Supplementary Table 1 for further 

details). 

MEG data recording. The MEG signals were acquired using an Elekta-Neuromag system with 306 

channels (102 magnetometers and 204 planar gradiometers) with a sampling frequency of 1 kHz and 

online anti-alias filter with 0.1-330 Hz bandwidth. Concurrently, head movements were tracked 

using a continuous head-position indicator (cHPI) with four coils attached to the scalp. The position 

for these coils, fiducial points (nasion, and left/right preauricular), and head-shape model were 

digitised using a three-dimensional Fastrak Polhemus system (Polhemus, Inc, USA). Additionally, 

bipolar electro-oculogram sensors were attached above and below the left eye to measure ocular 

movements, and an electrical ground electrode was attached to the earlobe. Offline, MEG signals 

were processed using the temporal extension of the signal-space separation technique (Maxfilter 

version 2.2, Elekta; correlation threshold = 0.9, time window = 10 s) to reduce the contribution of 

external magnetic field and correct the head movements using the cHPI data. About 15 minutes 

were recorded for each participant in eyes-closed resting-state condition, although only a 

continuous segment of 180-seconds, relatively free of artefacts, was selected by visual inspection for 

post-hoc analyses. 

Pipeline for pre-processing. Analyses were conducted using MATLAB custom code. First, the 

individual anatomical MRI was co-registered with corresponding MEG fiducials and head-shape 

model points using a modified interface of the SPM12 automatic routine to improve co-registration 

accuracy (see Supplementary Fig. 4). Subsequently, the MEG lead field was estimated using the 

SPM12 implementation of the single-shell technique with sources located on the SPM12 template 

surface of 8198 vertices (medium size). Similarly, using the SPM12 toolbox within a MATLAB custom 

script, signals were pre-processed using a Butterworth’s bandpass filter of 0.5-48 Hz bandwidth, 

downsampled to 200 Hz and epoched into 2-seconds segments (90 trials) using a Hann window. 
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Next, the source reconstruction analysis was conducted using the SPM12 implementation of the 

Bayesian minimum norm optimization26 for each segment. Finally, the discrete Fourier transform 

(MATLAB fft function) was applied to each estimated and segmented source activity, and its derived 

complex numbers were halved to “single” precision and saved to hard-disk for post-hoc FC analyses. 

In summary, this resulted in a 3D matrix of dimensions 96 frequency bins (frequency resolution of 

0.5 from 0.5 to 48 Hz), 8196 sources and 90 segments, for each subject. 

Pipeline for FC analysis. Specifically, in this study the envelope of the imaginary coherence (EIC)24 

was estimated as the FC index between two signals 𝑥𝑖(𝑡) and 𝑥𝑗(𝑡), for each frequency 𝜔: 

𝐸𝐼𝐶𝑖𝑗(𝜔) = |ℋ (∑ ℑ{𝑋𝑖𝑛(𝜔)𝑋𝑗𝑛
∗ (𝜔)}𝑁

𝑛=1 √∑ |ℋ(ℑ{𝑋𝑖𝑛(𝜔)𝑋𝑗𝑛
∗ (𝜔)})|

2𝑁
𝑛=1⁄ )|

2

 , 

where 𝑋𝑖𝑛(𝜔) is the Fourier transform complex number output for signal 𝑥𝑖𝑛(𝑡), estimated 

separately for each epoch 𝑛 = 1,… ,90; the operator ℑ extracts the imaginary part of the 

argument’s complex number; ℋ represents Hilbert’s transform; and |∙| is the absolute value. 

Due to limited RAM memory for conducting the statistical analyses, it is troublesome to compute the 

whole connectivity matrix of 8196x8196 interactions. Thus, we partitioned the FC matrix into a 

16x16 sub-block matrices for a total of 𝐶2
17 = 136 blocks (15 blocks times 500 sources + 1 block 

times 696 sources = 8196). We only kept the block subindices for the strictly upper triangular part 

due to the symmetry of the FC measure (Supplementary Fig. 1). After the block-wise FC estimation, 

the EIC values were averaged for the interested frequency bands. These bands were chosen by 

modifying the classical EEG/MEG band partitioning to allow a slightly higher level of detail (delta 𝛿: 

0.5-4 Hz, lower-theta 𝜃1: 4-6 Hz, upper-theta 𝜃2: 6-8 Hz, lower-alpha 𝛼1: 8-10.5 Hz, upper-alpha 𝛼2: 

10.5-13 Hz, lower-beta 𝛽1: 13-20 Hz, upper-beta 𝛽2: 20-30 Hz, and gamma 𝛾: 30-48 Hz). Finally, the 

FC estimates were saved to hard-disk, separately for each participant, frequency band and block, for 

post-hoc statistical analyses. 
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Non-parametric statistical analyses. Our study involves a matrix data for 60 participants (rows) and 

about 0.27 billion features (columns), where the features corresponded to the estimation of 𝐶2
8196 =

33583110 pairwise FC for each of the above-mentioned frequency bands, together with about 60 

cognitive tests scores collected from the participants during MMSE, IRM and DRM tests (one or two 

missing data in each test). These measurements are used for: (i) the Wilcoxon rank-sum analysis of 

the differences between 30 HC and 30 MCI participants for each feature; and (ii) the Spearman rank-

correlation analyses between each cognitive test and feature. 

In our case, the estimated FC and cognitive scores are nonnegative and hardly follow the normality 

assumption. Thus, we adopted a whole non-parametric approach to avoid assumptions on data 

distribution, and to implement the cluster-permutation approach. Non-parametric tests not only can 

produce more accurate results than comparable traditional techniques, e.g. Wilcoxon and Spearman 

tests53, but also are often used to exploit relevant data structure, such as when using permutation 

techniques to exploit spatial smoothness17–20. 

The permutation technique is adopted here to create surrogate data under the null-hypotheses of 

no group differences or no correlation between the ranks of each feature and cognitive scores20, 

which is a critical step for testing the significance of FC clusters as discussed in the next section. 

Simply, each surrogate data is created by randomly reshuffling the row-order of the above matrix in 

Wilcoxon analysis, or the order of the cognitive measurements in Spearman analysis (𝑁 = 1000 

Monte Carlo simulations). Notice that all the elements in each row of the matrix are jointly 

reshuffled to avoid destroying the data structure in the Wilcoxon analysis. Particularly, the row 

reshuffling corresponds to randomly assigning each subject to either the HC or MCI group for the 

creation of each surrogate data, accordingly to the hypothesis of no group differences20. 

The implementation of our approach is a computational challenge because the Wilcoxon and 

Spearman analyses produce an array of 0.27 billion p-values for the original and each of the 1000 

surrogate data. Therefore, we adopted the supra-threshold technique17–20 to select only those 
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features with corresponding p-values lower or equal than a threshold of 𝑝1 = 10−7,  𝑝2 = 10−6, or 

𝑝3 = 10−5. Then, for 0.27 billion features, our expected number of false alarms is 27, 270, or 2700, 

for each threshold. Subsequently, supra-threshold features were mapped into supra-threshold FC, 

separately for each frequency band, with supra-threshold FC indices in the range {1, … , 𝐶2
8196}, and 

the sparse arrays of supra-threshold connection indices were saved to hard-disk for the posterior 

cluster-permutation analysis. 

Furthermore, recall that above analyses were conducted for the upper triangular part of the 

8196x8196 FC matrix and, particularly, after partitioning it into 136 sub-block matrices, the statistical 

analyses were conducted block-wise due to RAM limitations. Afterwards, we loaded the sparse array 

of supra-threshold FC indices for each block, separately for each frequency band, and assembled the 

indices for all the blocks before running the cluster parcellation procedure, which will be discussed in 

the next section. As a summary, this first stage of the implementation of our approach can be 

presented as follows: 

1. FC data, or features, were loaded for all the participants, separately for each block and 

frequency band;  

2. Wilcoxon and Spearman analyses, which were based on each of the 0.27 billion features and 

cognitive scores, were conducted for the original and each of the 1000 surrogate data, thus 

producing the corresponding p-values for each feature. 

3. The supra-threshold values 𝑝1 = 10−7,  𝑝2 = 10−6, or 𝑝3 = 10−5, were used separately for 

pruning off the less relevant features. 

4. Only the sparse array of indices corresponding to the supra-threshold features, were saved 

to hard-disk for the posterior cluster statistical analysis. 

Cluster-permutation statistical analysis. We have proposed an extension and improvement of the 

original spatial pairwise clustering (SPC) technique17. Particularly, we defined a novel cortico-cortical 

FC neighbourhood measure for parcelling connections into FC clusters in the cortical surface, as will 
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be explained below in more detail. The last stage of our statistical analysis can be implemented, 

following from the last step of the above-discussed first stage, as follows: 

1. Separately for each frequency band and each supra-threshold value 𝑝1 = 10−7,  𝑝2 = 10−6, 

or 𝑝3 = 10−5, we loaded the sparse array of supra-threshold FC indices for each block, and 

assembled the indices for all the blocks. 

2. Using the assembled FC indices, FC clusters were estimated using a breadth-first search 

algorithm (see Supplementary Table 2 for a practical implementation) for the original and 

1000 surrogate data. 

3. The number of connections, or cluster size, was computed for each cluster of the original 

and surrogate data. 

4. The maximum-cluster-size statistic was estimated as the maximum size among all the 

clusters that were estimated for each surrogate data, thus rendering a distribution of 1000 

samples of this statistic in our analysis. 

5. The 95th percentile of the maximum-cluster-size distribution was selected as a critical value. 

6. Finally, using the cluster-permutation statistic, the significant FC clusters in the original data 

are those clusters with size greater or equal than the critical value. 

In the above implementation of our cluster-permutation approach, when we use the supra-

threshold technique, not only do we apply it separately for each frequency band, but we also test 

independently the significance of clusters for positive and negative effects, i.e. for statistic with p-

values in the upper and lower tails of the statistical distribution, in contrast to previous applications 

that proposed using the supra-threshold technique on the statistic absolute value23,43. Notice that 

the latter choice implies the union of clusters from measured positive and negative effects, and 

therefore may have a negative impact on the results. As a practical solution, the maximum-cluster-

size distribution was estimated and the 95th percentile of each distribution was selected, separately 

for each case, resulting in a set of critical values. Finally, the maximum critical value is selected in our 
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implementation of the cluster-permutation statistic to effectively detects significant FC clusters 

while controlling for multiple comparison17–20. 

Measure of cortico-cortical FC neighbourhood. Next, we present a novel measure of neighbourhood 

between a pair of connections (𝑋𝐼1(𝑘), 𝑋𝐼2(𝑘)), 𝐼1(𝑘) < 𝐼2(𝑘), and (𝑋𝐼1(𝑙), 𝑋𝐼2(𝑙)), 𝐼1(𝑙) < 𝐼2(𝑙), 

which are defined correspondingly for the strictly upper-part of a triangular matrix that is 

representing a symmetric FC measure, where the unique connections are arranged using an array of 

FC indices 1 ≤ 𝑘, 𝑙 ≤ 𝐶2
8196, 𝑘 ≠ 𝑙, and 𝐼(𝑘) = (𝐼1(𝑘), 𝐼2(𝑘)) ∶ {1,… , 𝐶2

8196} ⊢ {1,… ,8195} ×

{2,… ,8196} is a functional mapping of the connection to its vertices index. Thus, (𝑋𝐼1(𝑘), 𝑋𝐼2(𝑘)) ∶

{1,… , 𝐶2
8196} ⊢ ℛ3 × ℛ3. 

Based on this definition, our FC neighbourhood measure can be represented as follows: 

1. Check whether 𝐼𝑚(𝑘) is equal to 𝐼𝑛(𝑙) for some 𝑚, 𝑛 ∈ {1,2}. 

2. If true, then the two connections, or edges, have a vertex in common. Set 𝐽(𝑘) and 𝐽(𝑙) as 

the complementary vertices in the edges (𝐽(𝑘) = 𝐼3−𝑚(𝑘) and 𝐽(𝑙) = 𝐼3−𝑛(𝑙)). Notice that 

𝐽(𝑘) ≠ 𝐽(𝑙) by definition. 

3. The connections are neighbours if the vertices 𝑋𝐽(𝑘) and 𝑋𝐽(𝑙) are neighbours in the cortical 

surface (Supplementary Fig. 2). 

Efficient computation of statistics within the permutation approach. In the implementation of our 

cluster-permutation statistic, we use some tricks for dealing efficiently with the calculations within 

the permutation procedure. For example, when running the Wilcoxon rank-sum or Spearman rank-

correlation analysis, the statistic ranks should have to be computed inside the whole array of 𝑀 =

60 participant measurements, separately for each permutation (naively). However, that will be 

inefficient as it involves an order of 𝑂(𝑀 log(𝑀)𝑁) operations. Because measurements are fixed 

along different permutations, where the only change is in their ranking order that change with each 

new permutation, then the sorted rank order could be estimated only once for the sorted statistic at 

the initial step, and the ultimate ranking values could be updated for each permutation, with a lower 
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cost of 𝑂(𝑀𝑁) operations for all the 𝑁 permutations (see Supplementary Table 3 for a MATLAB 

code with the implementation of this idea). Similarly, our Spearman rank-correlation analysis is 

based on the measurements ranks, thereby the rank estimation could be optimised as previously. 

Furthermore, all the computations involved in the correlation formula do not need to be undertaken 

for each permutation. Clearly, as this formula can be expressed as 

𝐶(𝒙, 𝒚) =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑀
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2∑ (𝑦𝑖 − 𝑦̅)2𝑀
𝑖=1

𝑀
𝑖=1

=
∑ 𝑥𝑖
𝑀
𝑖=1 𝑦𝑖 −𝑀𝑥̅𝑦̅

√∑ (𝑥𝑖
2 + 𝑦𝑖

2)𝑀
𝑖=1 −𝑀(𝑥̅2 + 𝑦̅2)

 

then the numerator term 𝑀𝑥̅𝑦̅, and the whole denominator can be computed once. The only term 

that needs to be recomputed for each permutation is ∑ 𝑥𝑖
𝑀
𝑖=1 𝑦𝑖. In summary, the intertwining of 

statistics and permutation calculations is feasible and has a significant impact on the speed of the 

whole procedure. 

Computational tricks for implementing cluster-permutation statistical analysis. We refuted a 

pessimistic observation in the SPC paper17, where the authors stated that the cluster partition of 

supra-threshold connections is “performed by initializing an 𝑁(𝑁 − 1)/2 × 𝑁(𝑁 − 1)/2 adjacency 

matrix”, which will be unfeasible in our case with 𝑁 = 8196 sources. As has been shown here (e.g. 

see pseudocode in Supplementary Table 2), our testing of a neighbourhood relationship between 

two connections exclusively rely on the testing of a neighbourhood relationship in the cortical 

surface (Supplementary Fig. 2). Therefore, if we use an adjacency matrix to reflect this relation, our 

matrix will be of dimensions 𝑁 × 𝑁, which is a huge improvement with respect to the original 

implementation. However, we recommend using a list of neighbour vertices for each vertex to test 

this relationship, with higher computational memory efficiency. 

Furthermore, as was mentioned above, the permutation and statistical analyses were performed 

separately for each of the 136 sub-blocks of the 8198x8196 FC matrix and defined frequency bands. 

If users have a lower RAM memory capacity, a finer sub-blocks partition could be considered, i.e. a 
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41x41 partition for a total of 𝐶2
42 = 861 blocks (40 blocks times 200 sources + 1 block times 196 

sources = 8196). Using the above supra-threshold values, only the indices of these FC measures 

that exceeded the corresponding critical value are saved to hard-disk, for each block and for all the 

permutations simultaneously. Notice that the selected indices have a sparse structure as indices for 

corresponding p-values exceeding either 𝑝1 = 10−7,  𝑝2 = 10−6, or 𝑝3 = 10−5, separately, were 

removed. Therefore, the expected sparse density of saved indices is 10−7,  10−6, and 10−5, 

respectively. Despite having about 0.27 billion features and running the cluster-permutation 

procedure for the original and 1000 surrogate data, this operation is feasible because of the 

mentioned high sparsity. 

Finally, another apparently less significant but very important trick is to use the corresponding 

statistic supra-threshold values, instead of the supra-threshold p-values. Therefore, during the 

implementation of the cluster-permutation procedure, we avoid estimating p-values for the involved 

statistical analysis. Interestingly, the most important aspect of this trick is that usually p-values for 

the Wilcoxon and Spearman analyses are obtained using approximations because of the 

computational cost of using exact p-value computation. In our work, we created a lookup table for 

the Wilcoxon rank-sum analysis, which allowed to obtain the needed supra-threshold statistic 

values. For example, for our rank-sum statistic involving 30 HC vs. 30 MCI, we used the table values 

of 579, 603 and 629 for the lower tail (considering only the negative median differences), and 1251, 

1227 and 1201 for the upper tail (considering only the positive median differences), correspondingly 

to the supra-threshold p-values 𝑝1 = 10−7,  𝑝2 = 10−6, or 𝑝3 = 10−5, separately (Supplementary 

Fig. 3). For the Spearman rank-correlation analysis, due to the high number of participants (𝑀 =

60), it is difficult to obtain an exact p-values lookup table as the exact method involves an order of 

factorial of 𝑀 operations. Therefore, for simplicity, for the Spearman analysis we used supra-

threshold correlation values that were estimated for the corresponding supra-threshold p-values, 

using the standard p-value approximation for the Pearson's correlation coefficient that is based on 

the Student’s t-distribution, i.e. 𝑡 = 𝑟̂√𝑛 − 2 √1 − 𝑟̂2⁄ , where 𝑟̂ is the estimated correlation 
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coefficient, and the p-value is estimated as 2𝑃(𝑇 > 𝑡), where 𝑇 follows a t-distribution with 𝑛 − 2 

degrees of freedom. 
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