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Abstract—The Internet of Things (IoT) refers to a large
network of devices such as sensors and actuators in which diverse
types of data is generated and shared. Data can be shared
in its raw form or as a result of data processing activities
performed by an IoT device (e.g. anonymization, aggregation,
etc.). However, sharing such data introduces a multitude of risks
which are influenced by data type, data harvesting granularity,
user demographics and the device under consideration. In this
work, we propose a novel extension to our attack tree risk
model [1] to consider user preferences for sharing personal data.
We enrich our earlier work by exploring more attacks and
complimenting them with a user privacy-risk model. We evaluate
this proposed model and identify a range of scenarios which can
result in personal information privacy violation and thus provide
a model for estimating the potential risk of an IoT ecosystem.

Index Terms—Privacy, Attack Cost, Attack Impact, Attack
Attributes, Attack Scenarios.

I. INTRODUCTION

A constantly growing number of physical devices are be-
ing connected to the internet at an unprecedented rate thus
realizing the idea of the Internet of Things. According to
an estimate, a mere 24 billion devices will be connected
with each other by the end of year 2020 [8]. IoTs owe
this huge growth to the large variety of devices that can
communicate over the internet. This involves simple devices
such as a Radio Frequency Identification (RFID) tags to more
complex devices such as smart meters, smart TVs and smart
Heating, Ventilation & Air-conditioning (HVAC) systems. This
variety of devices brings with itself a vast range of security
and privacy concerns. One of the most significant concerns
associated with such an interconnected heterogeneous network
is the loss of personal information.

IoT devices may gather highly granular data about an
individual which once combined and analyzed, can reveal
vital information. An RFID card reader, such as the one
used by the Transport for London (TFL) authorities [10]
for paperless travel ticketing, is deemed as a simple IoT
device. The information generated by such a reader can be
used to reveal travel habits of an individual thus becoming

a huge privacy concern. Similarly, a smart meter which is
advertised as a tool for sharing monthly energy consumption
of a household for accurate energy billing can be used to
identify living patterns [2]. Existing approaches that are used
to mitigate privacy violations include the use of efficient data
anonymization techniques. These include but are not limited to
k-anonymity, I-diversity, t-closeness and e-differential privacy
[12]. Data anonymization approaches are known to work well
in their considered scenarios but most of these assume having
a tabulated form of incoming data. This is viable in the case
of an RFID tag reader but is highly unsuitable for a smart
meter, where data anonymization is done in real time. In an IoT
context, an adversary can tweak the hardware of an IoT device
forcing it to relay all information to a third party [4], thus
rendering these data anonymization approaches ineffective.

The increasing number of incidences such as that of a smart
TV reported in 2017 [13], or of a smart meter delineated
in 2012 [9] has highlighted the need for a device user to
analyze and access all possible risks associated to an IoT
device before using it. This risk analysis has also become a
necessity after the introduction of the General Data Protection
Regulation (GDPR) [6] in the European Union, which focuses
on providing a user with the right authority/control over his/her
information by ensuring transparency in the system that is
gathering their information. In this paper, we propose a new
way of evaluating and identifying potential risks of an IoT
system based on different user preferences, gathered data and
probability of occurrence of an event. We extend our prior
work on attack tree risk model [1], which identified a number
of sources of risk and enhance it with the addition of a few new
risks. We also couple it with a novel user privacy-risk model
that encapsulates the influence of a user on the perceived risk
of a device.

The remainder of the paper is organized as follows: Section
II introduces the user privacy-risk model, Section III explains,
expansion of the attack tree model and Section IV presents
the results. Conclusions are presented in Section V.



II. USER PRIVACY-RISK MODEL

An attack tree model is a hierarchical representation of a set
of incidences that can be combined to launch an attack on an
IoT infrastructure. The key goal of such a tree is the privacy
violation of a user with leaf nodes represent the possible
attacks. The path generating from the leaf nodes up to the
goal of the tree is referred to as scenarios. A single tree can
have a large number of scenarios based on the number of
different possible paths. The risk then is a mere approximation
of the relative harm a particular attack can cause in relation
to all other possible scenarios [1]. The impact of an attack
highly depends upon two metrics, the granularity of data being
gathered and the type of a user profile.

Data granularity defines the frequency of the data being
collected and the processing that is performed. This can thus
lead to three broadly defined data types:

« Raw data: Data originating from a single IoT device that
has not been altered by any additional post-processing.

o Aggregated data: Data representing some abstracted
values calculated using raw data produced by a single
IoT device, over some time period.

o Pooled data: An abstraction of aggregated data obtained
from more than one IoT device.

On the other hand, the user profile is a bit treacherous. These
profiles depend upon the demographics, general privacy beliefs
and attitude towards an IoT ecosystem. The demographic char-
acteristics include gender, education and age of an individual.
The belief characteristic encompasses the privacy perception
of an individual such as: privacy as a right guaranteed by
law, privacy as an individual’s responsibility and privacy as a
need associated to people who are involved in wrong doing.
Attitudes include how they react when they are supposed to
provide their personal data to the system. A combination of
these characteristics can be classified into three user profiles,
namely fundamentalists, pragmatists and unconcerned [11].

The core user characteristics associated with such profiles
can be summarized as follows:

o Fundamentalists: Users who are unwilling to provide
their personal information even in return for the service
enhancement. They perceive anything as a threat to their
privacy.

o Pragmatists: Users who willingly take part in sharing
some amount of personal information in exchange for
better services. They weigh the risk between the infor-
mation being offered to the services being rewarded.

e Unconcerned: Users who are not concerned with their
data privacy and would be willing to share their informa-
tion with anyone. They don’t perceive any risk factor.

Users react in different way to ensure data privacy compli-
ance. Where some mitigate privacy violation risk by adding
random noise to their data set [7], other rely on slight manip-
ulations to ensure utility in the remaining data [2]. The two
widely used user-data privacy models are referred to as Data
Eradicator and Data Manipulator. These models are defined
as:

o Data Eradicator: A data eradicator module ensures that
data generated by an IoT device is obfuscated with the
addition of noise before it is published. This can be
achieved with the aid of external hardware, for instance,
smart meter data can be altered by randomly turning an
HVAC system ON and OFF.

o Data Manipulator: The data manipulator module en-
ables sharing of selected parts of the data and obfuscating
the rest. This provides flexibility in selecting the amount
of data that is shared in exchange for some benefits (e.g.
discounts on utility bills when sharing smart meter data
with the utility provider).

The user can control the level of data privacy with the
help of a tuneable e parameter. For example, considering
the aforementioned smart meter scenario, the € parameter
may represent an Energy Management Unit (EMU) used to
obfuscate raw energy readings shared by the smart meter [2].
Users can control the level of obfuscation by altering EMU
settings based on their data sharing preferences.
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Fig. 1: A high level overview of the user privacy-risk model.

In our model represented in Fig 1, we consider a wide range
of devices that can either produce, raw data, aggregated data
or polled data. This data is then relayed to the privacy layer,
where based on different user profiles, data is altered. For
instance, a fundamentalist user would use the data eradicator
to ensure user data privacy. On the contrary a user who prefers
a data eradicator would be referred to as a fundamentalist user.
Similarly, a pragmatist user would prefer a data manipulator
to ensure a balance between utility and privacy of a data set.
An unconcerned user would not alter any incoming data. The
output of the privacy layer becomes the published data where
the granularity of this data set is dependant upon the incoming
data from the IoT device layer. The output of this user privacy-
risk model is then fed into the attack tree to highlight the
influence of an attack.

A. User Scenario

Similar to the attack tree scenario, a user scenario represents
all possible combination of the IoT data layer, the privacy
layer and the selection of € for the data manipulator and/or
data eradicator module. Each user scenario is evaluated for an
entropy (o) measure where, o is a measure of the personal
information that is being shared in an IoT ecosystem. This
entropy lies between 0 and 1 (0 < o < 1), where o« = 0 implies
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Fig. 2: Attack tree risk model.

minimal personal information is being shared and o = 1
implies all personal information is being shared. In order to
realize this and factor the aforementioned definition of raw
data, aggregated data and pooled data, a set of utility functions
are defined here. These functions highlight the associated risk
that follows the pattern, Raw data > Aggregated data >
Pooled data:

ug(z,€) =1-107" 1)
ua(z,e) =1—exp™™ 2)
up(z,e)=1—(x+1)"° 3)

Here ug(x,€), ua(x,€), up(x,€) represents the utility
function of raw data, average data and pooled data and ¢
represents the tuneable privacy metric. On the other hand x is a
non-tuneable parameter that defines the percentage of raw data,
aggregated data and pooled data that the sensor is harvesting.

In case of fundamentalist users, who are highly concerned
about their privacy, the probability of selecting a data eradica-
tor would be higher than selecting a user controllable privacy
module. This means that restricted personal information would
be shared by simply tuning (ez — 0). On the other hand,
a pragmatist user would use the user controllable privacy
module and tune (0 < ep < 1) with a lower value representing
minimal information sharing and value of 1 representing
maximal information sharing. The entropy factor associated
with the fundamentalist users (ar), pragmatist users (ap) and
unconcerned users (ag) can be defined as:

ap =ur(z,ep) tualz,ep) +up(z, ep) 4)
ap =ur(z,ep) +ua(z,e) + up(z, ep) (5)
ay = ur(z, ev) +ua(z, ev) +up(z, ev) (6)

The overall entropy («) of the user privacy-risk model can
then be defined as:.

a=PF)xap+ P(P)xap+ P(U) xay 7

Here, P(F), P(P) and P(U) represent the probability
weights of respective user profiles in an IoT ecosystem.

III. ATTACK TREE MODEL

An attack tree model (Fig 2) is an analytical way of
analyzing the potential risk of an IoT system. The model
is represented as a decision tree with root node representing
the attacker goal (i.e. to violate user privacy). The leaf nodes
representing the possible attacks and the path from the leaf
nodes to the attack goal defining the attack scenarios. The
intermediary nodes are referred to as sub-goals and they are
either a resultant of other sub-goals or a combination of leaf
nodes. A detailed explanation of the attack tree model is
defined in [1]. This section, makes use of our earlier work and
compliments it with a two more attacks for the non-physical
device (M>) category, which are explained in detail in the next
section.

A. Non-physical Device Attack

These attacks are centred on the IoT system where the
attacker does not necessarily have physical access to the IoT
device. These attacks can be divided into three categories:
Active Attack (Mg), Malware Attack (M7) and Passive Attack
(Ms). In this section we only highlight the newly added sub-
goal namely, Malware Attack (M7) and the leaf node namely,
Distributed Denial of Service attack (DDoS) (X5).

An active attack is the one in which an adversary tries
to penetrate the network by performing a set of operations
either on a device itself or the communication channel. One
such penetrating attack is referred to as the Distributed Denial
of Service (DDoS) attack. In such an attack, an adversary
can either flood the gateway node of the IoT network or
the web-host to which it is connected to ensure that no or
limited information is sent by the IoT device to the receiving
end. This as a result would overload the IoT device with re-
transmissions and thus cause loss of vital personal information.
On the other hand, an adversary can also exploit the outdated
security definition of an IoT device (X7) or gain unauthorized
access (Xg) to a device to launch a Malware Attack. Such
an attack can cause multiple issues such as relaying personal
information to a third party [3], forcing the IoT to produce
faulty data or using the IoT device to launch a botnet attack
on the remaining connected IoT devices [5].

B. Attack Scenario

An attack scenario defines a set of possible attacks that
can be used in conjunction or in isolation to obtain personal
information from an IoT system. These attack scenarios aid in
identifying the potential attack path an adversary can choose
to compromise a user’s data privacy. In order to evaluate such
scenarios each sub-goal is assigned a separate weight w; and
a probability m; where ¢ represents the number of sub-goals.
Each leaf node is assigned a probability x; where j represent
the number of leaf nodes. An AND/OR gates structure is used
in Fig 2, where OR-gate is the maximum of inputs and AND-
gate is the multiplication of input. According to these gates
functionality the probability g for the overall risk of an IoT
ecosystem can be calculated using the following equations:

g = mazx(wymy, wamz, wzms) ®)



On solving Eq 8, we get the overall risk probability g as:

g = max(w1w4w11$15$16, W1W4W12T17W15T18,
W1 W4W12T17W15219, W1 W5T1X2, WaWeT3, WaWeT4,
W2We L5, W2WeTe, W2WeW13W16L20,

WaWEW13W16T21, W2WeW13W17T22T23, Waw7T7,  (9)
W2W7Tyg, WaWLY, W2W8L10, W2W8T11, W3W9T12
W3WeW14W18T24X 25, W3W9W14W19X 26X 27,
W3W10T13714)

Eq. 9 identifies 20 attack scenarios that can result in a potential

user data/identity privacy risk. These attacks are enumerated
in Table I.

TABLE I: Probabilities for possible data breach scenarios

Scenarios | Leaf Nodes Probability
S1 15,216 WIWAWI1T15T16
Sa 17,218 WIWAWI2T17W5T18
S3 17, %19 WIWAW12T17W15T19
Sa 1,%2 WIW5T1T2
Sk 3 WaWET3
Se T4 WoWET4
S7 z5 WaWET5
Ss z6 WaWET6
So 20 W2WEW13W16T20
S10 z21 W2WEWI3WI6T21
S11 T22,T23 W2WEW13W17T22T23
S12 x7 W W77
S13 T8 WowTTy
S14 Tg WoWTY
S15 10 W2wWsL10
S16 11 W2wsT11
Si7 T12 wW3WeT12
S1s T24,T25 W3WYWI4W18T24T25
S19 x26, T27 W3WYWI4W19L26L27
S20 T13, %14 W3W10T13T14

All these attack scenarios highlighted in Table I will have
different attack impact on the system. There is no single
method to determine the weight value for each node in the
attack tree. So in this work we use a quadruple attack grade
standard to find risk associated with attacks. These include:
Attack Impact I, (estimates the number of affected nodes due
to an attack), Attack Cost ¢y, (reflects the costs associated with
an attack), Technical Difficulty d; (estimates the difficulty
associated with an attack) and the Probability to be Discovered
ST,.

TABLE II: Grade standard

Attack Attack Cost/ten Technical Difficulty Probability to be
Impact/device thousands Discovered

Iy, grade cr, grade dp, grade sy, grade

Individual 2 >10 5 quite difficult 5 quite difficult 1

Multiple 1 6-10 4 difficult 4 difficult 2

3-6 3 intermediate 3 intermediate 3

0.5-3 2 simple 2 simple 4

<0.5 1 quite simple 1 quite simple 5

Table II highlights the grade level standards of the attributes.
After value assignment for leaf nodes, the combined influence
of the user and these four attributes associated to a single leaf
is formally defined as:

rr, = ayxuy (in)+agxus(cr)+tag*xus(dr)+asxuq(sy) (10)

Where, a1, as, as, a4 are the corresponding attribute weights
of iy, cr, d, and s, respectively. Here a1 +as +az+aq4 = 1

and u;(z) represent the utility function corresponding to each
attribute ¢ = 1, 2, 3, 4. For the sake of simplicity, in this work,
all four attributes use the same utility function:

u;(x) =

c

(@+ 1)1/ (an

This utility function is based on the observation that all
four attributes are inversely proportional to their grade values
and the entropy of the user privacy-risk model would directly
influence the attack attributes of a network. For instance, a
sensor gathering average values, owned by a fundamentalist
user would pass through a data eradicator and would generate
aggregated data which would have lower entropy factor ap.
This as a result would directly influence the impact of an attack
as an adversary would be able to gain limited insight into
personal information of the user thus reducing user privacy
risk rp,.

TABLE III: Attack attributes and grades

Leaf | Attack impact | Attack cost | Technical | Probability to be
node difficulty discovered
5 1

3<
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IV. RESULTS

In this section, we report results of simulation experiments
testing the ability of our user privacy model to estimate privacy
risks associated with an IoT system. Privacy risks depend upon
the grades associated with each leaf node of Fig 2. These grade
values depend upon the system dynamics and changes based
on the selection of an IoT device. In this work, the belief and
plausibility metrics proposed by Dampster and Shafer [14] are
exploited to identify the risks associated with each leaf node.
These grades are presented in Table III.

The first set of simulations highlights the change in prob-
ability of risk for each attack scenario for a particular user
profile. The results highlight the difference in risk when
different attack attributes are selected. We assign weights to
each sub goal of the attack tree as w; = we = w3 = 1/3,
Wy = W5 = We = Wy = W = wg = Wi = Wil = Wi5 =
w1 = w17 = wis = wig = 1/2 and give the rest a weight of
1 for reducing the influence of unknown sub-goal probabilities.
We assign weights for the user tree model as e = 0.01,
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Fig. 3: Attack risk of a particular user profile for varying
attack attribute selections.

ep = 0.5, ¢ = 1 where F', P and U are a subscript for a
particular user profile. Fig 3 represents the attack risk of a
particular user profile for varying attack attribute selections.
Fig 3 highlights the risk pattern among user profiles as:
unconcerned > pragmatist > fundamentalist. This implies
unconcerned users would have the highest attack risks as
compared to other user profiles. The overall risk factor is
dependent upon the utility function of the attack attributes
and their corresponding utility weights. The utility function
(Eq 11) is dependent upon the o« — factor and the grade
value of a particular attack attribute. Results demonstrate that
the « is dependent upon the user profile and it is highest
for an unconcerned user. Moreover, Table II and III justify
these results by highlighting that for any attack if the attack
attributes have low grade standards then it would have higher
risk compared to others. So for a higher « value the overall
risk will be relatively high. This leads to the hypothesis that
unconcerned users would have the highest risk compared to
others thus proving the correctness of the proposed model.
For instance: a fundamentalist user would have low risk due
to eradicated data and a pragmatist user would have control
over the data shared within the IoT ecosystem. However,
an unconcerned user would share the data without any level
of data distortion. As a result, the risk value for an attack
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Fig. 4: Attack risk of a user for different data type by
varying attack attribute selections.

increases.

Fig 3a shows that when attack impact is of more significance
a user would have higher risk of losing personal data through
S5, S7, Sg, Si2, Si13, Sig and Si7. On the other hand if
attack cost is a concern then Si2 and Sp4 take precedence
over other possible risks as shown in Fig 3b. Sg and Si5 are
of higher importance when technical difficulty is of concern
and when probability to be discovered is of high importance as
shown in Fig 3c and Fig 3d respectively. Furthermore, when all
attack attributes are given equal weight, S1o takes precedence
over all other attacks and is followed by S5, Sg, S7, S13 and
S14 as shown in Fig 3e. This means in order to ensure data
privacy a user needs to take preemptive measures to avoid side
channel attack (S5), inquiry attack (Sg), DDoS attack (S7) and
needs to ensure that security definitions are up to date so that
unauthorized access (S13) and physical layer eaves dropping
(S14) can be avoided.

In the second set of simulations we highlight the overall
risk to a user when raw data, aggregated data and pooled data
are shared. The results highlight the change in risk after dif-
ferent attack attributes were selected. We assigned the similar
weights to each sub-goal of the attack tree and e value for each
particular user as in previous simulation. Here we incorporate
outcomes from the survey carried out in [11] for identifying
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Fig. 5: Attack risk of a user for different data type by
varying branch weights.

an approximate percentage of fundamentalist, pragmatist and
unconcerned users in a group of individuals. The outcome
of the survey define probability values as: P(F) = 0.12,
P(P) = 0.69 and P(U) = 0.19. These are then used to
calculate the overall entropy factor («) as discussed earlier
in Eq 7.

Fig 4a highlights that when attack impact is of high im-
portance S5, S7, Ss, S12, S13, S16 and Si7 take precedence
over all other risks and among these raw data is more prone to
risk compared to aggregated and pooled data. A key highlight
here is that when all three components of [oT data layer are
combined together the overall risk is similar to that of pooled
data. In case of attack cost S15 and S14 causes of higher risk
whereas, in case of technical difficulty Sg and Spo are of a
concern as shown in Fig. 4b and Fig. 4c respectively. Fig. 4d
shows that S7, S12, S13 and S14 pose a high risk whereas Fig.
4e shows that S5, Sg, S7, S12, S13, S14, S16 and Si7 are a big
concern. This means that alongside side channel attack (S5),
DDoS attack (S7) and inquiry attack (Sg) the user also needs
to take care of security definition, unauthorized access, eaves
dropping and privacy policy.

In the final set of analysis, the evaluation concentrates on
the overall risk influenced by a user sharing only raw data,
aggregated data, pooled data and all three in equal ratio while

the weights of sub-goals (M;, Ms, and M3) are varied. Each
attack attribute is assigned with the same weight as follows:
a1 = as = ag = a4 = 0.25. In each chart, a specific sub-goal
is out weighed and the remaining two sub-goals are assigned
with a same weight such that w; + wy + w3 = 1 and the
similar probability weights of user profile and other sub-goals
weights are used as those in the previous simulation.

Fig 5a, Fig 5b, Fig 5c and Fig 5d shows that changing the
weight of physical device attack (M7) and non-physical attack
(M>) has little to no influence on the risk attack scenarios. Sio
has precedence over all attack risk with S5, Sg, S7, S13, S14,
S15 and Sy having slightly lower risk. A major change is
observed when data storage attack (M3) is given importance
where a slightly higher value of w3 = 0.5 and w; = wy =
0.25 reports a higher risk of Si2 and S;7 as shown in Fig
Se. On the other hand S17 becomes the biggest concern when
wz = 0.75 and w; = wo = 0.125. This means that purchasing
privacy from a third party organization (S17) can pose a high
privacy risk.

V. CONCLUSION

In this work we present a novel way of estimating attack
risks associated with IoT deployments by exploring user
preferences, data harvesting granularity of a device, attackers
preferences and the plausibility of an attack. We highlight what
attack could result in a higher probability of personal data loss
and thus enable a user to take preemptive measures based on
his/her scenario. We run simulation experiments to justify our
scenarios and provide a plausible argument for each outcome.
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