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ABSTRACT There has been a great deal of work on improving the efficiency of fully 
homomorphic encryption (FHE) scheme. Our approach in this regard is to use the idea 
of packed ciphertexts to construct a multi-bit FHE with a short public key on the basis 
of the Learning with Errors (LWE) problem. More specifically, our FHE scheme 
builds on a basic encryption scheme that chooses LWE samples from the Gaussian 
distribution and adds Gaussian error to it. This results in decreasing the number of 
LWE samples from 2nlogq to n+1. We prove that our FHE scheme is pragmatically 
feasible and its security relies on the hardness of the LWE problem. Also, we form a 
new process of key switching for multi-bit FHE based on the ideas adopted by 
Brakerski, Gentry and Halevi in 2013 (BGH13) for optimising the process of key 
switching. Finally, we analyse and compare the concrete parameters between our FHE 
scheme and BGH13 scheme. The result shows that, compared with the BGH13 
scheme, our scheme has public key smaller by a factor about logq. 

INDEX TERMS Fully Homomorphic Encryption, Public Key Encryption, Multi-Bit 
Plaintext, Concrete Security Parameters 
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I. Introduction 
Fully homomorphic encryption (FHE) supports 
arbitrarily computation on encrypted data 
without using secret key. FHE has a number of 
potential applications such as private cloud 
computing. The first FHE scheme was proposed 
by Gentry in 2009 [1]. Then numerous schemes 
based on different hardness assumptions have 
been proposed [1, 2, 3, 4, 5, 6, 7] and some 
techniques have been developed to improve 
efficiency [8, 9,10,11]. 

FHE is still quite expensive following its 
invention, which hinders application of FHE in 
practical. Specially, the ciphertext contains 
noise due to security consideration so that each 
homomorphic operation will increase the noise 
in ciphertext. Particularly, homomorphic 
multiplication increases the noise significantly. 
When the noise exceeds the bound of correct 
decryption, homomorphic operation cannot be 
performed.  

To perform more homomorphic operations, 
we must set large parameters so that the 
ciphertext has enough space to accommodate 
noise, which lead to large ciphertext size. To 
improve efficiency of FHE, there is a technique 
named packed ciphertext proposed in [12], 
which can pack some plaintext values into one 
ciphertext. Performing one homomorphic 
operation for a packed ciphertext is equivalent 
to performing the same operation for these 
plaintext values simultaneously. The technique 
of packed ciphertext is originally based on the 
polynomial Chinese reminder theorem (CRT) 
[12], which can be applied in the FHE based on 
ring Learning with Errors so as to achieve a 
nearly optimal homomorphic evaluation in [8]. 
In addition, Brakerski et al. describe how to 
apply the technique of packed ciphertext in FHE 
based on Learning with Errors (LWE) [9], and 
we refer their scheme as BGH13. However, 
BGH13 scheme is only a symmetric FHE and 
they don’t describe how to achieve FHE in 
detail. 

The goal of this paper is to construct a 
multi-bit FHE with short public key using 
packed ciphertext. Note that our FHE scheme is 
not the asymmetric version of BGH13, since 
both build on different basic encryption 
schemes that result in different size of 

parameters in both FHE schemes. In BGH13 
scheme, Brakerski et al. use Regev-type 
cryptosystem to construct FHE. In this paper our 
scheme builds on the Linder and Peikert’s 
encryption scheme (LP10) proposed in [13], 
which is different from BGH13. In our basic 
encryption scheme, we choose LWE samples 
from Gaussian distribution and add Gaussian 
error to it, which results in that the number of 
LWE samples decreases from 2nlogq to n+1. 
The smaller public key comes from the different 
style of the basic encryption scheme.  

Furthermore, it is well known that key 
switching is a critical technique to achieve 
LWE-based FHE. However, using key 
switching to construct FHE is expensive. To 
improve the efficiency of key switching, we 
optimize the process of key switching as in [9], 
and we formal this new process of key switching 
in term of multi-bit FHE. For example, a key 
switching matrix for a multi-bit FHE is a 
(n+t)2logq × (n+t) matrix in the traditional 
process of key switching, where t is the length of 
message. In our scheme, a key switching matrix 
is only a (n+t)2 × (n+t) matrix. Since key 
switching needs to be performed after each 
homomorphic multiplication, this optimization 
for key switching is important to improve 
efficiency of FHE. 

For application of FHE, it is also very 
important to analyze how to estimate parameters 
of a FHE scheme to ensure correctness and 
security against lattice attacks. Given a security 
level required by a real-world application, we 
analyze the concrete parameters for fully 
homomorphic encryption based on Learning 
with Errors problem. We obtain concrete 
parameters of our scheme and the BGH13 
scheme by this method. The data shows our 
scheme has a better public key size than the 
asymmetric version of the BGH13 scheme. 

This paper is organized as follows. Section 2 
introduces the LWE assumption and defines 
homomorphic encryption and its related terms. 
Section 3 describes the basic encryption scheme. 
Section 4 defines homomorphic addition and 
homomorphic multiplication. The new key 
switching process is introduced in this section. 
Section 5 describes a FHE scheme. Section 6 
analyzes the noise growth in homomorphic 
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addition and homomorphic multiplication, 
which shows it is possible to achieve a leveled 
FHE scheme. Section 7 gives the parameters 
property and concrete parameters. 

II. Preliminaries 

A. Basic Notation 
We use x   to indicate rounding x to the 

nearest integer, and x   , x   (for x≥0)to 
indicate rounding down or up. When q is not a 
power of two, we will use log q   to denote 

1+ log q   . For an integer q, we define the set 

q = (-q/2, q/2]∩ . For any x ∈ , let y=[x]q 

denote the unique value y ∈ (-q/2, q/2]. 
x← D means that x is a sample from a 
distribution D .We define B-bounded 
distributions as ones whose magnitudes never 
exceed B. 

B. Learning with Errors 
The LWE problem was introduced by Regev in 
[14] as a generalization of the well-known 
“learning parity with noise” problem, to larger 
moduli. This problem was later generalized as 
the ring LWE problem by Lyubaskevsky, 
Peikert and Regev in [15].  

The LWE problem is parameterized by a 
dimension n≥1 and integer modulus q≥2, as 
well as a probability distribution χ  over   or 

q . For a vector s∈ n
q , the LWE distribution 

, χS  is obtained by choosing a vector a from 
n
q   uniformly at random and a noise term e←

χ ，and outputting (a, b = <a, s> + e mod q) 

∈
n
q q×  . The search-LWE problem is, given 

an arbitrary number of independent samples (ai, 
bi) ← , χS , to find s. We are primarily 
interested in the decision-LWE (DLWE) 
problem for cryptographic applications. The 
decision-LWE problem is to distinguish with 
some non-negligible advantages between two 
cases. One case is any desired number of 
independent samples (ai, bi) ← , χS . Another 
case is the same number of independent 
samples drawn from the uniform distribution 
over n

q q×  .  

There are two kinds of reductions such as 
quantum reduction [14] and classical reduction 
[16, 17] from worst-case lattice problems to the 
LWE problem. In addition, if the vector s is 
sampled from the distribution χ , then the LWE 
problem is still hard.  

For a latticeΛ and a positive real r > 0, we 
denote Λ,rD as the discrete Gaussian 
distribution over Λ and parameter r, which is 
the probability distribution that assigns mass 

proportional to exp(
2 2/π s− x ) to each point 

Λ∈x . ForΛ n=  , the discrete Gaussian ,n r
D
  

is simply the product distribution of n 
independent copies of ,rD . 

C. Leveled Homomorphic Encryption 
A homomorphic encryption scheme 
HE=(Keygen, Enc, Dec, Eval) includes a 
quadruple of PPT algorithms. For the definition 
of full homomorphic encryption in detail, we 
refer the readers to these papers [1, 5]. 

There are two types of fully homomorphic 
encryption schemes. One is the leveled fully 
homomorphic encryption scheme, in which the 
parameters of a scheme depend on the 
multiplication depth that the scheme can 
evaluate. In this case, any circuit with a 
polynomial depth can be evaluated. The other 
one is pure fully homomorphic encryption 
schemes, which can be built by using 
bootstrapping method from a leveled fully 
homomorphic encryption scheme with the 
assumption of circular security. A pure fully 
homomorphic encryption scheme can evaluate 
the circuit whose depth is not limited. The 
following definitions are taken from [5]. 

Definition 1 (L-homomorphism). A scheme 
HE is L-homomorphic, for L=L( λ ), if for any 
depth L arithmetic circuit f (over GF(2)) and any 
set of inputs m1,…,ml, it holds that  

Pr[HE.Decsk ,HE.Evalevk(f,c1,…,cl))≠
f(m1,…,ml)] = negl( λ )                                 (1) ,                                 

where (pk, evk, sk)←HE.Keygen(1λ ) and ci← 
HE.Encpk(mi). 

Definition 2 (compactness, full 
homomorphism and leveled full 
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homomorphism). A homomorphic scheme is 
compact if its decryption circuit is independent 
of the evaluated function. A compact scheme is 
fully homomorphic if it is L-homomorphic for 
any polynomial L. The scheme is leveled fully 
homomorphic scheme if it takes 1L as additional 
input in key generation. 

III. The Basic Encryption Scheme 

At present all of FHE schemes are built on 
some basic encryption scheme. Our FHE 
scheme is built on the cryptosystem proposed 
by Lindner and Peikert [13]. Below we 
describe this cryptosystem and then analyze 
encryption noise and decryption noise of this 
cryptosystem, which is important to construct 
FHE scheme later. An integer modulus q ≥ 2, 
integer dimension n1, n2 and a Gaussian 
distribution ,rD denoted as χ , which relate to 
the underlying LWE problem. In order to get a 
much smaller public key, a uniformly random 

public matrix A 1 2n n
q

×∈ can be generated by a 

trusted source, and is used by all parties in the 
system. If the trusted source is not available in 
the system, A may be generated in the step of 
key generation and as a part of the public key. 

SecretKeygen( 21n ): Choose a matrix S← 
2t n×χ .Output sk = S′←(I | -S), where I is the 

t×t identity matrix. Thus the secret key sk is a 
t×(t+n2) matrix in which each row can be 
viewed as a secret key that can recover one bit 
of multi-bit message.  

PublicKeygen(A,sk): Choose E← 1n t×χ ,and 

let B = AST +E 1n t
q

×∈ . Set the public key pk = 

B. 

Enc(A, pk, m)：To encrypt a multi-bit 

message m∈ 2
t ，sample e1 ← 1nχ , e2 ←

tχ , 

and e3 ← 2nχ , and output c←(
2

q 
  

⋅ m + Bt ⋅ e1 

+e2 , A
t ⋅ e1 + e3) 

2n t
q

+∈ . 

Dec(sk, c)：Compute v ←S′c mod q and 

output m ←
2

mod 2
q
 ⋅ v . 

For security purpose the noise is added in 
encryption and correct decryption depends on 
the noise magnitude. Next we analyze the noise 
magnitude in encryption and decryption. 

Lemma 3.1 (encryption noise). Let q, n2, A, 
χ ≤ B be parameters in above encryption 

scheme. The secret key S′ and public key B are 
generated from SecretKeygen(1n) and 
PublicKeygen(A, S′). Set c←Enc(A, B, m). 

Then for some e with ∞
e ≤E < (n1+n2)B

2+ B, 

it holds that 

S′c =
2

q 
  

⋅ m + e （mod q）             (2).            

Proof. By definition   

S′c =
2

q 
  

⋅ m + Bt ⋅ e1 +e2 -SAt ⋅ e1 - 

Se3（mod q） 

  =
2

q 
  

⋅ m + (Bt-SAt) ⋅ e1- Se3 +e2（mod 

q） 

=
2

q 
  

⋅ m +ET ⋅ e1- Se3 +e2（mod q）(3).       

Since χ ≤ B, we 

have T
1 3 2 ∞

− +E Se e e ≤(n1+n2)B
2+ B and the 

lemma follows. 

We refer to e as the noise in ciphertext. The 
above Lemma give the bound of noise 
magnitude in “fresh ciphertext” that is the result 
of encryption and not the result of homomorphic 
operations on encrypted data. 

Lemma 3.2 (decryption noise). Choose a 

matrix S← 2t nχ × . Let c 2n t
q

+∈  be a vector such 

that 

S′c =
2

q 
  

⋅ m + e（mod q）                 (4), 

where m∈ 2
t  and S′←(I | -S). If ∞

e <
4

q 
  

, 
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then we have m← E.Dec(S′, c). 

The decryption is as same as Regev’s 
encryption scheme in [14]. We omit the proof 
of above Lemma. In order to recover message, 

|e /
2

q 
  

| should be less than 1/2. Thus the 

condition for correct decryption is |e|<
2

q 
  

/2. 

Since
4

q 
  

≤
2

q 
  

/2, we can also take the bound 

of noise magnitude as 
4

q 
  

. 

IV. Homomorphic Operations 

Suppose c1 and c2 encrypt m1 and m2 under the 

secret key S′ respectively; that is, S′ci = 2

q 
  

⋅ mi 

+ ei（mod q）with small ei for i={1,2}. If the 
ciphertext c resulted from addition or 
multiplication of two ciphertext c1 and c2 

satisfies S′c = 
2

q 
  

⋅ (m1+m2 )+ e（mod q）or 

S′c = 
2

q 
  

⋅ (m1 m2 )+ e（mod q）for small e, 

where m1 m2 means the bitwise product, we 
say that additive or multiplicative 
homomorphism can be achieved. 

The above basic encryption scheme has 
additive homomorphic property itself. To 
obtain multiplicative homomorphic property, 
we define the ciphertext for multiplication as 

1 2

2

q
 ⋅ ( ⊗ )c c  like definition in [5]. However, 

the secret key is the matrix and is not the vector 
in the above basic encryption scheme, then 
what is the form of the secret key 
corresponding to the multiplication of two 
ciphertexts? In fact, each row in the secret key 
matrix can be used to recover a bit of message. 
If the length of message is t, the secret key 
matrix is viewed as t row vectors. We refer to si 
as the i-th row in the secret key matrix S′. 
According to the above explanation, 

decrypting the ciphertext 1 2

2

q
 ⋅ ( ⊗ )c c  by the 

tensor vector si ⊗ si will result in a product of 

the i-th bit of two messages with respect to two 
ciphertexts c1, c2. We store the tensor vector 
si ⊗ si as the rows of the matrix ST, which is the 
secret key matrix relative to 

ciphertext 1 2

2

q
 ⋅ ( ⊗ )c c .             

Thus the secret key matrix ST is a t×(t+n2)
2 

matrix. We next analyze the condition of 
correct decryption for homomorphic operation. 

A. Homomorphic Addition 
By definition 

S′(c1+c2) = S′c1 + S′c2 =
2

q 
  

•(m1+ m2)+ 

e1+e2 (mod q)                                       (5). 
The noise increases a little in homomorphic 

addition. If the noise magnitude is small, 

namely, ∞1 2e + e <
4

q 
  

, the ciphertext c1+c2 

can be decrypted correctly. It means the sum of 
ciphertexts encrypts the sum of messages. 

B. Homomorphic Mulplication 

Let an error r = 1 2

2

q
 ⋅ ( ⊗ )c c –

2

q
⋅ (c1 ⊗ c2). 

Recall that the secret key is the matrix ST 

relative to the ciphertext vector 1 2

2

q
 ⋅ ( ⊗ )c c . 

By definition, we have  

ST ⋅ 1 2

2

q
 ⋅ ( ⊗ )c c  = ST ⋅ 2

q
⋅ (c1 ⊗ c2) + 

ST ⋅ r  (mod q) = 
2

q 
  

⋅ (m1  m2 )+ 1
multe  + 

ST ⋅ r   (mod q)  = 
2

q 
  

⋅ (m1  m2 ) 

+ 1
multe + 2

multe  (mod q)                                   (6), 

where 1
multe is the noise in the ciphertext 

2

q
⋅ (c1 ⊗ c2) and 2

multe = ST ⋅ r. 

If 1 2
mult mult

∞
e + e <

4

q 
  

, the tensored 

ciphertext for multiplication 1 2

2

q
 ⋅ ( ⊗ )c c  can 

be decrypted correctly under the secret key ST. 

C. Key Switching 
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Even though the tensored ciphertext for 
multiplication enable  to achieve the property of 
homomorphic multiplication, it leads to the 
expansion of dimension of ciphertext and secret 
key. Thus key switching technique was 
introduced in [3, 4], which can convert one 
ciphertext of high dimension under the secret 
key of high dimension into another ciphertext of 
normal dimension under the secret key of 
normal dimension. However the key switching 
described in [3, 4] is not efficient. Since the 
secret key need to be represented as binary bit in 
order to reduce the noise in the process of key 
switching, this results in expansion of the 
dimension of ciphertext and secret key. Here we 
apply the technique proposed by Gentry et al. in 
[18] to improve efficient of key switching and 
formal this new key switching for multi-bit 
FHE.  

In addition, if it only put key switching 
matrixes corresponding to the rows in the secret 
key matrix ST together to form a new key 
switching matrix, the result of key switching 
will be the collection of ciphertexts of normal 
dimension. To get only a single ciphertext 
resulting from key switching, we apply the 
method of multi-bit encryption in key switching 
as same as in [9] to yield key switching matrix 
that lets us convert the single ciphertext of high 
dimension into a single ciphertext of normal 
dimension. The process of key switching is 
described as below. 

SwitchKeyGen(S1←
st nχ × ,S2←

tt nχ × )：The 
parameters are described below, which allow 
to switch ciphertext under the secret key S1 into 
the ciphertext under the secret key [I|S2], where 
I is the identity matrix and  [I|S2] means the  
horizontal concatenation of matrix I and S2. 
Let l= log q   , and let χ be an error distribution 
for which the decision-LWE problem with 
modulus P=2lq is hard. 

Choose a uniform matrix A t sn n
P

×∈ .Sample 

E← st nχ × . Set B←S2A+E+2lS1
st n

P
×∈ . Output 

W=   
B
A

⋅ 2-l ( )t st n n+ ×∈ , where   
B
A means the 

vertical concatenation of matrix A and B. 

SwitchKey (W ( )t st n n+ ×∈ , c1
sn

q∈  )：Output  

c2← 1 Wc mod q tt n
q
+∈  . 

We call W the key switching matrix. The 
process of key switching is essentially the 
product of an (t+nt)×ns key switching matrix 
and an ns-dimensional ciphertext vector. Next, 
we describe the correctness of key switching. 
We show that the decryption of the resulting 
ciphertext after key switching can preserve 
correctness.  

Lemma 4.1 Let S1, S2, q,A,W be parameters as 
described in SwitchKeyGen. Let c1 sn∈  and 
c2 ← SwitchKey(W, c1) . Then, [I|S2] ⋅ c2 
=et+S1c1  (mod q), where et= 2-l ⋅ Ec1 +[I|S2]ew 
is the noise in the ciphertext c2.  

Proof.  Let ew= 1 Wc - Wc1. By definition 

[I|S2] ⋅ c2 = [I|S2] ⋅
1 Wc  (mod q) 

= [I|S2] ⋅ Wc1+ [I|S2]ew  (mod q) 

 = [I|S2]   
B
A

⋅ 2-l ⋅ c1+ [I|S2]ew  (mod q) 

 = 2-l ⋅ Ec1 +[I|S2]ew+S1c1  (mod q) 

= et+S1c1  (mod q). 

Note that since E, 2-lc1 and [I|S2]ew is small, et 
is also small. The above Lemma tells us that 
the noise magnitude in the resulting ciphertext 
c2 increases a little, but the resulting ciphertext 
still can be decrypted correctly as long as the 
noise in the source ciphertext is small. Next, 
we consider the security for the key switching. 

Lemma 4.2 Let S1←
st nχ × , 

S2←SecretKeygen( 1 tn ) and 
W←SwitchKeyGen(S1, S2). Then W is 
computationally indistinguishable from 
uniform over ( )t st n n+ × assuming decision-LWE 
problem is hard. 

Proof.  We have W=   
B
A

⋅ 2-l ( )t st n n+ ×∈ from 

above key switching, where A is a uniform 
matrix and B←S2A+E+2lS1. Because B is a 
matrix whose entries are the ciphertext of 
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Regev’s scheme, B is computationally 
indistinguishable from uniform over st n

P
× . 

Therefore W is computationally 
indistinguishable from uniform over ( )t st n n+ × . 

V. A Homomorphic Encryption Scheme 
A leveled homomorphic encryption scheme we 
describe as below. For a leveled homomorphic 
encryption scheme, the circuit depth L is first 
given before homomorphic evaluations. Each 
level in circuit has a different secret key. 
Homomorphic operations are just to be 
performed from level L to 1. The first level is 
level L, and the last level is level 0. Level 0 is 
only used to switch key. After each 
homomorphic operation, we need to transform 
the result to enter into the next level of circuit. 
Before each homomorphic operation, it requires 
that the two ciphertexts have the same secret key 
(namely, the same level). Otherwise, we need 
transform the higher level ciphertext into lower 
level. The function of FHE.RefreshNextLevel 
is to do it. We note the key switching is just used 
for tensored ciphertext. Thus the ciphertext of 
normal dimension needs to tensor with a trivial 
ciphertext (1,0,…,0) before using key 
switching.   
 

FHE.Setup( λ , L ): Input the security 
parameter λ  and the circuit level L, output the 

noise distribution χ with Bχ < , and the 

dimension n1, n2. Let l= log q   , and the noise 

distribution χ ensure that the decision-LWE 
problem with modulus P=2lq is hard. If there is 
a trusted source in the system, all parties in the 
system would use the trusted source to 
generate a uniformly random public matrix 

A 1 2n n
q

×∈ . If not, A may be generated in the 

step of key generation and as part of the public 
key.  
 

FHE.KeyGen(n1, n2, L )：For i =L down to 0, 
do the following: 

(1) Run S′i←SecretKeygen( 21n )  where S′i 
=[I|Si]. Let sk={ S′i }. 

(2) When i =L do this step. Run 
BL←PublicKeygen(A, S′L). Let pk1={ BL }. 

(3) Let sj be the j-th row of the secret key 
matrix S′i. Let STi be the matrix that store the 

tensor vector sj ⊗ sj as its rows.（Omit this step 
when i=0.） 

(4) Run 1i i→ −W ← SwitchKeyGen(STi, Si-1).

（Omit this step when i=0.）Let pk2={ 1i i→ −W } . 
Then output sk={ S′i } and pk={pk1，pk2} for i
∈{0,…L}. 

 
FHE.Enc(pk1, m)：Take a message m∈ 2

t . 
Run Enc(pk1, m). 
 

FHE.Dec(sk, ci) ： Assume that ci is a 
ciphertext under the secret key S′i. Run Dec(sk, 
ci). 
 

FHE.Add(pk2, c1, c2)：Do the following 
steps. 

(1) If ciphertexts c1, c2 has the same secret 
key S′i, first compute c3←c1+c2. In order to 
provide an output that corresponds to the next 
level key S′i-1 rather than S′i, we call 
FHE.RefreshNextLevel to do it. Output 
cadd←FHE.RefreshNextLevel(i, c3, 

1i i→ −W ) 2n t
q

+∈ . 
(2) If ciphertexts c1, c2 have different secret 

keys, we choose the ciphertext with higher 
level and input it into FHE.RefreshNextLevel 
such that the two ciphertexts have the same 
secret key. We can repeat to call 
FHE.RefreshNextLevel until the output from 
FHE.RefreshNextLevel has the same secret 
key with another ciphertext of lower level. 
Then go to step (1). 
 

FHE.Mult(pk2, c1, c2)：Do the following 
steps. 

(1) If ciphertexts c1, c2 has the same secret 

key S′i , first compute c3← 1 2

2
( )

q
 ⋅ ⊗ c c under 

the secret key STi. Then output cmult← 
SwitchKey ( 1i i→ −W , c3).  

(2) If ciphertexts c1, c2 have different secret 
keys, we do the same as the step (2) in 
FHE.Add(pk2, c1, c2). 
 

FHE.RefreshNextLevel(i, c, 1i i→ −W ): First 
compute c′= c ⊗ (1,0,…,0), then output 
SwitchKey( 1i i→ −W ,c′). 
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The below lemma 5.1 proves the security of 
the above FHE scheme. 
 

Lemma 5.1 (security). Let n1, n2, q, χ be 
some parameters such that decision-LWE 
problem is hard. Let L be polynomial depth. 
Then for any message m∈ 2

t , if (pk1, pk2, 
sk)←FHE.KeyGen(n1, n2, L), c←FHE.Enc(pk1, 
m), it holds that the joint distribution (pk1, pk2, 
c) is computationally indistinguishable from 
uniform. The above scheme is CPA secure 
under  the decision-LWE problem assumption.  
 

Proof. Note that the view of  a CPA 
adversary includes not only the public key pk1 
and the ciphertext c but also the evaluation key 
pk2. Since pk1={ BL }and 
pk2={ 1 1 2 1 0, , ,L L L L→ − − → − →W W W }, we apply a 
hybrid argument as in paper [3] to prove that 
the distribution (BL, 1 1 2 1 0, , ,L L L L→ − − → − →W W W , 
c) is computationally indistinguishable from 
uniform.  Let A  be an IND-CPA adversary for 
the scheme. We prove by a sequence of 
hybrids. 

Hybird H*
L:  the adversary gets properly 

distributed keys pk1, pk2, generated by 
FHE.KeyGen , and an encryption of either 0 or 
1 output from FHE.Enc.   
Hybird HL:  This hybrid is identical to H*

L in 
everything except the generation of 1L L→ −W . In 

this hybrid, 1L L→ −W  is replaced with uniform. 

Since 1L L→ −W  is indistinguishable from 
uniform according to Lemma 4.2 under the 
decision-LWE problem assumption, an 
adversary cannot distinguish them and the 
advantage is negligible. 

In each  hybird Hi  where i∈(0,1,…,L),  all 

1i i→ −W  can be replaced with uniform in 
ascending order according to the same 
argument. At last, the remainder is (BL, c). 
Since (BL, c) is a public key and ciphertext of 
the basic encryption described in section 3, (BL, 
c) is indistinguishable from uniform according 
to the decision-LWE problem assumption. 
Therefore we have that the joint distribution 
(pk1, pk2, c) is computationally 
indistinguishable from uniform. An adversary 
cannot distinguish them and the advantage is 
negligible. The scheme is CPA secure under  
the decision-LWE problem assumption.  

VI. Noise Analysis 

 
Homomorphic addition and multiplication 
increase the noise in ciphertexts. Particularly, 
homomorphic multiplication increases the 
noise significantly. The analysis for 
homomorphic addition is simple. That is only 
the sum of the noise in two ciphertexts. We 
next analyze the noise growth in homomorphic 
multiplication.   

Suppose ciphertext ci under the secret key 
S′L is a fresh ciphertext for i∈{1,2}, namely, 
ci←FHE.Enc(pk1, mi). By lemma 3.1, we have 

S′L ci =
2

q 
  

⋅ m + e （mod q）, where 

∞
e ≤E<(n1+n2)B

2+B. Let cmult be the output of 

FHE.Mult(pk2, c1, c2) under the secret key S′L-1. 
According to the result in section 4.2 and 
Lemma 4.1, we have 

S′L-1 ⋅ cmult = S′L ⋅ c3 +et  (mod q) 

=
2

q 
  

⋅ (m1 m2 ) + 1
multe + 2

multe + et  (mod q) (7).     

According to the analysis in [20,21,22,23], 

we get 1
mult

∞
e < 5(n2+t)BE, 2

mult

∞
e < 

(1/2)(n2+t)2B2 and t ∞
e <(n2+t)2B+ (1/2)n2B. 

Putting these together, we get the bound of 
noise magnitude after once homomorphic 
multiplication between two fresh ciphertexts 
such as   

1 2
mult mult

t ∞
+e + e e <5(n2+t)BE + 

(1/2)(n2+t)2B2 + (n2+t)2B+ (1/2)n2B < 
5(n2+t)BE + 2(n2+t)2B2                                 (8). 

After we evaluate a circuit of depth L, the 
upper bound on the noise magnitude in 
resulting ciphertext is 1

1 1 2
L Lt E L t t−⋅ + ⋅ ⋅ , where 

t1=5(n2+t)B, t2=2(n2+t)2B2. As long as the 
parameters of this scheme satisfy 

1
1 1 2
L Lt E L t t−⋅ + ⋅ ⋅ <

4

q 
  

                                         (9) , 

we can evaluate homomorphic operation in 
circuit of depth L. For appropriate parameters, 
we obtain a leveled fully homomorphic 
encryption scheme. 

VII. Parameters Setting 

In this section, we estimate the concrete 
parameters for our scheme. These parameters 
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include circuit depth L, dimension n, modulus 
q and Gaussian parameter r. By these 
parameters, we can obtain concrete public key 
size, secret key size and ciphertext size. Since 
the BGH13 scheme is also a multi-bit FHE 
scheme and similar with our scheme, we 
compare these parameters between our scheme 
and the BGH13 scheme. 

A. Parameters Property 
Some properties of our scheme and BGH13 
scheme are listed in Table 1. All sizes are in bits. 
The number of LWE sample is N=2nlogq in 
BGH13 scheme and is n1 in our scheme. We 
assume the circuit depth is L. Thus there is L+1 
private keys and L+1 key switching matrixes. 
Note that key switching matrixes is viewed as a 
kind of public key, namely evaluation keys, for 
evaluation on ciphertext. If one assume circular 
security, the number of evaluation keys is one 
rather than L+1. But we here do not assume 
circular security. 

 
TABLE 1. SOME PROPERTIES OF OUR SCHEME AND BRA12 

SCHEME 

 Message Public Key Full Public 

key 

Our scheme t n1tlogq n1(n2+t) logq 

BGH t 2ntlog2q 2n(n+t)log2q 

 
 Secret 

keys 
Evaluation 
keys 

Ciphertext 

Our scheme t n1tlogq n1(n2+t) logq 

BGH t 2ntlog2q 2n(n+t)log2q 

 
We set parameters as n1= n2 = n and t=n in our 

scheme so that the two LWE hardness 
assumptions is equivalent. It is obvious that our 
public key size is better than that in the BGH13 
scheme. Specially, our public key size improves 
by a factor logq. 

B. Concrete Parameters 
It is a general method to use distinguishing 
attack to estimate concrete parameters of 
cryptosystem based on LWE. The 
distinguishing attack means that the adversary 
distinguishes an LWE instance from uniformly 
random with some noticeable advantage. The 
essential of distinguishing attack is to find a 
short nonzero integral vector in ( )⊥Λ A .       

According to the result in [19], if one wants to 
find a short vector of length β using state of the 
art lattice reduction algorithms, the required 
root-Hermite factor is 2(log )/(4 log )2 n qβδ = . The 
time (in seconds) that it takes to compute a 
reduced basis with root-Hermite factor δ for a 
random LWE instance was estimated in [13] to 
be at least log(time) ≥1.8/log( δ )–110. Thus a 
lower-bound on the dimension n required to get 
any given security level was derived in [18] as                                

n ≥ log(q/r)( λ +110)/7.2                (10). 
Given security level, modulus q and 

Gaussian parameter r, we obtain the minimal 
values of dimension n to ensure the 
corresponding security level from (10). Some 
values are presented in Table 2 for λ =80 and 
r=8. 
 

TABLE 2. MINIMAL VALUES OF DIMENSION N  
log q 8 13 22 42 81 
n  132 264 501 1029 2058

 
For a leveled FHE, the circuit depth L has to 

be specified before performing homomorphic 
operations. In order to evaluate homomorphic 
operations in a circuit of depth L, we need to 
take appropriate modulus q according to 
inequation (6.1), so that noise growth cannot 
exceed the bound of correct decryption. For the 
BGH13 scheme, even though their scheme is 
symmetric encryption, it is easy to translate 
their scheme to asymmetric encryption. In the 
asymmetric version of BGH13, the modulus q 

needs to satisfy 1
3 3 4'L Lt E L t t−⋅ + ⋅ ⋅ <

4

q 
  

 where 

t3=4(n+t)logq, t4=2(n+t)2Blog3q and the noise 
of fresh ciphertext E’= 2nBlogq.  

 
In Table 3-4, when the security level is 80 bit, 

we provide some values for modulus q and 
dimension n under the different circuit depth 
L=1, 5, 10. Note that the size of public key, 
secret key and ciphertext is kilobyte. The data in 
Table 3-4 show that the concrete size of all 
parameters in our scheme are smaller than those 
in the BGH13 scheme.  

 
 
 
TABLE 3. THE SIZE OF PARAMETERS IN OUR SCHEME 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2909286, IEEE
Access

                                                    Xinxia Song et al.: Preparation of Papers for IEEE Access (March 2019) 

 
 

L 1 5 10 
N 1082 3351 6333 
Logq 44 130 243 
Public Key 61×102 21.2×103 11.8×105 
Evaluation 
Keys 

10.8×107 83.4×107 66.3×109 

Secret keys 25.1×103 12.7×104 26.1×106 
Ciphertext 11.6 26 376 

 
TABLE 4. THE SIZE OF PARAMETERS IN BGH SCHEME 

L 1 5 10 
N 1188 3800 11004 
Logq 48 147 420 
Public Key 79.3×104 76.1×106 52.1×108 
Evaluation 
Keys 

75.3×107 69.4×1011 36.7×1014 

Secret keys 33×103 31×105 19.8×107 
Ciphertext 14 136 1128 

 

VIII. Conclusion 
The goal of this paper is to construct a multi-bit 
FHE scheme with short public key from 
Learning with Errors. The short public key 
comes from the different style of the basic 
encryption scheme. We analyze the correctness 
and give the proof of security of our scheme. In 
addition, we optimize the process of key 
switching and formal this new process of key 
switching in term of multi-bit FHE. At last, we 
estimate the concrete parameters for our scheme. 
We compare these parameters between our 
scheme and the BHS13 scheme. Our scheme 
have public key smaller by a factor of about 
logq than that in the BGH13 scheme.  
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