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Abstract 1 

Background: Efficient viral vectors for mapping and manipulating long projection 2 

neuronal circuits are crucial in brain structural and functional studies. The glycoprotein 3 

gene-deleted SAD strain rabies virus pseudotyped with the N2C glycoprotein (SAD-4 

RV(ΔG)-N2C(G)) shows high neuro-tropism in cell culture, but its in vivo retrograde 5 

infection efficiency and neuro-tropism have not been systematically characterized. 6 

Methods: SAD-RV(ΔG)-N2C(G) and two other broadly used retrograde tracers, SAD-7 

RV(ΔG)-B19(G) and rAAV2-retro were respectively injected into the VTA or DG in 8 

C57BL/6 mice. The neuron numbers labeled across the whole brain regions were 9 

counted and analyzed by measuring the retrograde infection efficiencies and tropisms 10 

of these viral tools. The labeled neural types were analyzed using fluorescence 11 

immunohistochemistry or GAD67-GFP mice. 12 

Result: We found that SAD-RV (ΔG)-N2C (G) enhanced the infection efficiency of 13 

long-projecting neurons by ~ 10 times but with very similar neuro-tropism, compared 14 

with SAD-RV (ΔG)-B19(G). On the other hand, SAD-RV(ΔG)-N2C(G) showed 15 

comparable infection efficiency with rAAV2-retro, but had a more restricted diffusion 16 

range, and broader tropism to different types and regions of long-projecting neuronal 17 

populations. 18 

Conclusions: These results demonstrate that SAD-RV(ΔG)-N2C(G) can serve as an 19 

effective retrograde vector for studying neuronal circuits. 20 

Key words：Viral vector, N2C Glycoprotein, Neuronal circuits, Retrograde tracing 21 

 22 

Background 23 

In the central nervous system, distinct brain regions work corporately through particular 24 

circuit connections to process different and complex information [1-6]. Neuronal 25 
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circuits are the keystone to brain functions and their anatomical and functional 1 

aberrations are closely related to many neurodegenerative diseases [7-9], such as 2 

Parkinson’s disease [10, 11], Alzheimer’s disease [12] and Huntington’s disease [13]. 3 

Thus, it is critical to develop efficient tools for anatomical mapping and functional 4 

decoding of neuronal circuit connections. 5 

Retrograde tracers, owing to their unique properties of entry at axon terminals and 6 

then being transported to the cell bodies, are useful tools for targeting the long-7 

projecting neuronal circuit assemblies [14, 15]. Compared with the classical chemical 8 

tracers [16-20], viral vectors are able to deliver genetic elements to neuronal 9 

populations with specific projection properties or molecular features, and hence are 10 

superior in morphological visualization, activity monitoring and functional modulation 11 

in neuroscience studies. Nowadays, viral tools are drawing close attention from the field 12 

of neuroscience. The rabies virus (RABV) [21-24], herpes simplex virus (HSV) [25-13 

29], canine adeno virus-2 (CAV-2) [30-32] and retrograde adeno associated virus 14 

(rAAV2-retro) [33] are among the most commonly recently used retrograde viral 15 

vectors. They seem to have rather different infection efficacies and tropisms, although 16 

not yet thoroughly explored. RABV and HSV have broader tropism for different types 17 

of neurons [27, 34], and much higher cytotoxicity compared with CAV-2 and rAAV2-18 

retro. CAV-2 and rAAV2-retro are very valuable due to their low toxicity and 19 

outstanding retrograde infection efficiency, but are limited by the gene delivery capacity 20 

and heterogeneous tropism of different neurons [35, 36]. By far, RABV is reported to 21 

ensure robust gene expression, possess the most exclusive neuro-tropism and the 22 

broadest range of host species among the above mentioned viruses, but is limited by its 23 

cytotoxicity and retrograde infection efficiency. Recent studies have successfully 24 

attenuated [37] and even eliminated [35] its cytotoxicity. Moreover, RABV enveloped 25 
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with the N2C glycoprotein (N2C(G)) from the Challenge Virus Strain (CVS) displayed 1 

an increased neuro-tropism in cell culture [38] and trans-synaptic efficiency in vivo [39]. 2 

These improvements endow the RABV-N2C(G) with great potential in both structural 3 

and functional studies of neuronal circuits. However, since the cellular environment and 4 

receptors involved may be different, the higher in vitro neuro-tropism and in vivo trans-5 

synaptic spread efficiency do not mean higher retrograde infection efficiencies. Thus, 6 

the in vivo retrograde infection efficiency and tropisms of the N2C(G) enveloped 7 

RABV to long-projecting neuronal circuits and the comparison with the two 8 

outstanding retrograde tracers (SAD strain RABV and rAAV2-retro) are still unknown. 9 

To address these questions, in this study, we first enveloped the glycoprotein gene-10 

deleted SAD-RABV with N2C(G) (SAD-RV(ΔG)-N2C(G)) or the native glycoprotein 11 

(SAD-RV(ΔG)-B19(G)), and then compared the in vivo retrograde infection properties 12 

of the SAD-RV(ΔG)-N2C(G) with that of SAD-RV(ΔG)-B19(G) and rAAV2-retro. We 13 

found that the SAD-RV(ΔG)-N2C(G) showed a much enhanced retrograde infection 14 

efficiency (over 10 times) than the SAD-RV(ΔG)-B19(G). Compared with rAAV2-retro, 15 

we established that, the SAD-RV(ΔG)-N2C(G) exhibited a broader tropism of different 16 

types of projection neurons in different upstream regions, and a more restricted 17 

diffusion range at the injection site with the comparable retrograde infection efficiency. 18 

These results demonstrate that the SAD-RV(ΔG)-N2C(G) can serve as a more effective 19 

retrograde tracer for studying input neuronal networks. 20 

 21 

Methods 22 

Animals 23 

All surgical and experimental procedures were conducted in accordance with the 24 

guidelines of the Animal Care and Use Committees at the Wuhan Institute of Physics 25 
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and Mathematics, Chinese Academy of Sciences. Adult male C57BL/6 mice were 1 

purchased from Hunan SJA Laboratory Animal Company. GAD67-GFP transgenic 2 

mice [40] were gifts from Professor Shumin Duan (Zhejiang University), and bred with 3 

adult female C57BL/6 mice. All animals were fed ad libitum with food and water. A 4 

dedicated room with a 12/12 h light/dark cycle was used to house animals. 5 

Virus Information 6 

The viral vectors (SAD-RV(ΔG)-B19(G)-EGFP, SAD-RV(ΔG)-N2C(G)-EGFP, SAD-7 

RV(ΔG)-N2C(G)-mCherry, rAAV2-retro-EF1α-EYFP, rAAV2-retro-EF1α-mCherry) 8 

were all packaged by BrainVTA Co., Ltd. (Wuhan, China) and all aliquots were stored 9 

at -80℃.  10 

Production of BHK-N2C(G) cells 11 

For the BHK-N2C(G) cell lines, FUGW-H2B-GFP-P2A-N2C(G) was created by 12 

inserting the N2C-glycoprotein gene (Addgene, # 73476) with histone GFP into the 13 

Lentivirus expression vector FUGW (Addgene, # 14883)， then transfected into 14 

lentiviral packaging cells. After filtration, FUGW-H2B-GFP-P2A-N2C(G) was used to 15 

infect BHK cells. 16 

Packaging of the SAD-RV(ΔG)-N2C(G)-EGFP 17 

The SAD-RV(ΔG)-B19(G)-EGFP was packaged using standard methods as described 18 

in previous reports [41]. For the SAD-RV(ΔG)-N2C(G)-EGFP, BHK-N2C(G) cells 19 

were used to stably express N2C(G) for packaging SAD-RV(ΔG)-N2C(G)-EGFP. The 20 

SAD-RV(ΔG)-B19(G)-EGFP was used to infect BHK-N2C(G) cells for 48 hours. Then, 21 

after collecting viral supernatant, the BHK-N2C(G) cells were washed with PBS, 22 

digested with pancreatin, and amplified. After 48 hours, the viral supernatant of SAD-23 

RV(ΔG)-N2C(G)-EGFP was collected, filtrated with filter (0.45 µm) and stored at -24 

80℃. The concentration procedure of SAD-RV(ΔG)-N2C(G)-EGFP was the same as 25 
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previously reported [41].  1 

The SAD-RV(ΔG)-N2C(G)-mCherry was obtained using the same procedure as the 2 

SAD-RV(ΔG)-N2C(G)-EGFP. All rabies viruses were titrated using the same 3 

procedure as previously reported [6] and stored at -80℃. The rAAV2-retro-EF1α-EYFP 4 

and rAAV2-retro-EF1α-mCherry were titrated using QPCR. 5 

Stereotactic Surgery 6 

Animals were anesthetized with chloral hydrate (400 mg/kg), and then placed in a 7 

stereotaxic apparatus (RWD, 68030, Shenzhen, China). The skull above the targeted 8 

areas was thinned with a dental drill (STRONG, Guangdong, China) and then removed 9 

carefully with a curved needle. A mixture of virus and CTB594 (Thermo Fisher 10 

Scientific, C34777; with the final concentration of 0.02 mg/ml) was injected into the 11 

target brain regions (VTA: a-p, -3.10 mm; m-l, ±0.50 mm, d-v, -4.50 mm, 200 nL 12 

volume; or DG: a-p, -1.70 mm; m-l, -0.90 mm; d-v, -1.95 mm, 100 nL volume) using 13 

an injector connected to a glass micropipette (WPI, 4878, United States), and driven by 14 

a syringe pump (Stoelting, Quintessential stereotaxic injector, 53311, United States). 15 

After injection, the glass micropipette was left in place for an extra 10 mins to minimize 16 

diffusion and then slowly withdrawn.  17 

At last, animals were put back into the housing room after suture and the application of 18 

lidocaine hydrochloride on to the wound. 19 

Slice Preparation and Confocal Imaging 20 

Mice were anesthetized with an overdose of chloral hydrate (600 mg/kg), and then 21 

perfused transcardially with PBS followed by 4% paraformaldehyde solution (PFA, 22 

158127MSDS, Sigma). The brain tissues were removed and post-fixed overnight in 4% 23 

paraformaldehyde solution at 4℃, then sectioned into 40 µm coronal slices with a 24 

cryostat microtome (Thermo Fisher, NX50, Germany). 25 
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The brain slices were selected (every sixth section of the whole brain slices), 1 

stained with DAPI, mounted in 70% glycerol, and then imaged with a confocal 2 

microscope (Leica, TCS SP8, Germany) or virtual microscopy slide scanning system 3 

(Olympus, VS 120, Japan). 4 

Immunohistochemistry 5 

Sections were washed with PBS (5 mins, 3 times), then incubated in blocking solution 6 

(10% normal goat serum and 0.3% Triton x-100 in PBS) for 1 hour at 37℃, followed 7 

by primary antibody rabbit anti-CAMKII (Abcam, ab5683, 1:500) and incubated for 72 8 

hours at 4℃. Sections were washed with PBS (10 mins, 3 times), incubated in secondary 9 

antibody goat anti-rabbit cy3 (Jackson ImmunoResearch, 94600, 1:400) solution for 1 10 

hour at 37℃, then washed with PBS (10 mins, 3 times), stained with DAPI and mounted 11 

with 70% glycerol.  12 

Data Analysis 13 

Cell counting  14 

For counting whole brain labeled neurons using SAD-RV(ΔG)-B19(G), SAD-RV(ΔG)-15 

N2C(G) or rAAV2-retro, the images were segmented and delineated into different brain 16 

regions with Photoshop based on the Allen Brain Atlas (http://www.brain-map.org/). 17 

The labeled neurons were quantified with ImageJ, but neurons labeled around the 18 

injection sites were not counted.  19 

For counting CAMKII and GFP co-labeled cells, 1024 pix * 1024 pix (1183 µm * 20 

1183 µm) images within the target brain regions were randomly selected，while for 21 

counting GAD 67 or GAD 67-GFP co-labeled cells, the brain images were segmented 22 

and delineated into different brain regions with Photoshop based on the Allen Brain 23 

Atlas. The co-labeled neurons were quantified with ImageJ.  24 

Analysis of viral diffusion range  25 
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To analyze the diffusion range of the rAAV2-retro and the SAD-RV(ΔG)-N2C(G), the 1 

VTA injected samples containing large enough (2235 µm * 2235 µm) regions around 2 

the injection sites (referred to as CTB signals) were selected. Since viral diffusion is 3 

consecutive, the diffusion range was defined as an irregular circle centered with the 4 

CTB signals and containing consecutive GFP+ soma distributions. Only the GFP+ 5 

signals within the circle were calculated afterwards. The whole circle range was 6 

equidistantly segmented into 57.5 µm stripes centered with CTB signals along the 7 

lateral-medial or dorsal-ventral axis, respectively, using MatLab R (2014a). The GFP+ 8 

signals within each square were counted and calculated separately. 9 

Statistical analyses 10 

For statistical analysis of the input intensity from different brain regions, only those 11 

taking up to 1% were chosen, while for statistical analysis of the input intensity for 12 

whole brain, all regions were included. For diffusion area analysis, the percentage of 13 

signal for each square was calculated. The percentage of signal for each square was 14 

fitted to the Gaussian curve and the Wh/2 (peak width at half-height) was analyzed in 15 

order to estimate the diffusion range using MatLab R (2014a). 16 

Independent sample t-tests ， one-way ANOVA followed by LSD multiple 17 

comparison test, two-sided non-parametric test (Mann-Whitney U test) and Spearman 18 

rank correlation analysis were performed to determine statistical differences using 19 

SPSS (22.0). Statistical significance were set at ***P < 0.001, **P < 0.01 and *P < 0.05. 20 

All data values are presented as mean ± SEM. Graphs were drawn using Sigma Plot 21 

(version 10.0). 22 

 23 

Results 24 

SAD-RV(ΔG)-N2C(G) showed a higher retrograde infection efficiency but a 25 
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similar labeled pattern compared with SAD-RV(ΔG)-B19(G) 1 

First, we packaged SAD-RV(ΔG)-N2C(G)-EGFP (Fig 1A, bottom), and SAD-2 

RV(ΔG)-B19(G)-EGFP (Fig 1A, top). To compare their retrograde infection 3 

efficiencies in vivo, the two pseudotyped viruses were respectively mixed with CTB594 4 

(red fluorescent signal to mark the injection sites), and injected into the Ventral 5 

Tegmental Area (VTA) of different mice (Fig 1B, Table 1). The brain samples were 6 

checked carefully to guarantee that the injection sites were restricted to the VTA 7 

(Additional file 1: Figure S1). Otherwise, the samples were excluded. For most of the 8 

GFP labeled brain regions, such as the midbrain raphe nuclei (RAmb) and the habenular 9 

neucleus (Habenular) (Fig 1C), SAD-RV(ΔG)-N2C(G)-EGFP obviously infected more 10 

neurons than SAD-RV(ΔG)-B19(G)-EGFP, even when the titer of the latter was ten 11 

times higher. The quantitative analysis of the whole brain GFP-positive neuron number 12 

is also consistent with this result (Fig 1D, p = 5.72E-07 for the viruses with the same 13 

titer, p = 0.0059 for the viruses with tenfold different titers).  14 

The retrograde infection efficiency of SAD strain RABV was increased by 15 

pseudotyping with N2C(G), however, whether the retrograde tropism for neurons in 16 

different brain regions is also altered, remains unclear. To answer this, GFP positive 17 

neurons within each upstream brain region were quantified and normalized by dividing 18 

the total number of retrograde labeled neurons for each animal. We found that none of 19 

the analyzed brain regions showed significant differences in input percentage between 20 

SAD-RV(ΔG)-N2C(G)-EGFP and SAD-RV(ΔG)-B19(G)-EGFP groups (Additional 21 

file 2: Figure S2A). The retrograde labeled percentages in different brain regions of the 22 

two groups were highly correlated (Additional file 2: Figure S2B). 23 

These results demonstrate that the glycoprotein gene-deleted RABV enveloped 24 

with N2C(G) could improve its retrograde infection efficiency without affecting the 25 
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retrograde tropism bias. 1 

SAD-RV(ΔG)-N2C(G) showed a higher retrograde infection efficiency and a more 2 

restricted diffusion range compared with rAAV2-retro 3 

The rAAV2-retro is an outstanding retrograde viral vector mainly due to its high 4 

efficiency, and has been broadly used in various functional studies of neuronal circuits 5 

[33, 42]. In order to compare the retrograde efficiency of rAAV2-retro and SAD-6 

RV(ΔG)-N2C(G), rAAV2-retro-EF1α-EYFP was mixed with CTB594 and injected into 7 

the VTA (Fig 2A, Table 1). We found that compared to the rAAV2-retro-EF1α-EYFP 8 

with a titer of 1E+13 vg/ml, SAD-RV(ΔG)-N2C(G)-EYFP with a titer of 5E+07 IFU/ml 9 

retrograde infected more neurons (Fig 2B, 12891 ± 1080 for rAAV2-retro-EF1α-EYFP 10 

(1E+13 vg/ml); 18173 ± 2232 for SAD-RV(ΔG)-N2C(G)-EGFP (5E+07 IFU/ml), p = 11 

0.014).  12 

Given that the two viruses were tittered using different methods due to their own 13 

properties, and that the retrograde labeled neuronal number could be positively 14 

correlated with the viral titer, it is difficult to directly compare their retrograde 15 

efficiencies using different titer units. However, the increased titer could have the 16 

consequence of increasing the diffusion. Therefore, we further calculated the diffusion 17 

patterns of GFP-positive neuronal somas near the VTA. Viral labeled neuronal rates 18 

were binned every 57.5 µm along the lateral-medial or dorsal-ventral axis and fitted to 19 

the Gaussian curve. The Wh/2 was calculated to estimate the diffusion range of the two 20 

viruses. We found that compared with the rAAV2-retro-EF1α-EYFP (1E+13 vg/ml), 21 

the Wh/2 of SAD-RV(ΔG)-N2C(G)-EGFP (5E+07 IFU/ml) was much smaller along the 22 

lateral-medial axis (Fig 2C, E), but showed no significant difference along the dorsal-23 

ventral axis (Fig 2D, F). 24 

Together, these results suggest that SAD-RV(ΔG)-N2C(G)-EGFP had a much 25 
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higher retrograde infection efficiency and a more limited diffusion range compared to 1 

the rAAV2-retro-EF1α-EYFP. 2 

SAD-RV(ΔG)-N2C(G) and rAAV2-retro exhibited different retrograde infection 3 

tropism in different brain regions 4 

The rAAV2-retro was reported to be refractory to infection of certain projection 5 

neurons [33, 35]. We then compared the retrograde infection tropisms of rAAV2-retro 6 

and SAD-RV(ΔG)-N2C(G). 7 

To achieve this, we first analyzed the GFP-positive neuron distribution patterns 8 

and proportions in different brain regions of rAAV2-retro-EF1α-EYFP and SAD-9 

RV(ΔG)-N2C(G)-EGFP injected samples. We found that compared with the SAD-10 

RV(ΔG)-N2C(G)-EGFP, rAAV2-retro-EF1α-EYFP preferentially labeled neurons in 11 

the MO, SS, GU, AUD, ACA, PL, ILA, ORB and AI (Fig 3A and D). Whereas, for 12 

many of the other brain regions, such as the CP, ACB, SI, BST, LHA, LPO, SNr, SCm 13 

and CS, the rAAV2-retro-EF1α-EYFP showed a quite modest infection efficiency (Fig 14 

3B-D). It should be noted that, in the CP and ACB, which are largely enriched with 15 

GABAergic neurons and directly connected to the VTA [43-45], there were very few 16 

GFP-positive cell bodies labeled by rAAV2-retro-EF1α-EYFP. In the PAG, MRN, 17 

RAmb and a few other brain regions, there was no significant difference between the 18 

two kinds of viruses in the rate of labeled neurons (Fig 3D). 19 

We further pooled the GFP-positive neuron signals of every individual brain 20 

region into several intact brain areas (Fig 3E) according to the Allen Brain Atlas 21 

(http://www.brain-map.org/). The data shows that in the isocortex area, the retrograde 22 

neuronal labeling rate of the rAAV2-retro-EF1α-EYFP was about 7 times higher than 23 

that of the SAD-RV(ΔG)-N2C(G)-EGFP (50.72 ± 4.85% for rAAV2-retro-EF1α-EYFP; 24 

7.42 ± 1.47% for SAD-RV(ΔG)-N2C(G)-EGFP, p = 0.029). On the contrary, the SAD-25 
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RV(ΔG)-N2C(G)-EGFP had a significantly higher percentage of labeled neurons in 1 

many of the non-cortical areas, including the striatum (0.08 ± 0.05%; 7.76 ± 1.37%; p 2 

= 0.029), amygdala (0.62 ± 0.05%; 1.44 ± 0.38%; p = 0.029), pallidum (1.30 ± 0.27%; 3 

7.57 ± 0.86%; p = 0.029) and hypothalamus (7.27 ± 1.87%; 21.14 ± 1.56%; p = 0.029). 4 

There was no significant difference of the labeled neuron rates between the two viruses 5 

in the olfactory area (1.90 ± 0.33%; 0.69 ± 0.38%, p = 0.057), HPF/septum (0.64 ± 6 

0.19%; 0.37 ± 0.16%; p = 0.34), claustrum/endopiriform (0.04 ± 0.05%; 0.20 ± 0.07%; 7 

p = 0.11), thalamus/epithalamus (1.81 ± 0.48%; 4.44 ± 1.25%; p = 0.11), midbrain 8 

(27.00 ± 4.07%; 35.50 ± 3.26%; p = 0.20), hindbrain(8.34 ± 0.59%; 12.43 ± 1.79%; p 9 

= 0.057) or cerebellum (0.28 ± 0.08%; 1.03 ± 0.34%; p = 0.057).  10 

To overcome the individual variation of animals and directly compare the 11 

retrograde infection tropisms, the rAAV2-retro-EF1α-EYFP and SAD-RV(ΔG)-12 

N2C(G)-mCherry were separately injected into the bilateral VTA in the same animal 13 

(Additional file 3: Figure S3A and B; Table 1). The differences in the labeled patterns 14 

of the two viruses were still observed in these mice (Additional file 3: Figure S3C), 15 

which is consistent with the above results (Fig 3A-D). 16 

Since the retrograde infection efficiency or tropism biases of different brain 17 

regions may be different from the injection site, the two viruses were additionally 18 

injected into the dentate gyrus (DG), another brain region which receives a considerable 19 

amount of input from cortical areas (Fig 4A, Table 1). The representative images near 20 

the injection site show that the GFP signals labeled with the rAAV2-retro-EF1α-EYFP 21 

was much denser and diffused more widely than the SAD-RV(ΔG)-N2C(G)-EGFP (Fig 22 

4A). Quantitative analysis of the whole brain GFP-positive neurons excluding the DG 23 

region revealed that, by injecting in the DG, the SAD-RV(ΔG)-N2C(G)-EGFP with the 24 

titer of 5E+07 IFU/ml had a comparable retrograde infection efficiency to the rAAV2-25 
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retro-EF1α-EYFP with the titer of 1E+13 vg/ml (Fig 4E, 707 ± 70 for rAAV2-retro-1 

EF1α-EYFP; 625 ± 241 for SAD-RV(ΔG)-N2C(G)-EGFP, p = 0.40). We further 2 

analyzed the retrograde labeled patterns of the two viruses. Since the hippocampus is a 3 

macroscopically defined cortical structure [46, 47], the hippocampus and the cortical 4 

areas were collectively referred to as an intact brain area, the HIP & Cortex. We found 5 

that, the rAAV2-retro-EF1α-EYFP significantly labeled a higher proportion of 6 

projection neurons in the HIP & Cortex (Fig 4B and F, 92.91 ± 0.74% for rAAV2-retro-7 

EF1α-EYFP; 59.15 ± 5.28% for SAD-RV(ΔG)-N2C(G)-EGFP; P = 0.0015) compared 8 

with the SAD-RV(ΔG)-N2C(G)-EGFP. However, in the MBO (3.39 ± 0.89%; 9.75 ± 9 

1.81%; p = 0.023) (Fig 4C and F) and MSC (0.39 ± 0.29%; 23.13 ± 3.54%; p = 0.0015) 10 

(Fig 4D and F), the rAAV2-retro-EF1α-EYFP labeled neuron rate was about 3 and 60 11 

times lower, respectively, despite the substantial reports that the DG is densely 12 

connected to the MSC [48, 49]. 13 

The DG is also reported to receive abundant contralateral hippocampus inputs [50, 14 

51]. To investigate the retrograde infection tropism in more detail, we also compared 15 

the labeled patterns in the contralateral hippocampus of the two viruses. The GFP-16 

positive neuronal proportion of each contralateral subregion was calculated by 17 

normalizing the whole contralateral hippocampus inputs. We found that the retrograde 18 

labeled patterns of the two viruses in the contralateral hippocampus subregions were 19 

significantly different. The rAAV2-retro-EF1α-EYFP labeled neurons were highly 20 

enriched in the contralateral DG (99.35 ± 0.41% for rAAV2-retro-EF1α-EYFP, 27.02 ± 21 

6.81% for SAD-RV(ΔG)-N2C(G)-EGFP; P = 0.00014), especially in the dorsal DG 22 

(Additional file 4: Figure S4A and C), but only scarcely distributed in the CA3, CA2 23 

and CA1. However, neurons labeled with the SAD-RV(ΔG)-N2C(G)-EGFP were 24 

mainly found in the contralateral CA3 (0.33 ± 0.20% for rAAV2-retro-EF1α-EYFP, 25 



 14 / 27 
 

60.51 ± 5.83% for SAD-RV(ΔG)-N2C(G)-EGFP; P = 0.00016), while also scattered in 1 

all of the DG, CA2 and CA1 regions (Additional file 4: Fig S4A and C). Since the 2 

rAAV2-retro-EF1α-EYFP labeled contralateral DG neurons were predominantly 3 

observed in the posterior ventral rather than the anterior dorsal part, we then analyzed 4 

the rostral-caudal axis distribution of the contralateral hippocampus GFP-positive 5 

neurons. We found that the rAAV2-retro-EF1α-EYFP mainly infected the caudal but 6 

not the rostral hippocampus. On the contrary, the SAD-RV(ΔG)-N2C(G)-EGFP mainly 7 

targeted neurons in the rostral hippocampus which is close to the injection site, while 8 

also slightly labeled every contralateral hippocampus part along the rostral-caudal axis 9 

(Additional file 4: Figure S4B and D). 10 

We also established that after the virus was injected into the VTA or the DG, 11 

neurons in several regions (ACB for the VTA, MSC and contralateral CA1, CA2 and 12 

CA3 for the DG) were resistant to retrograde infection with the rAAV2-retro-EF1α-13 

EYFP, while the SAD-RV(ΔG)-N2C(G)-EGFP could infect all of these brain regions. 14 

These results suggest that the retrograde infection biases between the rAAV2-retro-15 

EF1α-EYFP and SAD-RV(ΔG)-N2C(G)-EGFP are quite different. The rAAV2-retro-16 

EF1α-EYFP prefers to infect the cortical more than the subcortical neurons, while the 17 

SAD-RV(ΔG)-N2C(G)-EGFP showed a more unbiased retrograde infection tropism to 18 

neurons in different brain regions. 19 

SAD-RV(ΔG)-N2C(G) and rAAV2-retro exhibited different efficiencies to 20 

retrograde label long-projection inhibitory neurons 21 

The rAAV2-retro-EF1α-EYFP exhibited highly biased labeling patterns among 22 

different brain regions, that is, there was a strong preference to retrograde labeling in 23 

the long-projection cortical and hippocampal neurons, which  mainly consist of 24 

excitatory subtypes [52-54], and a strong tendency to avoid labeling the brain regions 25 
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where GABAergic neurons are dominant. Therefore, we speculated as to whether the 1 

different retrograde infection patterns of the rAAV2-retro-EF1α-EYFP and SAD-2 

RV(ΔG)-N2C(G)-EGFP were due to their tropisms toward different neuronal subtypes. 3 

To test this hypothesis, the VTA injected cortical samples were selected and 4 

immnohistochemically stained for CAMKII, a marker for excitatory neuron in the 5 

cortex [55, 56] (Fig 5A). The results evidence that, in cortical regions, the retrograde 6 

labeled neurons by both the rAAV2-retro-EF1α-EYFP and SAD-RV(ΔG)-N2C(G)-7 

EGFP were highly co-labeled with CAMKII and showed no significant difference, 8 

although the rAAV2-retro-EF1α-EYFP group exhibited a slightly higher co-labeled 9 

tendency (Fig 5B). Thus, we further investigated the retrograde infection properties of 10 

the two viruses for the long-projection inhibitory neurons. 11 

To achieve this, the rAAV2-retro-EF1α-mCherry and SAD-RV(ΔG)-N2C(G)-12 

mCherry were respectively injected into the VTA of GAD67-GFP mice (Table 1). We 13 

found that, in the cortexes, none of the two viruses labeled inhibitory neurons (Fig 5C). 14 

In the ACB where rAAV2-retro showed refractory infection, about half of the SAD-15 

RV(ΔG)-N2C(G)-mCherry labeled neurons were inhibitory (Fig 5D and H). Besides, 16 

in the other brain regions, including the ZI, LHA and PAG, the SAD-RV(ΔG)-N2C(G)-17 

mCherry labeled a significantly higher proportion of GAD67-GFP neurons compared 18 

with the rAAV2-retro-EF1α-EYFP (Fig 5E-G, and I-K). 19 

These results indicate that the rAAV2-retro has lower efficiency retrograde to 20 

infect long-projection inhibitory neurons compared with the SAD-RV(ΔG)-N2C(G), 21 

which may contribute to the different retrograde infection patterns of the two viruses. 22 

 23 

Discussion 24 

The RABV has been widely used to target long-projecting neuronal networks by either 25 
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the trans-monosynaptic spread or direct retrograde infection at the terminals. When 1 

used as a retrograde infection tracer, the RABV was largely limited by its low efficiency. 2 

Here, we found that the N2C glycoprotein derived from the RABV CVS strain was able 3 

to increase the in vivo retrograde infection efficiency of the SAD strain by more than 4 

tenfold. Furthermore, the pseudotyped virus SAD-RV(ΔG)-N2C(G) showed a 5 

comparable retrograde efficiency, but a more localized diffusion range and a broader 6 

tropism to different types and regions of long-projecting neuronal populations than the 7 

rAAV2-retro. 8 

SAD-RV(ΔG)-N2C(G) are highly efficient for retrograde tracing 9 

It has been reported that the CVS-RV(ΔG)-N2C(G) possesses higher neuronal 10 

invasiveness [57] and enhanced retrograde trans-synaptic spread [39] than the vaccine 11 

strain SAD-RV(ΔG)-B19(G). When pseudotyped with the N2C(G), SAD-RV(ΔG)-12 

N2C(G) also exhibits increased neuro-tropism in cell culture compared with the SAD-13 

RV(ΔG)-B19(G) [38]. However, a recent study [58] found that complementing SAD-14 

RV(ΔG) with N2C(G) showed less or similar retrograde trans-synaptic efficiency than 15 

with B19(G). Besides, the mechanisms between retrograde trans-synaptic spread and 16 

retrograde infection at axon terminals could be different. Thus, comparison of the 17 

retrograde infection efficiency between the SAD-RV(ΔG)-B19(G) and SAD-RV(ΔG)-18 

N2C(G) still remains obscure. Here, we addressed this conundrum in the present work. 19 

We found that after injecting the virus into the VTA, the in vivo retrograde infection 20 

efficiency of the SAD-RV(ΔG)-N2C(G) was much higher than that of the SAD-21 

RV(ΔG)-B19(G) (Fig 1D). Our results are consistent with findings reported in earlier 22 

studies. Except for the enhanced neuronal invasiveness, the retrograde labeled patterns 23 

between the SAD-RV(ΔG)-N2C(G) and SAD-RV(ΔG)-B19(G) were not significantly 24 

different (Additional file 2: Figure S2). A possible explanation for the similar labeled 25 
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patterns of the two viruses is that the N2C(G) might infect the long-projecting neurons 1 

via the same receptors but with much higher affinity, compared with B19(G).  2 

The rAAV2-retro is also an outstanding viral tool to efficiently target the long-3 

projecting neurons. In this study, we found that the retrograde infection efficiency of 4 

the SAD-RV(ΔG)-N2C(G) was no less than that of rAAV2-retro (Fig 1D and 4E), but 5 

had a more restricted diffusion range (Fig 2C,E and 4A). This may be due to the 6 

different virion sizes of the viruses [6, 24, 59, 60]. Although the retrograde labeled 7 

neuronal number could be further increased with the titer of rAAV2-retro, this could 8 

lead to a larger viral diffusion range, which subsequently raises the risk of non-specific 9 

infection of neurons upstream to the brain regions adjacent to the injected site. With the 10 

comparable retrograde efficiency to the rAAV2-retro, the more localized diffusion 11 

range of the SAD-RV(ΔG)-N2C(G) could make it more suitable to target the input 12 

neuronal circuit of small nuclei. 13 

The recently developed receptor complementation strategy for CAV-2 has also 14 

extensively improved its retrograde transport efficiency and overcome the limitation of 15 

biased tropism [32]. However, this strategy needs an additional viral injection prior to 16 

the CAV-2-Cre, which complicates animal surgery, and could be hard to access the 17 

difficult-to-inject areas or target large volume or even the whole-brain upstream tissues. 18 

The SAD-RV(ΔG)-N2C(G), for its intrinsic high efficiency and broad tropism, should 19 

be able to overcome these limitations. However, further studies analyzing the 20 

efficiencies of the CAV-2 and the SAD-RV(ΔG)-N2C(G) in different neuronal circuits 21 

should also be very valuable in guiding the applications of the these viral tools. 22 

The retrograde neuronal tropism biases of rAAV2-retro and SAD-RV(ΔG)-N2C(G) 23 

are rather different 24 

The present study showed that the rAAV2-retro and SAD-RV(ΔG)-N2C(G), when 25 
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injected either in VTA or DG, revealed different retrograde labeling patterns. Some 1 

brain regions, especially the striatum and basal forebrain, were largely resistant to the 2 

retrograde infection of the rAAV2-retro, but susceptible to SAD-RV(ΔG)-N2C(G) (Fig 3 

3B and 4D), showing that the SAD-RV(ΔG)-N2C(G) has a broader retrograde tropism 4 

to long-projecting neurons. 5 

Our experimental data on the selectivity of SAD-RV(ΔG)-N2C(G) and rAAV2-6 

retro toward the two most dominant neuron types, CAMKII+ and GAD67+, showed 7 

that few neurons labeled with rAAV2-retro are long-projecting GABAergic, while a 8 

significant percentage of the SAD-RV(ΔG)-N2C(G) labeled neurons (from 17 to 50 in 9 

the subcortical regions) is long-projecting GABAergic (Fig 5D-K). However, it should 10 

be noted that the majority of the long-projecting neurons in the cortex are excitatory 11 

[52, 53, 61] (Fig 5A and B). Therefore, the distinct retrograde infection preference of 12 

the two viruses over excitatory and inhibitory long projection neurons generate different 13 

input patterns for a given brain region. The VTA receives extensive subcortical neuronal 14 

innervations [62, 63], while the major inputs of the DG are from the cortical and 15 

hippocampal subregions [50, 51]. Indeed, the input patterns of either the VTA or the 16 

DG, revealed by the two viruses, are rather different (Fig 3D, E, 4F, Additional file 4: 17 

Figure S4C and D). The significantly different neuronal tropisms of these results 18 

suggest that when we interpret our tracing data, the viral tools should be considered 19 

carefully. In fact, RABV may also exhibit tropism biases in some cases [64]. Thus, the 20 

best selection of viral tools should depend on the specific circuit being studied. And the 21 

combined use of multiple viral tracers should get us closer to the ground truth. 22 

Our finding that the rAAV2-retro showed much higher efficiency to label the long-23 

projecting cortical and hippocampal excitatory neurons is partially consistent with 24 

previous reports, which compared the properties of the SAD-RV(ΔG)-B19(G) and 25 
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rAAV2-retro [37].  1 

Although we demonstrated that the SAD-RV(ΔG)-N2C(G) has high efficiency and 2 

broad tropism for retrograde labeling of neuronal circuits, further work is still required 3 

to overcome the viral cytotoxicity for achieving long term functional studies or 4 

transgenic expression. Fortunately, recently developed strategies which delete certain 5 

genes [35] or introduce self-inactivating vector [37] of the SAD-RV(ΔG) have 6 

successfully overcome the limitation. One might argue that CVS-RV(ΔG)-N2C(G) has 7 

decreased toxicity more than SAD-RV(ΔG)-N2C(G) and hence is superior. However, 8 

since the viral production is much easier for SAD-RV(ΔG) than for CVS-RV(ΔG), and 9 

these most powerful designs [35, 37] to reduce the toxicity of RABV to date are based 10 

on the SAD-RV(ΔG) vector, our introduction of the SAD-RV(ΔG)-N2C(G) and our 11 

ongoing research to integrate these systems could provide more easily accessible and 12 

promising retrograde tools for the community.  13 

Conclusion 14 

We have provided experimental evidence for a powerful viral tool, the N2C(G) 15 

enveloped SAD-RV(ΔG)-N2C(G), which has high retrograde infection efficiency and 16 

broad neuro-tropism to target the input neuronal circuits. The comparison of the 17 

infection efficiency and neuro-tropism of SAD-RV(ΔG)-N2C(G) and rAAV2-retro 18 

provide valuable information for the selection of these two viruses in individual 19 

research.  20 
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 11 

Table 12 

Table 1. Experimental parameters for retrograde tracing. 13 

Animal Number Nucleus Virus 

Dose 

(IFU/mL 

or 

vg/mL) 

Vol. 

(µl) 

Injection 

(Day) 

Perfusion 

(Day) 

C57BL/6 4 VTA SAD-RV(ΔG)-B19(G)-EGFP 5.00E+07 0.2 Day1 Day7 

C57BL/6 4 VTA SAD-RV(ΔG)-B19(G)-EGFP 5.00E+08 0.2 Day1 Day7 

C57BL/6 4 VTA SAD-RV(ΔG)-N2C(G)-EGFP 5.00E+07 0.2 Day1 Day7 

C57BL/6 4 VTA rAAV2-retro-Ef1α-EYFP 1.00E+13 0.2 Day1 Day21 

C57BL/6 4 

VTA(Right) rAAV2-retro-Ef1α-EYFP 1.00E+13 0.2 Day1 

Day21 
VTA(Left) 

SAD-RV(ΔG)-N2C(G)-

mCherry 1.10E+08 
0.2 

Day14 

C57BL/6 4 DG SAD-RV(ΔG)-N2C(G)-EGFP 5.00E+07 0.1 Day1 Day7 

C57BL/6 3 DG rAAV2-retro-Ef1α-EYFP 1.00E+13 0.1 Day1 Day21 

GAD67-

GFP 4 VTA 

SAD-RV(ΔG)-N2C(G)-

mCherry 1.10E+08 
0.2 

Day1 Day7 

GAD67-

GFP 3 VTA rAAV2-retro-Ef1α-mCherry 1.68E+13 
0.2 

Day1 Day21 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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 1 

 2 

Table 2. Abbreviations of brain areas 3 

Brain areas Abbreviations Brain areas Abbrevia

tions 

Somatomotor areas MO Bed nuclei of the stria terminalis BST 

Anterior cingulate area ACA Dorsomedial nucleus of the 

hypothalamus 

DMH 

Prelimbic area PL Posterior hypothalamic nucleus PH 

Somatosensory areas SS Ventromedial hypothalamic 

nucleus 

VMH 

Gustatory areas GU Lateral hypothalamic area LHA 

Auditory areas AUD Lateral preoptic area LPO 

Infralimbic area ILA Zona incerta ZI 

Orbital area ORB Ventral tegmental area VTA 

Agranular insular area AI Superior colliculus, motor related SCm 

Retrosplenial area RSP Periaqueductal gray PAG 

Hippocampal region HIP Substantia nigra, reticular part SNr 

Retrohippocampal region RHP Midbrain reticular nucleus MRN 

Field CA1 CA1 Pretectal region PRT 

Field CA2 CA2 Midbrain reticular nucleus, 

retrorubral area 

RR 

Field CA3 CA3 Midbrain raphe nuclei RAmb 

Dentate gyrus DG Substantia nigra, compact part SNc 

Caudoputamen CP Pedunculopontine nucleus PPN 

Nucleus accumbens ACB Parabrachial nucleus PB 

Olfactory tubercle OT Pontine reticular nucleus, caudal 

part 

PRNc 

Substantia innominata SI Pontine reticular nucleus PRNr 

Medial septal complex MSC Superior central nucleus raphe CS 

Habenular nucleus Habenular Cerebellar nuclei CBN 

Mammillary body MBO   

 4 

 5 

Figure legends  6 

Fig 1. The retrograde infection efficiency of SAD-RV(ΔG)-N2C(G)-EGFP is higher than that of SAD-RV(ΔG)-7 

B19(G)-EGFP. A: Schematic for the virion structures of SAD-RV(ΔG)-B19(G)-EGFP (top) and SAD-RV(ΔG)-8 

N2C(G)-EGFP (bottom). B: Schematic for the in vivo tracing study. Low dosage of CTB594 was respectively co-9 
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injected with low titer SAD-RV(ΔG)-B19(G)-EGFP (5E+07 IFU/mL, top), high titer SAD-RV(ΔG)-B19(G)-EGFP 1 

(5E+08 IFU/mL, middle) or SAD-RV(ΔG)-N2C(G)-EGFP (at a titer of 5E+07 IFU/mL, bottom) into the VTA in 2 

C57 mice. C: A large number of upstream brain regions of the VTA, such as the habenular nucleus (Habenular, left) 3 

and the midbrain raphe nuclei (RAmb, right), were retrograde labeled by SAD-RV(ΔG)-N2C(G)-EGFP (bottom) or 4 

SAD-RV(ΔG)-B19(G)-EGFP with different titers (top and middle). D: The whole brain retrograde infected neuronal 5 

numbers by low titer SAD-RV(ΔG)-B19(G)-EGFP (5E+07 IFU/mL), high titer SAD-RV(ΔG)-B19(G)-EGFP 6 

(5E+08 IFU/mL) and SAD-RV(ΔG)-N2C(G)-EGFP (5E+07 IFU/mL). Scale bar: 200 µm. n = 4 mice for each group, 7 

one-way ANOVA followed by LSD multiple comparison test, *p < 0.05, **p < 0.01, ***p < 0.001. n.s., no significant 8 

difference. The nuclei were stained in blue by DAPI.  9 

Fig 2. The comparison of retrograde infection efficiency and diffusion range between SAD-RV(ΔG)-N2C(G) and 10 

rAAV2-retro. A: Representative image illustrates the injection site of rAAV2-retro-EF1α-EYFP in the VTA. CTB594 11 

was co-injected with the virus to delineate the injection site. B: The whole brain retrograde infected neuronal 12 

numbers by SAD-RV(ΔG)-N2C(G)-EGFP (5E+07 IFU/mL) and rAAV2-retro-EF1α-EYFP (1E+13 IFU/mL). C-D: 13 

The lateral-medial (C) or dorsal-ventral (D) diffusion pattern of the rAAV2-retro-EF1α-EYFP (green dots and line) 14 

and SAD-RV(ΔG)-N2C(G)-EGFP (red dots and line) around injection sites. The signal percentages distributed along 15 

the lateral-medial or dorsal-ventral axis of all animals were fitted to the Gaussian curve. Wh/2 represents peak width 16 

at half-height. E-F: Statistic analysis of the lateral-medial (E) or dorsal-ventral (F) diffusions of rAAV2-retro-EF1α-17 

EYFP and SAD-RV(ΔG)-N2C(G)-EGFP. The Wh/2 of each animal (n = 4 mice for each virus) was calculated and 18 

compared between the two viral groups. T TEST. *p < 0.05, **p < 0.01, ***p < 0.001. n.s., no significant difference. 19 

Scale bar: 200 µm. 20 

Fig 3. The retrograde infection tropism biases of SAD-RV(ΔG)-N2C(G) and rAAV2-retro injected in the VTA. A-21 

C: Representative images show the different retrograde labeled neuron patterns with rAAV2-retro-EF1α-EYFP (top) 22 

or SAD-RV(ΔG)-N2C(G)-EGFP (bottom) in different brain regions, including the cortex (A), the striatum (B) and 23 

the LHA (C). D: Quantitative analysis of the input proportions of different nuclei labeled with SAD-RV(ΔG)-24 

N2C(G)-EGFP and rAAV2-retro-EF1α-EYFP. For most of the nuclei, the input proportions of the neurons labeled 25 

with the two viruses are dramatically different. E: The input proportions of intact brain areas pooled from the discrete 26 

nuclei in D. Compared with SAD-RV(ΔG)-N2C(G)-EGFP, rAAV2-retro-EF1α-EYFP preferentially infected the 27 

isocortex, but rarely infected the striatum, amygdala, palidum and hypothalamus. n = 4 mice for each group, Mann-28 

Whitney U test. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar: 200 µm. 29 

 30 

Fig 4. The different retrograde labeled patterns of SAD-RV(ΔG)-N2C(G)-EGFP and rAAV2-retro-EF1α-EYFP 31 

injected in the hippocampus. A: Coronal sections near the injection sites (indicated by the red signals of CTB594) 32 

in the DG by the two viruses (rAAV2-retro-EF1α-EYFP, top; SAD-RV(ΔG)-N2C(G)-EGFP, bottom). B-D: 33 

Representative images reveal that the retrograde labeled patterns with SAD-RV(ΔG)-N2C(G)-EGFP and rAAV2-34 
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retro-EF1α-EYFP are quite different in many brain regions, such as in the hippocampus (B), the MBO (C) and in the 1 

MSC (D). E: The whole brain retrograde infected neuronal numbers with SAD-RV(ΔG)-N2C(G)-EGFP and rAAV2-2 

retro-EF1α-EYFP. F: The input proportions of different areas. n = 3 mice for rAAV2-retro-EF1α-EYFP; n = 4 mice 3 

for SAD-RV(ΔG)-N2C(G)-EGFP. T-Test. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar: 50 µm for the magnified 4 

panels in B, 200 µm for panels A-D.  5 

Fig 5. rAAV2-retro and SAD-RV(ΔG)-N2C(G) exhibited different efficiencies in retrograde labeling of long-6 

projection inhibitory neurons. A: Representative cortical images display the colocalization (merged, left) of viral 7 

labeled neurons (green, middle) and immunofluorescent CAMKII staining (red, right). B: The CAMKII positive 8 

rates of GFP labeled neurons with SAD-RV(ΔG)-N2C(G)-EGFP and rAAV2-retro-EF1α-EYFP in the cortical 9 

regions. Mann-Whitney U test, n.s., no significant difference. C-G: Representative images indicate the colocalization 10 

of GAD67-GFP (green, GAD 67-GFP mice) and viral labeled neurons with the rAAV2-retro-EF1α-mCherry (red, 11 

top) or SAD-RV(ΔG)-N2C(G)-mCherry (red, bottom) in the Cortex (C), ACB (D), ZI (E), LHA (F) and PAG (G). 12 

H-K: Quantitative analysis of co-labeled rates of GAD67-GFP with viral labeled red neurons. The SAD-RV(ΔG)-13 

N2C(G)-mCherry labeled more GAD67-GFP positive neuronal rates than the rAAV2-retro-EF1α-mCherry in the 14 

ACB (H), ZI (I), LHA (J) and PAG (K). n = 3 mice for rAAV2-retro-EF1α-mCherry. n = 4 mice for SAD-RV(ΔG)-15 

N2C(G)-mCherry. T-Test. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar: 200 µm. 16 
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