
UWL REPOSITORY

repository.uwl.ac.uk

Schema theory based data engineering in gene expression programming for big

data analytics

Huang, Zhengwen, Li, Maozhen, Chousidis, Christos ORCID: https://orcid.org/0000-0003-3762-

8208, Mousavi, Ali and Jiang, Changjun (2017) Schema theory based data engineering in gene

expression programming for big data analytics. IEEE Transactions on Evolutionary Computation, 22

(5). pp. 792-804. ISSN 1089-778X

http://dx.doi.org/10.1109/TEVC.2017.2771445

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/4426/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 3.0

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Gene expression programming (GEP) is a data driven

evolutionary technique that well suits for correlation mining. Parallel

GEPs are proposed to speed up the evolution process using a cluster

of computers or a computer with multiple CPU cores. However, the

generation structure of chromosomes and the size of input data are

two issues that tend to be neglected when speeding up GEP in

evolution. To fill the research gap, this paper proposes three guiding

principles to elaborate the computation nature of GEP in evolution

based on an analysis of GEP schema theory. As a result, a novel data

engineered GEP is developed which follows closely the generation

structure of chromosomes in parallelization and considers the input

data size in segmentation. Experimental results on two data sets with

complementary features show that the data engineered GEP speeds up

the evolution process significantly without loss of accuracy in data

correlation mining. Based on the experimental tests, a computation

model of the data engineered GEP is further developed to demonstrate

its high scalability in dealing with potential big data using a large

number of CPU cores.

Index Terms — Gene expression programming, schema theory,

data engineering, big data analytics, parallelization and segmentation.

I. INTRODUCTION

ENE expression programming (GEP) [1] is a member of

Evolutionary Algorithms (EAs) [2] with a similar idea to

both Genetic Algorithms (GAs) [3] and Genetic Programming

(GP) [4]. GEP operates on a genotype-phenotype system to

handle the representation of a candidate solution. GEP

combines the linear structure of GA with the tree structure of

GP providing a structured and flexible mechanism in searching

for solutions.

GEP has been applied to many problems including

combinatorial optimizations [6], finite transducers [42],

classifications [7-10, 41], time series predictions [11-13] and

symbolic regressions [14-16]. GEP was also employed to

automatically generate a hyper-heuristic framework for

combinatorial optimization problems [43, 44].

Zhengwen Huang, Maozhen Li and Ali Mousavi are with the Department of

Electronic and Computer Engineering, Brunel University London, Uxbridge,

UB8 3PH, UK. Email: (zhengwen.huang, maozhen.li,
ali.mousavi)@brunel.ac.uk.

Maozhen Li is also associated with the Key Laboratory of Embedded

Systems and Service Computing, Ministry of Education, Tongji University,
Shanghai, 200092, China.

Christos Chousidis is with the School of Computing and Engineering, the
University of West London, W5 5RF, UK. Email:

christos.chousidis@uwl.ac.uk.

Changjun Jiang is with the Department of Computer Science and
Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.

Email: cjjiang @tongji.edu.cn.

We have previously applied GEP in particle physics [17-19]

to discriminate events from the background noisy signals. The

performance was further improved with a prefix notation [20]

to represent a candidate solution. In another work [39], we

applied GEP to mine the correlations of Hadoop [40]

parameters for big data analytics. GEP also has many

applications in power systems such as the short-term load

forecasting problem [21], and the static security problem [22].

The flexible structure of GEP together with its black-box

style in solution searching makes GEP an appealing analytic

approach to big data problems. However, the sheer size of big

data would put a heavy burden on GEP computation in

evolution. To speed up this process, a number of parallel GEP

algorithms have been proposed using a cluster of computers

[24, 26] or a single computer with multiple CPU cores [27].

Although the execution time of GEP decreases with an

increasing number of CPU processors, these parallel GEPs

suffer from two major limitations. On one hand, these parallel

GEPs simply distribute the computation of chromosomes across

a number of CPUs which breaks the generation structure of

GEP leading to inefficiency in evolution. For example, the work

presented in [26] assigns CPUs to process the chromosomes

simultaneously, but it does not guarantee that the chromosomes

of the same generation are assessed together in one iteration.

On the other hand, these GEPs have not considered the size of

an input data in parallelization leading to a scalability issue

when dealing with an ever-growing size of potential big data.

Therefore, the generation structure of chromosomes and the

size of input data are two issues that tend to be neglected when

speeding up the evolution process of GEP.

To fill the research gap, this paper presents a novel data

engineered GEP and makes four major contributions:

• It proposes three guiding principles to elaborate the

computation nature of GEP in evolution, which provides

a theoretical foundation for GEP parallelization and

segmentation. This is based on an analysis of our

previous work on GEP schema theory [23] which is also

highlighted by Zhong et al. in their work [38].

• Different from the existing GEP solutions, the data

engineered GEP follows closely the generation structure

of chromosomes leading to an efficient process in

evolution.

• It employs two segmentation schemes to further speed

up the evolution process. The cutting-in-sequence

scheme segments an input data set into a number of

overlapped data chunks with an aim to maintain the

accuracy level of GEP in processing segmented data.

Schema Theory Based Data Engineering in Gene

Expression Programming for Big Data Analytics

Zhengwen Huang, Maozhen Li, Christos Chousidis, Ali Mousavi and Changjun Jiang

G

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

The random selection scheme selects samples from an

input data set without overlapping and builds a single

data chunk for processing.

• A computation model of the data engineered GEP is

developed to demonstrate its high scalability in dealing

with potential big data.

The data engineered GEP is evaluated on two data sets with

complementary features. One data set has complex but loosely-

coupled data samples in that each sample has a large number of

input factors. The other data set has strongly correlated data

samples but each sample has a small number of input factors.

Experimental results show that the data engineered GEP

reduces the computation time significantly without loss of

accuracy in processing the segmented data chunks, which

makes it scalable in dealing with potential big data problems.

The rest of this paper is organized as follows. Section II gives

a review on related work. Section III proposes three guiding

principles to elaborate the computation process of GEP based

on an analysis of GEP schema theory. Section IV details the

implementation of the data engineered GEP from the aspects of

segmentation, overlapping and parallelization. Section V

evaluates the performance of the data engineered GEP. Section

VI develops a computation model to further demonstrate the

scalability of the data engineered GEP in dealing with potential

big data settings. Section VII concludes the paper and points out

some future work.

II. RELATED WORK

 The majority of existing works on data engineering in GEP

only focus on parallelization. This section reviews some of the

representative works in this aspect. It first reviews some works

on schema theory which provides a theoretical foundation for

GEP computation analysis.

A. Schema Theory

Schema theory is used to describe how EAs work under the

pressure of selection. A solution provided by EAs can be

considered as a point in a search space which contains all the

possible solutions to a problem. The schemata of a chromosome

containing such a solution can be considered as the coordinates

of the point in the search space. In order to find the location of

a good solution, a guided search space is provided by the

schemata of a chromosome during the evolutionary process [3].

The schemata are generated by linking a set of schema elements

based on the output of a fitness function. In this way, the search

space containing a good solution is explored point by point in

the search space and eventually the best solution can be

generated.

Schema theory provides a theoretical support for analysis of

EAs. By investigating the behaviors and the execution results

of the genetic operations, the evolutionary process of EAs can

be mathematically described with a set of formulas which are

used to represent the propagation of schemata.

Holland developed a GA schema theory [3] to explain the

evolutionary mechanism of GA. The theorem predicts the

number of strings matching a schema in the next generation

based on the genetic information of the current generation.

Following Holland’s GA schema theory, Koza [28] made the

first attempt to define the schema in GP as a sub-space

containing a set of sub-trees which share similar output

behaviors. The GP schema is a tree structure which provides a

deeper understanding of the input data. Poli and Langdon [30]

introduced a fixed-size-and-shape schema which provides more

restrictions on the shape of the S-expression program matching

the schema. S-expression is a data representation of nested lists.

In a later version, Poli and McPhee developed a Cartesian node

reference system [31-32] to enhance the positional connection

between the schema and the tree structure. Each position in the

tree structure is indexed with one point in the node reference

system. As a result, a more precise analysis of the propagation

of the tree fragments matching the schema can be obtained. All

these works try to provide a structured and flexible mechanism

for a clear understanding of the GP evolutionary process.

GEP is a relatively new EA algorithm. As a result, few

studies have been proposed on GEP schema theory. Cheng and

Xue [29] attempted to define GEP schema following closely the

work on GA schema theory. This work does not fully consider

GEP specific features such as the head-tail structure of a

chromosome, and the phenotype-genotype translation

mechanism.

Huang [23] proposed a GEP schema theory which takes into

account the GEP specific features in a systematic way. This

work defines a schema together with a set of corresponding

theorems to predict the propagation of a schema from one

generation to another taking into account the head-tail structure

of a chromosome. The phenotype-genotype separation is also

considered. The genotype is used to select a schema which can

be part of an entire chromosome, not only the part of the Open

Reading Frame [1]. The phenotype is used only to provide the

natural selection pressure through the fitness values of the

chromosomes containing a schema.

Recently, Zhong et al. [38] proposed a self-learning GEP in

which each chromosome is embedded with sub-functions that

can be deployed to construct the final solution. It is worth noting

that this work can be theoretically explained by the schema

theory proposed in our previous work [23]. The evolutionary

process is actually conducted by accumulating the genetic

information on schemata which can be computed

mathematically. As a result, the proposed self-learning GEP

provides a mechanism to maintain the structure of the

accumulated schemata which leads to an enhanced

performance.

B. Parallel GEP

There are a number of works in parallelization of GEP using

a cluster of computers. For example, Cai et al. [24] proposed a

Hybrid Parallel GEP combined with Simulated Annulling

(HPGEPSA) using MPI [25] to achieve parallelism. In

HPGEPSA, a new generation only can be generated when all

the participating computers finish their computations. As a

result, the computation improvement through parallelization is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

not significant especially when different types of CPU

processors are used with varied computing powers.

The Asynchronous Distribute Parallel GEP based on the

Estimation of Distribution Algorithm (ADPGEPEDA) further

optimizes the load of each participating processor [26] using

MPI. In ADPGEPEDA, each computer controls the

evolutionary process of a part of the population independently.

Since the computation capability of each participating computer

is considered, ADPGEPEDA performs better than HPGEPSA

in parallelization. However, the evolutionary process in

ADPGEPEDA does not guarantee the chromosomes of the

same generation would be assessed together in an evolutionary

iteration which might break the nature of the selection process

leading to an inefficient evolution.

Jiang et al. [27] presented a Parallel Niche GEP (PNGEPMP)

using a single computer with multiple CPU cores for

parallelization. Since there is no delay in computation among

the homogeneous CPU processors, PNGEPMP achieves an

impressive speedup in computation compared with

ADPGEPEDA. However, PNGEPMP only focuses on covering

more points in the search space by calculating the best fitness

value generated from part of a chromosome, which does not

represent the behavior of the whole chromosome. As a result,

the accumulation of genetic information is not properly

maintained in PNGEPMP.

Summarising, the aforementioned parallel implementations

only focus on parallelization of the computation of GEP, but do

not follow closely the generation nature of GEP leading to

inefficiency in evolution. Furthermore, to make a parallel GEP

scalable in dealing with potential big data, data engineering

techniques such as segmentation should also be considered.

III. GEP SCHEMA AND COMPUTATION

In this section, we present three guiding principles to

elaborate the computation nature of GEP. First we briefly

describe how the genotype is translated into the phenotype in

GEP and how the selection is conducted.

A. Genotype-Phenotype Translation

GEP combines a linear structured genotype chromosome

with a phenotype Expression Tree (ET) [1] as shown in Fig.1.

In this example the targeted problem has 4 input parameters (a,

b, c, d) and 3 mathematic function operators { ′ + ′ , ′ − ′ , ′ ∗
′ }. The chromosome has only one gene which is composed of

a head and a tail. The elements of the head are selected

randomly from both the input parameters and the mathematic

function operators. The elements of the tail are selected

randomly only from the input parameters.

The number of the elements of a gene is fixed which can be

defined by user. The relation between the length of the head and

the length of the tail can be calculated as

𝑇𝑎𝑖𝑙 = 𝐻𝑒𝑎𝑑 ∗ (𝑛— 1) + 1 (1)

 where n is the maximum number of arguments that a

function operator requires.

The chromosome combines the input parameters and

function operators during the evolutionary process. The ET is

used to express the correlations among the input parameters. In

this example, a candidate correlation among these parameters is

represented with a combination of the function operators, i.e.

(a + b ∗ ((b – c) ∗ a)). The translation from genotype to

phenotype in GEP is conducted in the following steps:

(1) The element in the chromosome containing the function of

+ is selected to build the root of ET.

(2) The input parameter a and the function * are selected to

be placed on Level_1 as the leaf nodes of the function of

+ in the ET.

(3) For the function of * in Level_1, another two elements

(input parameter b and function *) are selected to be

placed on Level_2 as the leaf nodes of the Level_1 function

of * in the ET.

(4) The translation process continues until the ET is fully filled

with the input parameters.

Fig.1. An example of translation from a chromosome to ET.

It is noted that not all the elements in the tail are involved in

the translation process which is a typical feature of GEP (i.e.

open reading frame [1]). Based on their fitness values,

chromosomes in GEP are selected proportionally in evolving

into the next generation.

B. GEP Computation Analysis

Following the GEP schema theory proposed in [23], the

computation time of GEP in evolution consists of two parts.

One part is related to the search space starting from a

chromosome of the initial generation to the best chromosome

of the last generation. The other part in computation is related

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

to the size of an input data set. The total execution time 𝑇 of a

GEP evolutionary process can be calculated as

𝑇 = (𝑇𝑒×𝑇𝑑)×𝑁𝐺 (2)

 where

• 𝑇𝑒 is the time to go through the search space in one

generation.

• 𝑇𝑑 is the time to process an input data set.

• 𝑁𝐺 is the number of generations.

The evolution of GEP is actually a process in which some

segments of a chromosome are found useful and linked together

to build the best chromosome. Considering the performance of

the chromosomes that have similar genetic characteristics in the

current generation, the schema theory [23] estimates the

number of the chromosomes with such characteristics in the

next generation. A schema is defined as a segment of a

chromosome and maintains a certain amount of genetic

information. In turn, a chromosome consists of a number of

schemata representing all the possible solutions in a search

space. The search space is created with the feature dimensions

of an input data set and a chromosome which provides a

structure to maintain the feature dimensions in the coordinate

space.

The search space will be traversed during the evolutionary

process to generate a number of schemata which are linked

within a chromosome. The genetic information which is learned

from the input data set is also accumulated by linking the

schemata. At the end of the evolutionary process, the best

chromosome which consists of the linked schemata is generated

to represent the final solution to a targeted problem.

Based on the above analysis of the schema theory, we now

propose three guiding principles to elaborate the computation

nature of GEP evolution.

Guiding Principle 1: To efficiently accumulate the genetic

information, the chromosomes of the same generation must be

processed together in one evolutionary iteration.

Supporting Arguments: As indicated in the GEP schema

theory, the evolutionary process is an accumulation of genetic

information which is maintained in a chromosome. Schema is a

segment of a chromosome which contains genetic information

useful for a solution. The evolutionary process that a schema is

propagated into the next generation can be represented by

𝐸[𝑀(𝐻, 𝑡 + 1)] = 𝑀×𝑃𝑅(𝐻, 𝑡)×𝑃𝐺𝑀(𝐻, 𝑡) (3)

where

• 𝐻 is a schema.

• 𝑡 is the number of generations.

• 𝑀 is the number of chromosomes in a generation.

• 𝑀(𝐻, 𝑡 + 1) is the number of chromosomes matching

the schema 𝐻 in the generation of 𝑡 + 1.

• 𝐸[𝑀(𝐻, 𝑡 + 1)] is an estimation of 𝑀(𝐻, 𝑡 + 1).

• 𝑃𝑅(𝐻, 𝑡) is the probability of a chromosome that

matches 𝐻 and is selected for Replication taking into

account all the chromosomes in the generation 𝑡.

• 𝑃𝐺𝑀(𝐻, 𝑡) is the probability that the schema 𝐻 is still

valid after the genetic modification process taking into

account all the chromosomes in the generation 𝑡.

• 𝑀×𝑃𝑅(𝐻, 𝑡)×𝑃𝐺𝑀(𝐻, 𝑡) is a theoretical number of

chromosomes matching the schema 𝐻 in the

generation of 𝑡 + 1.

The evolution progresses with an increasing number of

chromosomes that match the schema 𝐻 from one generation to

the next generation. 𝑃𝑅(𝐻, 𝑡) relies on the genetic operations

which are performed on the chromosomes. A genetic operation

is performed on all the chromosomes of the same generation

with an aim to maximize the exchange of genetic information

among these chromosomes. 𝑃𝑅(𝐻, 𝑡) can be calculated by

𝑃𝑅(𝐻, 𝑡) = 𝑀(𝐻, 𝑡)×
𝑓̅(𝐻,𝑡)

𝑀×𝑓(𝑡)
 (4)

where

• 𝑀(𝐻, 𝑡)is the number of the chromosomes matching

H in the generation of 𝑡.

• 𝑓(̅𝐻, 𝑡) is the average fitness value of the

chromosomes matching 𝐻 in the generation of 𝑡.

• 𝑓(̅𝑡) is the average fitness value of all the

chromosomes in the generation of 𝑡.

Let 𝑃𝑅
′(𝐻, 𝑡) represent the probability of a chromosome that

matches 𝐻 and is selected for Replication taking into account

only a group of the chromosomes in a generation. We have

𝑃𝑅
′(𝐻, 𝑡) = ∑ (𝑃𝑅𝑖

(𝐻, 𝑡)×
𝑚𝑖

𝑀
)

𝑛

𝑖=1

= ∑ (𝑚𝑖(𝐻, 𝑡)×
𝑓�̅�(𝐻, 𝑡)

𝑚𝑖×𝑓𝑖(𝑡)
×

𝑚𝑖

𝑀
)

𝑛

𝑖=1

= ∑ (
𝐹𝑖(𝐻, 𝑡)

𝐹𝑖(𝑡)
×

𝑚𝑖

𝑀
)

𝑛

𝑖=1

≤ ∑
𝐹𝑖(𝐻, 𝑡)

𝐹𝑖(𝑡)
×

𝑀

𝑀

𝑛

𝑖=1

= ∑
𝐹𝑖(𝐻, 𝑡)

𝐹𝑖(𝑡)

𝑛

𝑖=1

≤ 𝑀(𝐻, 𝑡)×
𝑓(̅𝐻, 𝑡)

𝑀×𝑓(𝑡)

 (5)

where

• 𝑃𝑅𝑖
(𝐻, 𝑡) is the probability of a chromosome matching

𝐻 that is selected from the 𝑖𝑡ℎ group of the

chromosomes in the generation of 𝑡.

• 𝑛 is the number of groups of the chromosomes in the

generation of 𝑡.

• 𝑚𝑖 is the number of chromosomes in the 𝑖𝑡ℎ group.

• 𝐹𝑖(𝐻, 𝑡) is the sum of the fitness values of the

chromosomes matching 𝐻 in the 𝑖𝑡ℎ group of the

generation of 𝑡.

• 𝐹𝑖(𝑡) is the sum of the fitness values of all the

chromosomes in the 𝑖𝑡ℎ group of the generation of 𝑡.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Considering (4) and (5), we have

 𝑃𝑅
′(𝐻, 𝑡) ≤ 𝑃𝑅(𝐻, 𝑡) (6)

We denote 𝑃𝐺𝑀
′(𝐻, 𝑡) as the probability that the schema 𝐻 is

still valid after the genetic modification process considering

only a group of the chromosomes in a generation. Following the

deduction process of (5), we have

𝑃𝐺𝑀
′(𝐻, 𝑡) ≤ 𝑃𝐺𝑀(𝐻, 𝑡) (7)

Let 𝐸[𝑀(𝐻, 𝑡 + 1)]′ represent an estimation of the number

of chromosomes that match the schema 𝐻 considering only a

group of chromosomes in the generation of 𝑡. Based on (6) and

(7), we have

𝐸[𝑀[𝐻, 𝑡 + 1]] ≥ 𝐸[𝑀[𝐻, 𝑡 + 1]]
′
 (8)

which indicates that a group of chromosomes matching

schema 𝐻 in a generation would lead to an evolutionary

progress not faster than the case when all the chromosomes in

the same generation are processed together.

Guiding Principle 2: A smaller size of an input data set leads

to a faster evolutionary process of GEP.

Supporting Argument: The size of an input data set has an

impact on the evolutionary progress of GEP. As indicated in

(2), the time in processing an input data set (i.e. 𝑇𝑑) depends on

the size of the input data which can be computed as

𝑇𝑑 = ∑ (∑ (𝑇𝑒𝑖
×𝑁𝑑)

𝑁𝑒
𝑖=1)

𝑗

𝐺
𝑗=1 (9)

where

• 𝑁𝑒 is the number of elements in a chromosome.

• 𝐺 is the number of chromosomes in the current

generation.

• 𝑇𝑒𝑖
 is the time needed to process the 𝑖𝑡ℎ element of a

chromosome corresponding to a data point in the input

data set.

• 𝑁𝑑 is the number of data points in the input data set.

We denote 𝑇𝑑
′ as the execution time to process a data chunk

which is smaller than the original input data set. 𝑇𝑑
′ can be

computed as

𝑇𝑑
′ = ∑ (∑ (𝑇𝑒𝑖

×𝑁𝑑
′)

𝑁𝑒
𝑖=1)

𝑗

𝐺
𝑗=1 (10)

where 𝑁𝑑
′ is the number of data points in a data chunk.

Based on (9) and (10), the execution time difference between

the original input data set and a segmented data chunk can be

computed as

 𝑇𝑑 − 𝑇𝑑
′ = ∑ (∑(𝑇𝑒𝑖

×𝑁𝑑)

𝑁𝑒

𝑖=1

)

𝑗

𝐺

𝑗=1

− ∑ (∑(𝑇𝑒𝑖
×𝑁𝑑

′)

𝑁𝑒

𝑖=1

)

𝑗

𝐺

𝑗=1

 = ∑ (∑ ((𝑇𝑒𝑖
×𝑁𝑑) − (𝑇𝑒𝑖

×𝑁𝑑
′))

𝑁𝑒

𝑖=1

)

𝑗

𝐺

𝑗=1

= ∑ (∑ (𝑇𝑒𝑖
× (𝑁𝑑 − 𝑁𝑑

′))

𝑁𝑒

𝑖=1

)

𝑗

> 0

𝐺

𝑗=1

 (11)

Guiding Principle 3: To achieve a fair selection of the

chromosomes, an input data set must be segmented into equally

sized chunks.

Supporting Argument: The evolutionary process

progresses with an increasing number of chromosomes

matching the schema 𝐻 in each generation.

Let

• 𝐹 be the fitness function representing the performance

of a chromosome in a generation.

• 𝑑𝑖 be the size of the 𝑖𝑡ℎ data chunk.

• 𝑐 be a chromosome.

• 𝑛 be the number of chromosomes matching a schema

𝐻.

• 𝐺 is the number of chromosomes in the current

generation.

Considering (5), it can be observed that 𝑃𝑅(𝐻, 𝑡) depends on

both 𝑓(̅𝐻, 𝑡) and 𝑓(𝑡) which can be computed by

𝑓(̅𝐻, 𝑡) =
∑ 𝐹(𝑐, 𝑑𝑖)𝑛

𝑖=0

𝑛
 (12)

𝑓(𝑡) =
∑ 𝐹(𝑐, 𝑑𝑖)𝐺

𝑖=0

𝐺
 (13)

As a result, the probability that a chromosome is selected for

evolution depends on the size of the data chunk that the

chromosome processes. To ensure a fair selection, each

chromosome is processed with data chunks of the same size

which leads to an efficient evolution.

IV. DATA ENGINEERING IN GEP

Based on the proposed three guiding principles in Section III,

we present a data engineered GEP to speed up computation in

evolution.

A. Segmentation

Segmentation is employed to segment the original input data

set into a number of smaller data chunks of an equal size. The

size of a data chunk is determined by a pre-defined

segmentation ratio. A data chunk consists of a number of data

samples. Two segmentation approaches are employed which

are random selection and cutting in sequence. Following the

approach presented in [33] which provides a good sampling

performance in data coverage, random selection is developed to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

select data samples from the original input data set and generate

a data chunk. Each chromosome in a generation is processed

with the same data chunk during the evolution of GEP. Cutting

in sequence is implemented to cut the original input data set into

a number of data chunks of an equal size in sequence. The order

of the data samples in the data chunks remains the same as they

appear in the original data set. While random selection targets

at data samples without a strong correlation, the cutting in

sequence segmentation scheme considers the correlations

among the data samples of a data chunk.

B. Overlapping

 While segmentation reduces the computation complexity of

GEP, processing individual data chunks instead of the whole

data set normally degrades the accuracy level of GEP [1]. This

is especially true when the data samples have strong

correlations. To minimize the accuracy degradation of GEP in

data segmentation, an overlapping scheme is developed which

takes into account the correlations among the data samples.

Algorithm 1 presents the overlapping scheme implemented in

the data engineered GEP.

Input: two data chunks (A, B) without overlapping;

Output: two overlapped data chunks (A, B);

1: Set an overlapping ratio;

2: Calculate the number of samples to be overlapped;

3: FOR x=1 TO number of samples DO

4: Take a sample from the overlapped partition in data chunk A;

5: Overwrite the sample in the overlapped partition of data chunk B;

6: x++;

7: ENDFOR

8: RETURN data chunks A and B;

Algorithm 1: Overlapping implementation.

C. GEP Implementation

Considering segmentation and overlapping, the data

engineered GEP is implemented as shown in Algorithm 2. The

GEP takes an input data set, and generates a mathematical

expression which represents the correlations of the input data

parameters. The fitness evaluator of Line 9 assesses the

performance of each chromosome in a generation following the

classical fitness function proposed in [1]. This fitness evaluator

has two versions, one is designed for the random selection

segmentation scheme without overlapping, whereas the other is

designed for the cutting in sequence segmentation scheme with

overlapping. In the case of random selection, the quality of a

chromosome is assessed considering the best local fitness value.

However, the assessment in the case of cutting in sequence

follows the way as shown in Algorithm 3. In this case, the

quality of a chromosome is assessed based on its global fitness

value which is an average of the local fitness values of the

chromosome when processing all the data chunks as shown in

Lines 6-12. This helps prevent the GEP from trapping in a local

optimum.

Input: A data set;

Output: A mathematical expression;

1: Segment the input data set into N data chunks

2: Generate N overlapped data chunks

3: Initialize the first generation of the population with more than N

 chromosomes;

4: best_chromosome = chromosome(1);

5: best_fitness_value = 0;

6: WHILE i< termination generation number DO

7: FOR x=1 TO size of the current population DO

8: Translate chromosome(x) into an expression tree(x);

9: global_fitness_value(x) =fitness_evaluator(expression_tree(x), N

 data_chunks);

10: IF global_fitness_value(x)=the number of samples in

 data_chunk(x) THEN

11: best_chromosome = chromosome(x) GOTO 21;

12: ELSE IF global_fitness_value(x) > best_fitness_value THEN

13: best_chromosome = chromosome(x);

14: best_fitness_value = global_fitness_value(x);

15: ENDIF

16: x++;

17: ENDFOR

18: Generate the population of the next generation;

19: i++;

20: ENDWHILE

21: RETURN best_chromosome;

Algorithm 2: GEP implementation.

Input: N data chunks and an expression_tree(x);

Output: The fitness value of a given chromosome;

1: data_chunk_no = x mod N;

2: current_data_chunk = data_chunk(data_chunk_no);

3: local_fitness_value = fitness(expression(x), current_data_chunk);

4: fitness_value = local_fitness_value;

5: IF local_fitness_value > best_fitness_value THEN

6: FOR y=1 TO the number of N DO

7: current_data_chunk = data_chunk(y);

8: local_fitness_value=fitness(expression(x), current_data_chunk);

9: accumulation = accumulation + local_fitness_value;

10: ENDFOR

11: average_fitness_value = accumulation / N;

12: fitness_value = average_fitness_value;

13: ENDIF

14: RETURN fitness_value;

Algorithm 3: Fitness evaluator.

D. GEP Parallelization

The data engineered GEP presented in Section III-C is further

parallelized with an aim to speed up the computation process

when dealing with potential big data. The parallel GEP

maintains the generation structure in such a way that it

processes the chromosomes on a generation basis using a

number of CPU cores simultaneously of which each CPU core

has 2 threads. The multi-threaded OpenMP [36] is employed in

the parallelization of the GEP calculating the fitness values of

the chromosomes of a generation in parallel as shown in

Algorithm 4.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Input: m CPU-threads, a population of chromosomes, N data chunks;

Output: the fitness values of chromosome in a population;

1: remain_chromosome= size of the current population;

2: WHILE remain_chromosome>0 DO

3: FOR y=1 TO the number of m DO

4: index= remain_chromosome;

5: Assign CPU-Thread(y, chromosome (index)) //parallel execution

6: {

7: Translate chromosome(index) into an expression tree(index);

8: fitnese_value=fitness_evaluator(expression_tree(index), N

 data_chunks);

9: global_fitnese_value = fitness_value;

10: }

11: remain_chromosome= remain_chromosome - 1;

12: ENDFOR

13: ENDWHILE

14: RETURN global_fitnese_value;

Algorithm 4: GEP parallelization.

V. PERFORMANCE EVALUATION

To evaluate the performance of the data engineered GEP, a

number of experiments were conducted. This section analyzes

the impact of segmentation, overlapping and parallelization on

the performance of the GEP respectively. First it introduces the

two data sets employed in the evaluation.

A. Data Sets

Two data sets were evaluated in the experimental tests which

are detailed below.

Power system data set. The total data set contains 9568 data

points (measurements) collected from a Combined Cycle Power

Plant over 6 years [34, 35]. It consists of 5000 measurements

for training and 4568 measurements for testing. Following our

previous work presented in [39], GEP generates a mathematical

function which represents the correlations of the power related

environmental factors for production prediction of the power

plant.

Particle physics data set. This data set [17, 18, 19] contains

10,000 samples of events of which the first 5000 samples were

used for training and the rest were used for testing. A sample

can be classified into an event signal or a background noise.

Each sample has 8 input factors. Similar to the processing on

the power system data set, the data engineered GEP also

generates a mathematical function representing the correlations

of the input factors which is used for classification.

It is worth noting that the use of two data sets in the

evaluation has some considerations. On one hand, the time

serial power system data set is not complex in that each data

sample has a small number of factors with simple mathematical

dependencies. However, the power data samples have a strong

correlation among them. On the other hand, the particle physics

data set is complex due to the large size of input factors of a

data sample together with the mathematical or logical

dependencies among these factors. Different from the power

data set, the samples in the particle physics data set are not

highly correlated. As a result, these two data sets with

complementary features were selected for evaluating the

performance of the data engineered GEP.

B. GEP Parameter Settings

The settings of data engineered GEP are listed in Table 1.

The parameters were set using the classical values used for a

traditional GEP.

Table 1: GEP parameter settings.

Parameters Values

Population size 100

No. of genes in a

chromosome

1

No. of generations Physics data 20000

Power system data 10000

Genetic

modifications of

GEP

one-point recombination

rate

30%

two-point

recombination rate

30%

insertion sequence

transposition rate

10%

inversion rate 10%

mutation rate 0.44%

One gene was employed for each chromosome to avoid the

use of the connection function which might lead to an

inefficient chromosome structure [1]. Considering the

complexity of the two data sets, we set 20,000 generations for

the physics data and 10,000 generations for the power data.

To evaluate the performance of the data engineered GEP, an

Intel Xenon Server was configured with two Intel E5-2697 V2

CPU processors at 2.7GHz running Linux Ubuntu version

14.04. Each of the two processors has 12 CPU cores and

supports 24 threads with a shared memory space of 64GB. We

conducted 10 runs for each test in the evaluation and observed

that the execution times of the 10 runs were highly stable. For

example, Table 2 shows the coefficient of variation values of 9

tests on the two data sets which are in the range between 2.2%

and 10.8%. As a result, an average value of 10 runs was taken

for each test.

Table 2: Coefficient of variation values (%).
Number of CPU

threads
1 2 3 4 8 12 16 24 48

Particle physics data 4.4 3.7 3.7 2.8 8.6 5.4 4.6 2.2 5.4

Power system data 10.8 10.5 8.3 9.6 8.8 7.8 6.2 6.9 8.3

C. Overlapping

A number of tests were conducted to evaluate the

performance of the GEP with the cutting in sequence

overlapping scheme from the aspects of both accuracy and

execution time. Fig.2 and Fig.3 show the results of the GEP on

the two data sets with a segmentation ratio of 10%.

From Fig.2 and Fig.3 it can be observed that accuracy level

of the GEP goes up with an increasing overlapping ratio on the

two data sets but at the cost of a higher execution time in

computation. The overlapping ratios of 10%, 40%, 50% and

80% were evaluated with a consideration that a low or high

overlapping ratio would not balance well the trade-off between

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

the accuracy gain and execution time incurred. That was the

reason why 50% was selected as the best overlapping ratio.

94.274

94.442

94.68
94.712

1534.86

1650.04

1854.65

2336.22

0 10 40 50 80

94.0

94.2

94.4

94.6

94.8

95.0

Overlap rat io (%)

A
cc

u
ra

cy
 (

%
)

1400

1600

1800

2000

2200

2400
 Accuracy (%)

 Execution time(s)

E

xe
c

ut
io

n
 ti

m
e(

s)

Fig.2. The impact of overlapping on particle physics data.

89.652

97.835

99.057 99.186

942.46

1061.08

1194.5

1720.06

0 10 40 50 80

88

90

92

94

96

98

100

Overlap rat io (%)

A
cc

u
ra

c
y

(%
)

600

800

1000

1200

1400

1600

1800

2000

 Accuracy (%)

 Execution time(s)

E

xe
cu

tio
n

 t
im

e(
s

)

Fig.3. The impact of overlapping on power system data.

D. Segmentation

 The segmentation ratio determines the size of a data chunk

that is assigned to each chromosome. Three segmentation ratios

(i.e. 50%, 10% and 5%) were tested in the evaluation. Fig.4

shows the impacts of the segmentation ratios on the execution

time of the data engineered GEP on the two data sets

respectively.

Although the execution time of GEP decreases when the

segmentation ratio goes down, a small segmentation ratio might

lead to a low accuracy level in data processing. For example,

when the segmentation ratio is 10%, the GEP produces an

accuracy of 94.68% on the particle physics data and 99.06% on

the power system data respectively. However, the case of using

a segmentation ratio of 5% generates 93.942% on the particle

physics data and 96.81% on the power system data in term of

accuracy. As a result, a segmentation ratio of 10% was selected

in the evaluation.

E. Parallelization

To evaluate the performance of the data engineered GEP in

parallelization (denoted as P-GEP), we implemented an

existing parallel GEP work (i.e. NICHE) [27] for comparison

purpose. The number of CPU threads was varied from 1 to 48

in the tests. Two versions of the P-GEP were implemented. The

P-GEP-overlap adopts the cutting in sequence segmentation

scheme with overlapping whereas the P-GEP-random adopts

the random segmentation scheme without overlapping.

5 10 50 100

0

2000

4000

6000

8000

10000

12000

14000

E
xe

cu
tio

n
 t
im

e
 (

s)

Segmentation ratio (%)

 Patical Physics Data

 Power System Data

Fig.4. The impact of segmentation on the two data sets.

It can be observed from Fig.5 and Fig.6 that the execution

time of the P-GEP in processing both the particle physics data

and the power system data decreases with an increasing number

of CPU threads. The two versions of the P-GEP are

significantly faster than the NICHE work. This is mainly due to

the fact that P-GEP follows closely the generation structure of

GEP leading to an efficient evolution. In addition, processing

segmented data chunks further speeds up the computation. P-

GEP-random is even faster than P-GEP-overlap because the

less computation overhead incurred in accessing the multiple

data chunks. It is worth noting that the execution time of the P-

GEP in processing small data chunks does not decrease

significantly when the number of CPU threads increases which

reflects the fact that parallelization better suits big data

processing which will be further discussed in Section VI.

1 2 3 4 8 12 16 24 48

0

2000

4000

6000

8000

10000

12000

14000

E
xe

cu
tio

n
tim

e
(s

)

Number of CPU threads

 NICHE

 P-GEP_random

 P-GEP_overlap

Fig.5. The computation of the P-GEP on particle physics data.

1 2 3 4 8 12 16 24 48

0

1000

2000

3000

4000

5000

6000

7000

E
xe

cu
tio

n
tim

e
(s

)

Number of CPU threads

 NICHE

 P-GEP_random

 P-GEP_overlap

Fig.6. The computation of the P-GEP on power system data.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Fig.7 and Fig.8 show the accuracy of P-GEP in comparison

with the NICHE work in processing the two data sets. The

accuracy of P-GEP-overlap is similar to that of NICHE in all

the tests. On average, P-GEP-overlap produces an accuracy of

94.57% on the particle physics data and 96.26% on the power

system data whereas NICHE produces an accuracy of 94.62%

and 94.83% respectively. It is worth noting that P-GEP-overlap

is more accurate than P-GEP-random on the power system data

due to the fact that overlapping well suits data sets such as the

power system data with a strong correlation among data

samples. The P-GEP-random produces the worst level of

accuracy due to its random selection of data chunks without

overlapping.

Fig.7. The accuracy of the P-GEP on particle physics data.

Fig.8. The accuracy of the P-GEP on power system data.

Fig.9 and Fig.10 further show that parallelization better suits

for processing potential big data. It can be observed from Fig.9

that the execution time of P-GEP-overlap using a segmentation

ratio of 50% decreases significantly when the number of CPU

threads increases. However, P-GEP-overlap does not produce

much difference in processing the particle physics data using a

segmentation of 10% and 5% respectively. In the case of

processing power system data as shown in Fig.10, the execution

time of the parallel P-GEP-overlap using a segmentation ratio

of 5% is even slower than the case of using a segmentation ratio

of 10% when the numbers of CPU threads are 24 and 48

respectively. This is because the segmented power system data

chunks are small in volume which leads to a higher overhead in

parallelization than the speedup achieved in computation.

1 2 3 4 8 12 16 24 48

1000

2000

3000

4000

5000

6000

E
xe

cu
tio

n
tim

e
(s

)

Number of CPU threads

 Partical_Physcis_Segmentation_Ratio (50%)

 Partical_Physcis_Segmentation_Ratio (10%)

 Partical_Physcis_Segmentation_Ratio (5%)

Fig.9. The impact of segmentation ratio on the execution time of P-

GEP-overlap in processing particle physics data.

1 2 3 4 8 12 16 24 48

500

1000

1500

2000

2500

3000

3500

4000

E
xe

cu
tio

n
tim

e
(s

)

Number of CPU threads

 Power_System_Segmentation_Ratio (50%)

 Power_System_Segmentation_Ratio (10%)

 Power_System_Segmentation_Ratio (5%)

Fig.10. The impact of segmentation ratio on the execution time of the

P-GEP-overlap in processing power system data.

F. Statistical Analysis

 To further compare the performance of the data engineered

GEP with that of the NICHE work, we employed 48 CPU

threads and conducted 50 runs in total on the two data sets

respectively. The execution times in running the two algorithms

follow a normal distribution as can be observed from Fig.11.

3100 3200 3300 3400 3500 3600
0

2

4

6

8

10

12

14

16

18

20

22

24

C
o
u
n
ts

NICHE execution time on physics data(s)

1400 1450 1500 1550 1600 1650 1700 1750 1800 1850
0

2

4

6

8

10

12

14

16

18

20

C
o
u
n
ts

NICHE execution time on power data(s)

300 350 400 450 500 550 600 650 700 750
0

2

4

6

8

10

12

14

16

18

20

C
o
u
n
ts

P-GEP execution time on physics data(s)

500 600 700 800 900 1000 1100 1200 1300
0

2

4

6

8

10

12

14

16

18

20

C
o
u
n
ts

P-GEP execution time on power data(s)

Fig.11. The distributions of the execution times of the P-GEP and

NICHE in processing the two data sets.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

We further performed normality test on the execution times of

the two algorithms using the Shaprio-Wilk test [46] which

handles well with a small number of data samples. The W values

of the Shaprio-Wilk tests as shown in Table 3 confirm the

observed normal distributions as shown in Fig.11.

 Table 3: The results of Shapiro-Wilk test.

Samples W values

NICHE (physics data) 0.920

NICHE (power data) 0.958

P-GEP (physics data) 0.988

P-GEP (power data) 0.957

Therefore, we employed t-test [45] to compare P-GEP with

NICHE on the execution times which follow a normal

distribution and the comparison results are shown in Table 4. It

can be observed that the data engineered GEP with overlapping

is faster than NICHE on both data sets at a significance level

higher than 99.9%. We further observe that the accuracy of the

data engineered GEP is slightly higher and more stable than that

of NICHE. This is mainly due to the fact that the data

engineered GEP considers the global fitness of chromosomes

rather than their local values.

Table 4: The results of t-test.
 Execution Time (s) Accuracy (%)

mean

t-value significance

level (%)

mean

standard

deviation

NICHE

(physics data)
3326.74

108.5

99.99

94.49 0.622

P-GEP (physics

data) 906.69 94.51 0.670

NICHE (power

data)
1625.99

4.506

99.99

96.65 8.685

P-GEP

(power data) 515.47 96.81 3.860

VI. GEP COMPUTATION SCALABILITY ANALYSIS

 To further investigate the computation scalability of the data

engineered GEP in dealing with potential big data using a large

number of CPU threads, we developed its computation model

based on the experimental results presented in Section V. In this

section, we present the computation model and analyze the

computation scalability of the data engineered GEP.

A. GEP Computation Model

Following our previous work [39] we developed a

computation model of the data engineered GEP on the two data

sets respectively, which represents the correlations between the

input parameters (number of CPU threads 𝑥0 , data size 𝑥1 ,

segmentation ratio 𝑥2) and the output (execution time).

The computation model of the data engineered GEP for the

particle physics data set can be represented by

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 =

[
−49.6019773651

𝑆𝑖𝑛(𝑥0)
∗ 𝑆𝑖𝑛(𝑥1)] + 2 ∗ (

𝑆𝑞𝑢𝑎𝑟𝑒(𝑥0)

𝑆𝑞𝑟𝑡(𝑥1)
) + 𝑆𝑞𝑢𝑎𝑟𝑒(25.013766624)

+𝑆𝑞𝑟𝑡 (
𝑃𝑜𝑤𝑒𝑟(20.9463112056,4)

𝑆𝑞𝑟𝑡(𝑥1)
)

(14)

This is mined from the experimental results obtained using

both 5% and 50% segmentation ratios on the physics data.

These two ratios generated a large gap between the two result

sets which leads to a highly accurate computation model in

dealing with data samples with a large number of factors.

For the power system data, we employed the experimental

results obtained using both 5% and 10% segmentation ratios to

mine the computation model of data engineered GEP which can

be represented by

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 =

𝑃𝑜𝑤𝑒𝑟(𝑆𝑞𝑟𝑡(𝑥1 − 𝑇𝐴𝑁(𝑥2)), 3) + ((
𝑥0−𝑥1

𝑆𝑞𝑟𝑡(𝑥0)
) ∗ (𝑥0 − 𝑥2)) +

𝐶𝑜𝑠(𝐿𝑜𝑔(𝑥1)) ∗ (𝑆𝑞𝑢𝑎𝑟𝑒(𝑥0)) +𝐶𝑜𝑠(𝑃𝑜𝑤𝑒𝑟(𝑥1, −401043.774094)) ∗

[𝑆𝑞𝑢𝑎𝑟𝑒(𝑥0)] − (𝑇𝑎𝑛 (𝐿𝑜𝑔 [𝑆𝑞𝑢𝑎𝑟𝑒 (
80595.3126401

𝑥1
)])

+𝑆𝑞𝑢𝑎𝑟𝑒(𝐿𝑜𝑔(𝑆𝑞𝑢𝑎𝑟𝑒 [
−409114.183858

𝑥1
])

+𝑆𝑞𝑢𝑎𝑟𝑒 (𝐿𝑜𝑔 (𝑆𝑞𝑢𝑎𝑟𝑒 [
−22415.3897725

𝑥1

])) ∗
𝑥2

100
∗

𝑥0

80.6

∗ (𝑃𝑜𝑤𝑒𝑟 (1 + 0.6 ∗
1

𝑥0

, 𝑥0 − 1) − 𝑃𝑜𝑤𝑒𝑟(1.0093, 𝑥0))

 (15)

The use of these two ratios on the power system data with a

small gap aimed to reflect the fine-grained behaviors of the

computation model in dealing with data samples with a small

number of factors.

B. Validation of GEP Computation Model

We employed the two data sets of the original sizes to

generate the computation model to estimate the execution times

of the data engineered GEP running on a varied number of CPU

threads. To validate the computation model of the data

engineered GEP, we compared the estimated values with the

actual execution times in processing the two data sets but with

doubled sizes. Fig.12 and Fig.13 show the performance of the

computation model on the two data sets respectively using a

segmentation ratio of 50%.

0 10 20 30 40 50

3000

4000

5000

6000

7000

8000

9000

10000

11000

E
xe

cu
tio

n
tim

e
(s

)

Number of CPU threads

 Experimental results(s)

 Theoretical results

Fig.12. Computation model validation on particle physics data.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

0 10 20 30 40 50

1500

2000

2500

3000

3500

4000

4500

5000

5500

E
xe

cu
tio

n
tim

e
(s

)

Number of CPU threads

 Experimental results

 Theoretical results

Fig.13. Computation model validation on power system data.

The accuracy of the computation model can be computed by

Accuracy =100% − (
|𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡−𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡|

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡
) ×100% (16)

Table 4 and Table 5 show that the computation model

achieves an average accuracy level of 96.05% on the particle

physics data and 95.14% on the power system data respectively.

Table 4. Computation model validation on particle physics data.
Number

of threads
4 8 12 16 24 32 40 48

Accuracy

level (%)
88.88 93.87 97.17 97.12 98.41 97.46 95.80 99.66

Average

(%)
96.05

Table 5. Computation model validation on power system data.
Number

of threads
4 8 12 16 24 32 40 48

Accuracy

level (%) 99.40 91.84 91.93 93.44 94.02 98.42 94.31 94.78

Average

(%)
95.14

C. Computation Scalability

We applied the computation model to evaluate the scalability

of the data engineered GEP in dealing with big data scenarios.

Fig.14 and Fig.15 show that for the two data sets, the execution

time of the data engineered GEP increases slowly with an

increasing size of input data up to 100TB, using 10,000 CPU

threads.

0 10 20 30 40 50 60 70 80 90 100 110

0.00E+000

1.00E+020

2.00E+020

3.00E+020

4.00E+020

5.00E+020

6.00E+020

7.00E+020

8.00E+020

9.00E+020

1.00E+021

E
xe

cu
tio

n
tim

e
(s

)

Data size (TB)

Fig.14. Computation scalability on particle physics data.

0 10 20 30 40 50 60 70 80 90 100 110

0.00E+000

5.00E+019

1.00E+020

1.50E+020

2.00E+020

2.50E+020

3.00E+020

E
xe

cu
tio

n
tim

e
(s

)

Data size(TB)

Fig.15. Computation scalability on power system data.

 We further evaluated the computation scalability of the data

engineered GEP in dealing with varied numbers of CPU

threads. Fig.16 shows that the execution time of the data

engineered GEP decrease when processing 1TB particle

physics data with an increasing number of CPU threads up to

1000. It can be observed that the speedup of parallelization is

high when the number of CPUs is less than 100 due to the fact

that CPU threads themselves can also cause an additional

computation overhead.

0 100 200 300 400 500 600 700 800 900 1000 1100

0.00E+000

1.50E+014

3.00E+014

4.50E+014

6.00E+014

7.50E+014

9.00E+014

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
)

Number of CPU threads

Fig.16. Parallelization on particle physics data.

Data samples in the power system data set have a simpler

structure than the data samples in the particle physics data set.

As a result, the performance gain achieved via parallelization in

processing one unit of power system data using a number of

CPU threads is less than the case of processing one unit of

particle physics data. When the structure of a data set like the

power system data is simple, the performance gain of

parallelization can be easily offset by the computation overhead

incurred in maintaining these CPU threads. This can be

observed from Fig.17 showing that the execution time of the

data engineered GEP decreases sharply with an increasing

number of CPU threads up to 23. The data engineered GEP

reaches the lowest estimated execution time of 5.66E+013

seconds when 23 CPU threads participate in the computation.

After this point, the execution time goes up due to a high ratio

of the overhead incurred in maintaining these CPU threads to

the performance gain achieved through parallelization. The

fluctuations in performance gain via parallelization can be

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

further observed in Fig.18 where a segmentation ratio of 5%

was used on the two original data sets.

0 100 200 300 400 500 600 700 800 900 1000 1100

0.00E+000

2.00E+017

4.00E+017

6.00E+017

8.00E+017

1.00E+018

1.20E+018

1.40E+018

1.60E+018

1.80E+018

2.00E+018

2.20E+018

2.40E+018

E
xe

cu
tio

n
tim

e
(s

)

Number of threads
Fig.17. Parallelization on power system data.

0 20 40 60 80 100 120 140 160

300

400

500

600

700

800

900

1000

1100

1200

E
xe

cu
tio

n
 t
im

e
 (

s)

Number of CPU Threads

 Particle physics data set

 Power system data set

Fig.18. Fluctuations in performance gain via parallelization.

Overall the data engineered GEP achieves a high scalability

in dealing with potential big data using a large number of CPU

threads.

VII. CONCLUSION AND FUTURE WORK

In this research, we have presented an efficient data

engineered GEP solution in dealing with potential big data. It

builds on the proposed three guiding principles which

necessitate the considerations on the generation structure of

chromosomes, the size of input data and the segmentation of

data chunks when speeding up the evolution process of GEP.

Experimental results confirmed that the data engineered GEP

which follows closely the generation structure of chromosomes

in evolution and considers the size of input data did speed up

the evolution process significantly without loss of accuracy in

data correlation mining. The computation model further

showed that the data engineered GEP is highly scalable in

dealing with potential big data.

It should be pointed out that for data sets with a high volume

in size but a low complexity in data structure, purely increasing

the number of CPU threads could lead to slow executions due

to the fact that the overhead incurred in maintaining these CPU

threads is higher than the performance gain to be achieved

through parallelization.

The data engineered GEP can further benefit from the

schema theory proposed in our previous work [23] which

introduces the concept of building blocks in GEP evolution. A

GEP building block is a segment shared by high quality

chromosomes in a population which can be discovered during

the evolutionary process. Building blocks can be used to replace

the corresponding segments of low quality chromosomes for

computation speedup in evolution. Therefore, a future work

will research how the data engineered GEP can be integrated

with building blocks.

ACKNOWLEDGEMENT

 This research is partially supported by the National Basic

Research Program (973) of China under grant 2014CB340404,

and also the Science and Technology Commission of Shanghai

Municipality under grant 16JC1401300.

REFERENCES

[1] C. Ferreira, “Gene Expression Programming: a New Adaptive

Algorithm for Solving Problems”, Complex Systems, vol.13, no.2,

pp.22, 2001.

[2] T. Bäck, Evolutionary Algorithms in Theory and Practice:

Evolution Strategies, Evolutionary Programming, Genetic

Algorithms, 1996.

[3] JH. Holland, Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and

Artificial Intelligence, U Michigan Press, 1975.

[4] J. R. Koza, “Genetic Programming as a Means for Programming

Computers by Natural Selection”, Stat. Comput., vol. 4, no. 2, pp.

87–112, 1994.

[5] D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems

for Optimization,” IEEE Trans. Evolutionary Computation, vol.

1, no. 1, pp. 67–82, 1997.

[6] C. Ferreira, “Combinatorial Optimization by Gene Expression

Programming: Inversion Revisited,” in Proc. Argentine Symp.

Artif. Intell., pp. 160–174, 2002.

[7] C. Ferreira, “Discovery of the Boolean Functions to the Best

Density-Classification Rules Using Gene Expression

Programming,” Genetic Programming, in Proc. of the 5th

European Conference, EuroGP 2002, vol. 2278, pp. 50–59, 2002.

[8] C. Zhou, P. C. Nelson, W.Xiao, & T. M. Tirpak, “Discovery of

classification rules by Using Gene Expression Programming,” in

Proc. of the Int. Conf. on Artificial Intelligence, pp. 1355-1361,

June, 2002.

[9] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Evolving

Accurate and Compact Classification Rules with Gene

Expression Programming,” IEEE Transactions on Evolutionary

Computation, vol. 7, no. 6, pp. 519–531, 2003.

[10] M. H. Marghny and I. E. El-Semman. “Extracting Logical

Classification Rules with Gene Expression Programming:

Microarray Case Study,” in Proc. of the International Conference

on Artificial Intelligence and Machine Learning (AIML 05),

Cairo, Egypt, 2005.

[11] J. Zuo, C. Tang, C. Li, C. Yuan, and A. Chen, “Time Series

Prediction Based on Gene Expression Programming,” in Proc. of

the 5th International Conference on Advances in Web-Age

Information Management, WAIM 2004, vol. 3129, pp. 55–64,

2004.

[12] V. I. Litvinenko, P. I. Bidyuk, J. N. Bardachov, V. G. Sherstjuk,

and A. A. Fefelov, “Combining Clonal Selection Algorithm and

Gene Expression Programming for Time Series Prediction,” in

Proc. of the Third Workshop IEEE Intelligent Data Acquisition

and Advanced Computing Systems: Technology and Applications,

pp. 133–138, 2005.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

[13] H. S. Lopes and W. R. Weinert, “A Gene Expression

Programming System for Time Series Modeling”, in Proc. of

XXV Iberian Latin American congress on computational methods

in engineering (CILAMCE), Recife, 2004.

[14] H. S. Lopes and W. R. Weinert, “An Enhanced Gene Expression

Programming Approach for Symbolic Regression Problems,” Int.

J. Appl. Math. Comput. Sci., vol. 14, no. 3, pp. 375–384, 2004.

[15] Z. Cai, et al. “Symbolic Regression based on GEP and its

Application in Predicting Amount of Gas Emitted from Coal

Face,” in Proc. of the international symposium on safety science

and technology, 2004.

[16] E. Bautu, A. Bautu, and H. Luchian, “Symbolic Regression on

Noisy Data with Genetic and Gene Expression Programming,” in

Proc. of the Seventh International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing (SYNASC’05), pp.

321–324, 2005.

[17] L. Teodorescu, and Z. Huang, “Enhanced Gene Expression

Programming for Signal-Background Discrimination in Particle

Physics,” in Proc. of the XII Advanced Computing and Analysis

Techniques in Physics Research,2008.

[18] L. Teodorescu, “Gene Expression Programming Approach to

Event Selection in High Energy Physics,” IEEE Transactions on

Nuclear Science, vol. 53, no. 4, pp. 2221–2227, 2006.

[19] L. Teodorescu, “High Energy Physics Data Analysis with Gene

Expression Programming,” in Proc. of IEEE Nuclear Science

Symposium Conference Record, vol. 1, pp. 143–147, 2005.

[20] X. Li, C. Zhou, W. Xiao, and P. C. Nelson, “Prefix Gene

Expression Programming,” in Proc. of Genetic and Evolutionary

Computation Conference (GECCO), 2005.

[21] H. Limin, Y. Jinliang, G. Lirui, and H. U. Jie, “Short-Term Load

Forecasting Based on Improved Gene Expression Programming,”

in Proc. of IEEE International Conference on Circuits and

Systems for Communications, 2008.

[22] S. F. Mekhamer, et al. “Gene Expression Programming for Power

System Static Security Assessment,” International Journal of

Engineering, Science and Technology, vol.4, no. 2, pp.77-88,

2012.

[23] Z. Huang, “Schema Theory for Gene Expression Programming,”

PhD Thesis, Brunel University London, 2014.

[24] Z. Cai, et al, “A Novel Algorithm of Gene Expression

Programming based on Simulated Annealing,” in Proc. of the

International Symposium on Intelligence Computation &

Applications, vol. 610, 2005.

[25] M. Snir, S. Otto, S. Huss-Lederman, D. W. Walker, and J.

Dongarra, MPI: The Complete Reference, vol. 2. 1996.

[26] X. Du, L. Ding, and L. Jia, “Asynchronous Distributed Parallel

Gene Expression Programming Based on Estimation of

Distribution Algorithm,” in Proc. of the 4th International

Conference on Natural Computation, pp. 433–437, 2008.

[27] W. Jiang, T. Li, B. Fang, Y. Jiang, Z. Li, and Y. Liu, “Parallel

Niche Gene Expression Programming based on General Multi-

Core Processor,” in Proc. of the International Conference on

Artificial Intelligence and Computational Intelligence (AICI),

vol.3, pp.75-79. 2010.

[28] J. R. Koza, “Genetic Programming as a Means for Programming

Computers by Natural Selection,” Stat. Comput., vol. 4, no. 2, pp.

87–112, 1994.

[29] H. Cheng and J. Xue. “The Research on Evolution Schema

Theorem on Gene Expression Programming,” in (Eds.) E. Mao,

L. Xu and W. Tian, Emerging Computation and Information

technologies for Education, Springer Berlin Heidelberg, pp. 399-

406, 2012.

[30] R. Poli and W. B. Langdon, “Schema Theory for Genetic

Programming with One-Point Crossover and Point Mutation,”

Evolutionary Computation., vol. 6, no. 3, pp. 231–252, 1998.

[31] R. Poli and N. F. McPhee, “General Schema Theory for Genetic

Programming with Subtree-Swapping Crossover: Part I,”

Evolutionary Computation vol. 11, no. 1, pp. 53-66, 2003.

[32] R. Poli and N. F. McPhee, “General Schema Theory for Genetic

Programming with Subtree-Swapping Crossover: Part II”

Evolutionary Computation, vol. 11, no. 2, pp. 169-206, 2003.

[33] J. S. Vitter, “An Efficient Algorithm for Sequential Random

Sampling,” ACM Transactions on Mathematical Software, vol.

13. pp. 58–67, 1987.

[34] P. Tüfekci, “Prediction of Full Load Electrical Power Output of a

Base Load Operated Combined Cycle Power Plant using Machine

Learning Methods,” Int. J. Electr. Power Energy Syst., vol. 60,

pp. 126–140, 2014.

[35] H. Kaya, P. Tüfekci, and S. F. Gürgen, “Local and Global

Learning Methods for Predicting Power of a Combined Gas &

Steam Turbine,” in Proc. of the International Conference on

Emerging Trends in Computer and Electronics Engineering

(ICETCEE), pp. 13–18, 2012.

[36] D. Novillo, “OpenMP and Automatic Parallelization in GCC,” in

Proc. of the GCC Developers Summit, 2006.

[37] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and

R. Menon, Parallel Programming in OpenMP, vol. 129, 2001.

[38] J. Zhong, Y. S. Ong and W. Cai, “Self-learning Gene Expression

Programming,” IEEE Transactions on Evolutionary

Computation, vol. 20, no.1, pp.65-80, 2016.

[39] M. Khan, Z. Huang, M. Li, G. A. Taylor and M. Khan,

“Optimizing Hadoop Parameter Settings with Gene Expression

Programming Guided PSO”, Concurrency and Computation:

Practice and Experience, DOI:10.1002/cpe.3786, 2016.

[40] Apache Hadoop, Available: https://hadoop.apache.org/.

[Accessed: 28-June-2016].

[41] Stewart W. Wilson “Classifier Conditions Using Gene

Expression Programming”, Lecture Notes in Computer Science

Volume 4998, pp 206-217, 2008.

[42] J.S. Manognya and L. P. Wang, “Gene Expression Programming

for Induction of Finite Transducer”, in Proc. Of the 7th

International Conference on Information, Communications and

Signal Processing (ICICS 2009), pp. 1-5, 2009.

[43] N. R. Sabar, M. Ayob, G. Kendall and R. Qu, “A Dynamic

Multiarmed Bandit-Gene Expression Programming Hyper-

Heuristic for Combinatorial Optimization Problems,” IEEE

Transactions on Cybernetics, vol.45, no.2, pp. 217-228, 2015.

[44] N. R. Sabar, M. Ayob, G. Kendall and R. Qu, “The Automatic

Design of Hyper-Heuristic Framework with Gene Expression

Programming for Combinatorial Optimization problems,” IEEE

Transactions on Evolutionary Computation, vol.19, no.3, pp.

309-325, 2015.

[45] J. F. Box, “Guinness, Gosset, Fisher, and Small Samples”,

Statistical Science, vol.2, no.1, pp. 45–52, 1987.

[46] S. S. Shapiro, M. B. Wilk, “An analysis of variance test for

normality (complete samples),” Biometrika, vol. 52, no. 3/4, pp.

591-611, 1965.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

Zhengwen Huang received the Ph.D. degree

from the Department of Electronic and

Computer Engineering at Brunel University

London, UK in July 2014. His research is

focused on evolutionary algorithms (gene

expression programming, genetic

programming) and data engineering. He

received the MSc degree from King's College

London and his BSc from University of

Science and Technology, China.

Maozhen Li is currently a Professor in the

Department of Electronic and Computer

Engineering at Brunel University London, UK.

He received the Ph.D. degree from Institute of

Software, Chinese Academy of Sciences in

1997. He was a Post-Doctoral Research Fellow

in the School of Computer Science and

Informatics, Cardiff University, UK in 1999-

2002. His research interests are in the areas of

high performance computing, big data

analytics and intelligent systems. He is on the Editorial Boards of a

number of journals. He has over 150 research publications in these

areas. He is a Fellow of the British Computer Society.

Christos Chousidis received the Ph.D.

degree from Department of Electronic and

Computer Engineering at Brunel University

London in 2013. He is currently a Senior

Lecturer in Applied Sound Engineering in the

School of Computing and Engineering at the

University of West London, UK. His research

is on data engineering with a special focus on

audio wireless networks. He is a member of the Audio Engineering

Society.

Alireza Mousavi received the Ph.D. degree

from the Department of Electronic and

Computer Engineering, Brunel University

London, UK in 1998. He is a Reader of Systems

Engineering and Computing. His research

interest is in smart supervisory control and data

acquisition systems applied to real-time systems

modeling and optimization. The key areas of

application are in stochastic modeling, ontology

alignment and sensor networks. He is a member of the Institute of

Engineering and Technology (IET).

Changjun Jiang received the Ph.D. degree

from the Institute of Automation, Chinese

Academy of Sciences, Beijing, China, in 1995.

He was a Post-Doctoral Research Fellow at the

Institute of Computing Technology, Chinese

Academy of Sciences in 1997. Currently, he is

a Professor with the Department of Computer

Science and Engineering, Tongji University,

Shanghai. He is also a council member of

China Automation Federation and Artificial

Intelligence Federation, the director of Professional Committee of

Petri Net of China Computer Federation, and the vice director of

Professional Committee of Management Systems of China

Automation Federation. He was a visiting professor of Institute of

Computing Technology, Chinese Academy of Science; a research

fellow of the City University of Hong Kong, Kowloon, Hong Kong;

and an information area specialist of Shanghai Municipal Government.

His current areas of research are concurrent theory, Petri net, and

formal verification of software, concurrency processing and intelligent

transportation systems. He is a Fellow of the IET.

