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Abstract 

A network covert channel is a passage along which information leaks across the network in violation 

of security policy in a completely undetectable manner. This paper reveals our findings in analysing 

the principle of G.723.1 codec that there are ‘unused’ bits in G.723.1 encoded audio frames, which can 

be used to embed secret messages. A novel steganalysis method that employs the second detection and 

regression analysis is suggested in this study. The proposed method can detect the hidden message 

embedded in a compressed VoIP speech, but also accurately estimate the embedded message length. 

The method is based on the second statistics, i.e. doing a second steganography (embedding 

information in a sampled speech at an embedding rate followed by embedding another information at 

a different level of data embedding) in order to estimate the hidden message length. Experimental 

results have proven the effectiveness of the steganalysis method for detecting the covert channel in the 

compressed VoIP speech. 
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1. Introduction 

Steganography is the art and science of hiding the very presence of covert communication by 

embedding secret messages in innocent-looking electronic signals such as digital images, video and 

audio. To achieve covert communication, stego-signals, which are signals containing secret messages, 

should be indistinguishable from cover signals not containing any secret message. On the contrary, 

steganalysis deals with the technique used to distinguish between stego-signals and cover signals [1]. 

Steganalysis is the science of detecting messages hidden using steganography. The goal of 

steganalysis is to distinguish stego objects (containing a secret message) from cover objects with little 

or no knowledge of steganographic algorithms. The simplest method to detect 

steganographically-encoded packages/files is to compare them to known originals. Comparing the 

package against the original file will yield the differences caused by encoding the payload – and, thus, 

the payload can be extracted. Nowadays, steganalysis becomes increasingly important in computer 

forensics, for tracking and screening documents/audios/videos that are suspect of criminal and 

terrorism activities, and for information security to prevent leakage of unauthorized data. 

There has been quite some effort to study the steganalysis of digital images, and recent 

publications are [2][3][4][5][6]. In contrast to image steganography and steganalysis， audio 

steganography and steganalysis are largely unexplored. Westfeld and Pfitzmann proposed a 

steganalysis method for Least Significant Bit (LSB) based embedding and also addressed the 

steganalysis of the MP3 steganography algorithm [7]. 

Voice over IP (VoIP) enables the digitalisation, compression and transmission of analogue audio 

signals from a sender to a receiver using IP packets. As the size of the used network and the distance 



 

 3

between the communicating parties have little relevance to transmission, VoIP is used for worldwide 

telephony such as Skype. VoIP streams are dynamic chunks of a series of packets that consist of IP 

headers, UDP headers, RTP headers, and numbers of audio frames. Those headers and frames have a 

number of unused fields, providing plausible covert channels and thus giving scope for 

steganography. 

With the upsurge of Voice over IP applications available for commercial use in recent years, VoIP 

becomes one of the most interesting cover media for information hiding. Several steganography 

methods have been suggested in the literature [8][9][10][11][12][13], and some of which are based on 

streaming media and their network protocols such as VoIP or IP, which are used to form network 

covert channels. The network covert channel is a passage along which information leaks across the 

network in violation of security policy in a completely undetectable manner. 

Although some research work had managed to detect network protocols based covert channels 

[14][15][16][17][18][19], so far there are still few steganalysis methods available for the compressed 

VoIP speech. This is the reason that led us to propose this work in the first place. In this paper how 

steganalysis can be performed in VoIP applications and operational aspects are discussed. Furthermore, 

the paper focuses on introducing a novel steganalysis method for the low bit rate speech codec such as 

G.723.1 widely used in VoIP communications. 

Given the wealth of statistic and information-theoretic tools, several approaches may be used to 

analyse problems like VoIP covert communications. One could study the capacity of the covert 

channel, and then analyse the probability of detection as a function of the embedding rate, which is 

defined as the ratio of the secret message length to the stego VoIP stream length. The other can 

measure the entropy of the covert channel and compare that to the entropy of a system without 
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embedding. Our approach to the problem is to utilise a statistical test in combination with doing a 

second steganography (i.e. embedding information in a sampled speech at an embedding rate followed 

by embedding another information at a different level of data embedding) so as to estimate the 

embedded message length. 

The rest of this paper is organized as follows. In Section 2 the principle of the speech codec used 

in VoIP, such as G.723.1, is analysed. Section 3 details a new steganalysis method for compressed 

VoIP speech streams. The evaluation of the proposed steganalysis method is presented in Section 4. 

Finally, it ends with conclusions in Section 5. 

 

2. VoIP Applications with Covert Channels 

 

In general, the ITU-G.723.1 speech codec is widely used in VoIP communications for compressing 

the speech or audio signal component of streaming media. Close analysis of the principle of the 

G.723.1 codec shows the G.723.1 encoded frame (a short chunk of the speech signal) is composed of a 

number of speech parameters since the codec is based on Analysis-by-Synthesis (AbS) coding, one of 

the vocal code models. Differing from the G.711 codec, the G.723.1 codec has two bit rates associated 

with it, 5.3 kbps and 6.3 kbps. This study focuses on the high bit rate (i.e. 6.3 kb/s) because it gives 

better voice quality. The 6.3 kbps codec adopts Multi-pulse Maximum Likelihood Quantization 

(MP-MLQ) excitation, which is different from Algebraic Code Excited Linear Prediction (ACELP) 

used by the 5.3 kbps codec.  

The G.723.1 encoder is performed on a frame-by-frame basis, and it operates on frames of 240 

audio samples each, based on Pulse-code Modulation (PCM). First of all, each frame is filtered by a 
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high pass filter to remove the DC component and is then divided into four subframes of 60 samples 

each. A 10th order Linear Predictive Coding (LPC) filter is computed using the unprocessed input 

signal for every subframe, and the last subframe is quantized using a Predictive Split Vector Quantizer 

(PSVQ). For every two subframes (120 samples), the weighted speech signal is used to compute the 

open loop pitch period. A harmonic noise shaping filter is then constructed using the open loop pitch 

period computed previously, and a closed loop pitch predictor is constructed according to the impulse 

response created by the noise shaping filter. Finally, both the pitch period and the differential value are 

transmitted to the decoder and the non-periodic component of the excitation is approximated. After 

completion of these operations, all speech parameters such as LPC, Pulse sign and Pulse position and 

etc., are obtained. The bit allocation of the 6.3kb/s coding algorithm is listed in Table 1. There are no 

LPC parameters for subframes and each speech frame has a LPC value of 24 bits. 

 

Table 1: The bit allocation of the 6.3kb/s coding algorithm 

Parameters Subframe 0 Subframe 1 Subframe 2 Subframe 3 Subtotal 

(bits) 

Adaptive codebook lags 

(Olp / Aclg) 

7 2 7 2 18 

LPC index (Lsf) - - - - 24 

Grid index (Grid) 1 1 1 1 4 

All the gains combined 

(Mamp) 

12 12 12 12 48 

Pulse positions (Ppos) 20 18 20 18 73 

Pulse signs 6 5 6 5 22 

Total     189 
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Experiments were carried out to estimate the Capability of Noise Tolerance (CNT) for each 

parameter of the G.723.1 codec. First, a speech frame was compressed and encoded by G.723.1 

encoder to form bit streams. The least significant bits of one parameter of the bit streams were 

substituted and then decoded to output a stego-speech. Similar experiments were repeated for the 

other parameters, and so the difference signal-to-noise-ratio (DSNR) between the original speech and 

the stego-speech was determined for each parameter. 

All the speech parameters were sorted into three levels in terms of their DSNR values, and the 

results are listed in Table 2. The CNT of the parameter is defined as ‘Level 1’ if its DSNR is less than 

1dB. A detailed analysis of the experimental results reveals that there is much difference in CNT 

between different speech parameters. For example, the parameter, Ppos, has higher Capability of 

Noise Tolerance (‘level 1’) than the other parameters such as Olp with ‘level 3’ in some bits.  

 

Table 2: Capability of Noise Tolerance (CNT) of G.723.1 speech parameters 

Number of bit  Olp (s1) Lsf (s2) Aclg (s3) Grid (s4) Mamp (s5) Ppos (s6) 

7  Level 3    Level 1 

6 Level 3 Level 3    Level 1 

5 Level 3 Level 3    Level 1 

4 Level 3 Level 2   Level 3 Level 1 

3 Level 2 Level 2   Level 3 Level 1 

2 Level 2 Level 2   Level 2 Level 1 

1 Level 1 Level 1 Level 2  Level 2 Level 1 

0 Level 1 Level 1 Level 2 Level 1 Level 1 Level 1 
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The goal of VoIP steganography is to embed a secret binary message in the compressed VoIP 

speech streams that consist of a series of packets with each carrying a certain number of audio frames. 

An effective LSB steganographic algorithm for VoIP communications using G.723.1 and G.729a 

codecs was suggested in our previous papers [20][21]. According to the steganographic algorithm, the 

Least Significant Bits (LSBs) of some parameters of the G.723.1 codec can be replaced with secret 

messages. The LSBs of parameters are those bits whose CNT levels are identified as ‘level 1’ in Table 

2. In other words, the cover objects used for embedding secret messages are the LSBs of the 

parameters such as Olp, Lsf, Grid, Mamp, and Ppos, denoted by S ={s1, s2, s4, s5, s6}, where s1 

denotes Olp, s2 denotes Lsf, s4 denotes Grid, s5 denotes Mamp, and s6 denotes Ppos. 

Steganalysis, the official countermeasure to steganography, is the science of detecting and often 

decoding the hidden information within the cover medium. In contrast to the LSB based 

steganographic algorithm, the steganalysis of VoIP is to determine whether secret information is 

embedded in the LSBs of G.723.1 encoded VoIP speeches. Having investigated the principle of the 

G723.1 codec and the CNT characteristics of their speech parameters, we suggest a novel steganalysis 

method in this study, which is based on second statistical detection and regression analysis. The 

proposed method does not only detect the hidden information embedded in the compressed VoIP 

speech, but also estimate the embedding capacity precisely. 

 

3. Second Statistics Based Steganalysis Algorithm  

 

In this section a new steganalysis method is described in detail. First, all the bits in each frame of 
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the G.723.1 codec are divided into six speech parameters according to the steganographic algorithm 

introduced above. Statistical analysis of these parameters is then conducted by using Poker test. 

Finally, the steganalysis method is used to determine the embedding capacity. 

 

 3.1 Poker Test for Speech Parameters 

Poker test is one of the statistical tools used to study and predict random phenomena. The test 

starts with a set (sequence) called the sample space, which relates to the set of all possible outcomes, 

denoted by S = {x1, x2, …}. Assuming that the sequence S consists of N random variables like integers, 

the whole sequence is described as SN, and the number of times the variable (integer) i occurs in the 

sequence is denoted by ni(S
N), 0 ≤ i ≤ 2L-1, where L is an integer used to define the largest variable in 

the sequence. 

Suppose the whole sequence SN is divided into N/L segments. If all the values of ni(S
N) with i = 0, 

1, 2, …, 2L-1, i.e. the frequency of each variable occurring in the sequence, are calculated, thus, the 

normalized variance of a random variable in the sequence, fTp, which is the expected square deviation 

of that variable from its expected mean, can be computed by the following formula: 
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where N/(L2L) is the expected number of times the variable i occurs in the segment if each variable 

has the same probability of appearing, and L(2L)2/N is used to normalize the variance. The advantage 

of using the normalized variance is that it enables comparisons between different samples.  

To perform a poker test on the G.723.1 compressed speech, the whole sequence (SN) is required 

to construct first. In terms of the bit allocation of the G.723.1 codec (Table 1) and the Capacity of 

Noise Tolerance (CNT) listed in Table 2, all bits in each audio frame are divided into six speech 
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parameters, denoted by s1, s2, s3, s4, s5, s6, and S = {s1, s2, s3, s4, s5, s6}. Statistical analysis is then 

performed on these speech parameters, respectively. 

The bit sequence of the speech parameter si in the frame k is defined as  

si
k = bi

0, bi
1,…, bi

j           (2) 

   with i = 1, 2, …, 6, and j = 0, 1, …, sum  

where sum is the total number of bits in the parameter si that can be used to embed messages. As 

different parameters have different numbers of Least Significant Bit (LSB), the values of sum vary for 

different parameters. Thus the whole bit sequence of the frame k is given by 

Yk = s1
k, s2

k,…, s6
k           (3) 

Assuming the total number of frames in a compressed speech sample is M. The bit sequence of 

the parameter si for all frames, Xi
M, can be constructed as follows 

Xi
M = si

0, si
1,…, si

j                         (4) 

    with i = 1, 2, …, 6, and j = 1, 2, …, M  

where si 
j denotes the bit j of the parameter si. The subscript i of si 

j stands for the sequence number of 

the parameter, and the superscript j denotes the bit sequence number in the parameter. So the whole 

bit sequence of M frames can then be described as 

XM = X1
M, X2

M, X3
M, X4

M, X5
M, X6

M               (5) 

In accordance with the above Poker test algorithm, a series of experiments were conducted to 

examine all the speech parameters of the G.723.1 codec, such as s1, s2, s4, s5, and s6, except for s3 

because its CNT level is too high to be used for embedding messages. For example, in order to 

calculate fTp of the parameter s6, the bit sequence S6
N is constructed using Equation (4), where N = 

152790×8, 152790 is the least number of the frames the tested speech sample is divided into, which is 
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the threshold value determined by observing a number of experiments, and 8 is the number of bits in 

the parameter s6 that can be used to embed messages. Hence L = 8 and N/L = 152790 are obtained; M 

= N/L represents the number of the tested frames. 

In the experiments random messages were embedded in different speech parameters of the 

G723.1 codec, leading to a number of stego-speech streams (data sets) with embedding rates varying 

from 0% to 100% in 10 percent increments. A chaos random sequence generator was used to create 

the embedding positions so as to achieve random embedding. The fTp values for different speech 

parameters were calculated, and the results are listed in Table 3. 

 

Table 3:  fTp values for different speech parameters before and after embedding messages 

Parameters 

Embedding rates (%) 

0 10 20 30 40 50 60 70 80 90 100 

s1 130.346 115.801 102.851 91.342 81.465 73.072 66.213 60.844 57.039 54.742 53.989

s2 130.335 117.878 106.788 97.019 88.512 81.317 75.465 70.908 67.594 65.608 64.915

s4 130.348 115.796 102.878 91.425 81.437 73.083 66.178 60.812 57.007 54.732 53.983

s5 130.505 118.020 106.818 96.968 88.427 81.193 75.317 70.774 67.487 65.554 64.939

s6 50.950 47.941 45.287 42.910 40.884 39.156 37.739 36.623 35.851 35.372 35.209

  

Analysis of the data in Table 3 shows the value of fTp decreases as the embedding rate increases 

for each speech parameter. This is probably due to the reason that the randomness of stego-speech 

streams becomes more significant when the embedding rate increases. The fTp values for different 

speech parameters can then be used to compute the number of times the bit occurs in the frame, which 
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is required by the second statistical method (detailed in the next section) to estimate the embedding 

capacity. 

 

3.2 Second Statistical Detection and Regression Analysis 

For the parameter set of the G723.1 codec, S = {s1, s2, …, s6}, the value of ni(S
N) for each 

speech parameter can be computed by using the Poker test algorithm described in the preceding 

section, respectively. Thus the following equation yields 

yi＝{n0(si
N), n1(si

N), … nｊ(si
N)}             (6) 

              with  i∈{1, 2, 4, 5, 6} 

Let Y = {y1, y2, y4, y5, y6}, a new bit sequence Y is constructed, and a new frequency value ny(s
N) 

can then be obtained for the sequence Y. A detailed analysis by drawing curves using SPSS (statistics 

software) reveals great statistical regularity, as shown in Figure 1. Note that the calculations are based 

on the parameter s6, i.e. Pulse positions (Ppos). 

 

The arrows in Figure 1 denote the frequency points at different levels of data embedding. Figure 

1 shows the frequency point increases non-linearly as the embedding rate increases. A number of 

repeated experiments were conducted so as to allow the establishment of the statistical relationship 

between the frequency point and the embedding rate. Regression analysis was chosen to seek for the 

statistical law, i.e. a mathematical function between the frequency point and the embedding rate, as 

shown in Equation (7) 

3
3

2
210 mamamaap           (7) 

where p is the embedding rate, m is the frequency point of the sequence Y, and a0, a1, a2 and a3 are the 
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coefficients. 

Fitting Equation (7) with plenty of similar data sets, obtained from the G.723.1 compressed 

stego-speech samples having 152790 frames, leads to attaining the regression coefficients on Equation 

(7) such as a0, a1, a2 and a3. So Equation (7) is re-written as 

32 588058.0511366.1940232.1000668.0 mmmp      (8) 

 

The estimation curve (Model) in Figure 2 is drawn according to Equation (8), and the 

experimental curve (Observed) is based on experimental results. Comparisons between the estimated 

and experimental results indicate that Equation (8) accurately simulated the relationship between the 

embedding rate and the frequency point. Hence, with Equation (8) ones can easily compute the 

corresponding embedding rates for different frequency points. 

However, there is an unsolved issue, i.e. how to decide whether a sampled speech contains 

hidden messages. If a secret message is embedded in the sampled speech, the embedding rate cannot 

be assumed to be 0% when computing the first frequency point in Figure 1. In fact, the correct 

relationship between the frequency point and the embedding rate cannot be derived when blind 

detection is performed. If so, how to compute the embedding rate in case of blind detection? To solve 

this problem, a novel method based on the second steganography is suggested to estimate the 

embedding rate as follows. 

The second steganography with random embedding positions in the same sampled speech as the 

first steganography does is suggested to decide whether the sampled speech contains hidden messages, 

and determine how much information has been embedded. Suppose the first embedding rate is p1, and 

the second embedding rate is p2. After completion of two steganography processes (i.e. embedding a 
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message in the sampled speech at p1 followed by embedding another message at p2), p1×p2 percent of 

Least Significant Bits (LSBs) in the speech parameters like s6 are changed twice, and half of the bits 

in the parameters are converted to the original values again. Hence, the embedding rate equals the 

percent of bits that have been changed only once after the second steganography, given by 

Embedding rate = (p1 + p2 - p1  p2) / 2      (9) 

In the experiments, the first embedding rates were fixed at p1 = 30%, and the second embedding 

rates were varied, i.e. p2 = 10%  i with i = 0, 1, …, 10. Initially the sampled VoIP speech embedded a 

message at the first embedding rate of 30%, and then embedded another message at the second 

embedding rates varying from 0% to 100% in 10 percent increments, respectively. Figure 3 shows the 

experimental results, depicting the relationship between the frequency of ny(s
N) and the second 

embedding rate (p2) while the first embedding rate (p1) remained constant. The black coattail arrows 

in the figure are related to the first embedding rates, and the common arrows are in relation to the 

second embedding rates. 

 

Close analysis of the experimental results (Figure 3) shows that the first embedding rate (black 

coattail arrows) stands out well against the second embedding rate (common arrows) in the first figure 

(the second embedding rate is 0%) and in the sixth figure where the second embedding rate is 100%. 

For the same sampled speech, the results for the two data embedding process at p1 = 30% and p2 = 

0% should be the same as those for the single data embedding process at p1 = 30%. So the frequency 

point is related to the first embedding rate only when the second embedding rate is 0%. Therefore, as 

long as the frequency points in Figure 3 are obtained, the embedding rate for the first steganography 

can then be determined by using Equation (7). 
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4. Performance Evaluation 

 

A series of experiments were performed to evaluate the proposed steganalysis method. Seven 

groups of the compressed speech sampled from the G.723.1 codec with 6.3kp/s LOC (Lines of 

Communication) were employed as cover objects. Random messages with different lengths were 

embedded in each of the compressed speech cover objects, respectively, to achieve ten different 

embedding rates. A chaos sequence generator was used to create random embedding positions in the 

compressed speech streams so as to ensure the messages were randomly spread out over the 

embedding positions. To simplify the experiments, 128 bits keys were used for steganography. 

 

Figure 4 illustrates the testing process in which stegnography and steganalysis in VoIP streams 

were carried out over an intranet called CERNET. Alice and Bob communicated secretly, so the VoIP 

streams between them contain secret messages, which were embedded in the parameters of ITU-T 

G.723.1 (6.3Kbps) compressed speech streams. Similarly covert communications also occurred 

between John and Smith. Using our proposed steganalysis method, Mary as a warden monitored the 

router connected with the network by examining all transmitted streams between Alice, Bob, John and 

Smith so as to decide whether a transmission contains a hidden message and to estimate the 

embedding rate. 

The embedding rate is defined as the secret message length divided by the length of the stego 

VoIP stream. The real embedding rates varied from 0% to 100% in 10 percent increments, which are 

listed in the second row of Table 4. Seventy test data sets were used to perform statistical analysis. 
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The proposed steganalysis method was utilised to compute the estimated embedding rates, and the 

results are listed in Table 4. 

 

Table 4: The real and estimated embedding rates for different compressed speech cover objects 

Cover 

objects 

Embedding rates 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1 

Cover 1 0.1412 0.1522 0.3070 0.4293 0.4626 0.6161 0.7129 0.7665 0.9237 0.9700

Cover 2 0.1650 0.1802 0.3330 0.3636 0.5013 0.5467 0.6948 0.7796 0.8665 1.0176

Cover 3 0.1650 0.1802 0.3636 0.4356 0.5230 0.6095 0.6948 0.8147 0.9083 1.0176

Cover 4 0.1802 0.1984 0.3636 0.4005 0.5467 0.5726 0.6664 0.7593 0.8538 0.9573

Cover 5 0.1802 0.1984 0.3636 0.4005 0.5013 0.6009 0.6990 0.7967 0.8985 1.0176

Cover 6 0.1802 0.1984 0.3636 0.4005 0.4773 0.5726 0.6664 0.7967 0.8985 1.0176

Cover 7 0.0007 0.1911 0.3528 0.3752 0.4717 0.5892 0.7047 0.8200 0.9442 1.0176

 

Statistical tools are normally used for quantifying the accuracy and precision of a measurement 

or approximation process. Accuracy is the degree of closeness of a measured or calculated quantity to 

its actual (true) value, indicating proximity to the true value. So the absolute error, which is the 

magnitude of the difference between the real value and the approximation, is an indication of accuracy. 

Precision is the degree to which further measurements or calculations show the same or similar results. 

In statistics, standard deviation is a measure of the variability or dispersion of a statistical population, 

a data set, or a probability distribution. A low standard deviation indicates that the data points tend to 

be very close to the mean, whereas a high standard deviation indicates that the data are spread out 
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over a large range of values. So the standard deviation of a group of repeated calculations should give 

the precision of those calculations. 

 

Table 5: Accuracy and precision in estimating data embedding rates 

Real 

embedding rate 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1 

Estimated 

embedding rate 

(Mean) 

0.1446 0.1856 0.3496 0.4007 0.4977 0.5868 0.6913 0.7905 0.8991 1.0022

STDEV 0.0650 0.0168 0.0219 0.0260 0.0300 0.0245 0.0181 0.0231 0.0312 0.0266

Absolute error 0.0446 0.0144 0.0496 0.0007 0.0023 0.0132 0.0087 0.0095 0.0009 0.0022

 

Table 5 lists the accuracy and precision of the proposed steganalysis method in estimating data 

embedding rates. A small standard deviation (STDEV) indicates that the estimated embedding rates 

for the seven compressed speech samples (their results are listed in Table 4) are clustered closely 

around the means at different levels of data embedding. Therefore, the experimental results show the 

proposed steganalysis method has great precision in determining the embedding rate in most 

circumstances, and acceptable errors occur at low embedding rates. 

 

5. Conclusions 

 

In this paper we have suggested a novel method capable of detecting the hidden message within a 
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compressed VoIP speech and estimating the embedding rate as well. The experimental results have 

shown the proposed steganalysis method is quite effective and accurate. To the best of our 

knowledge, this is the first practical implementation of the steganalysis of the compressed VoIP 

speech. 

This work is an initial exploration of the detection of covert channels in the compressed VoIP 

speech and there is room for improvement. Other steganalysis methods for detecting hidden 

information in other compressed speeches such as iLBC and G.729.a are the subjects of future work. 
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Figure 1:  The frequency of ny(S
N) at different levels of data embedding (Y-axis is the frequency and X-axis is the frequency point) 
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Figure 2:  Relationship between the embedding rate and the frequency point 
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Figure 3: The frequency of ny(S
N) at varying second embedding rates with a constant first embedding rate (Y-axis is the frequency and X-axis is the 

frequency point). 
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Figure 4: Sketch of the testing setup 

 

 


