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Covert Voice over Internet Protocol Communications with Packet 

Loss Based on Fractal Interpolation   

 

Y. Jiang, Shanyu Tang*, L. Zhang, M. Xiong, and Y.J. Yip 

 

The last few years have witnessed an explosive growth in the research of information 

hiding in multimedia objects, but few studies have taken into account packet loss in 

multimedia networks. As one of the most popular real-time services in the Internet, 

Voice over Internet Protocol (VoIP) contributes to a large part of network traffic for 

its advantages of real time, high flow, and low cost. So packet loss is inevitable in 

multimedia networks and affects the performance of VoIP communications. In this 

study, a fractal-based VoIP steganographic approach was proposed to realise covert 

VoIP communications in the presence of packet loss. In the proposed scheme, secret 

data to be hidden were divided into blocks after being encrypted with the block 

cipher, and each block of the secret data was then embedded into VoIP streaming 

packets. The VoIP packets went through a packet loss system based on Gilbert model 

which simulates a real network situation. And a prediction model based on fractal 

interpolation was built to decide whether a VoIP packet was suitable for data hiding. 

The experimental results indicated that the speech quality degradation increased 

with the escalating packet-loss level. The average variance of speech quality metrics 

(PESQ score) between the “no-embedding” speech samples and the “with-embedding” 

stego-speech samples was about 0.717, and the variances narrowed with the 
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increasing packet-loss level. Both the average PESQ scores and the SNR values of 

stego-speech samples and the data retrieving rates had almost the same varying 

trends when the packet-loss level increased, indicating that the success rate of the 

fractal prediction model played an important role in the performance of covert VoIP 

communications.  

Multimedia communications, Real-time protocols, Multimedia computing, Media content 

security and rights management 

  

1. INTRODUCTION 

Throughout human history, people have been constantly seeking for newer and more 

effective communication methods. Since the emergence of the World Wide Web in 

1990s, the rapid development of information network technology especially the 

Internet has changed the way of people communicating with each other radically. 

Digital data, including images, audio, video and other information could be spread to 

all the corners of the world. E-mail, video telephony, and video conference have 

become new forms of human communications in daily life. Internet provides low-cost 

and convenient means of access to massive data and communication methods. The 

Internet has already become an essential part in people’s lives. 

As a new communication way, Voice over Internet Protocol (VoIP) is flourishing in 

the field of electronic communications, because it has irreplaceable advantages in 

providing network multimedia services with low cost, high quality, multi-function 

and maintainability. With the increasing percentage of VoIP streams in the Internet 

traffic, VoIP is considered to be a better cover object for information hiding compared 

with other cover objects such as text files, image files, and audio files. Thus, VoIP 

 
 



                                                                                                                                         
steganography has caught attention of a growing number of researchers in the field 

of information hiding. 

Steganography is actually an ancient art. Since human civilization, people had the 

thought of protecting secret information, and ancient people learned to pass a 

message with secret signal and code, which was an early form of information hiding. 

Information technology and the Internet provide modern digital steganography with 

an ample space for fast development. The modern research of covert communication 

was derived from the “The Prisoners’ problem” [Simmons 1984]. In the problem, Bob 

and Alice were jailed in separate cells and they were trying to prepare an escape 

plan, but their communication had to pass through and inspect by the warden 

Wendy. If Wendy found any suspicious information transferring between Alice and 

Bob, she would defeat their plan. This problem triggered a boom in the modern 

research of information hiding. 

Steganography is a method of embedding secret data into a cover object, which 

should not cause unacceptable distortion and arouse observers’ attention. Both 

steganography and encryption technology provide the confidentiality of secret data, 

but there are significant differences in many aspects. Encryption technology only 

protects the content of secret data, making them unreadable; thus, unauthorized 

users can know the existence except the specific details about the secret data. 

Steganography hides the existence of secret data, such that unauthorized users know 

neither the existence of the secret data nor the details of them. However, 

steganography and cryptography are not mutually exclusive, and they could 

complement each other to improve the security of covert communications. 

In comparison with the Public Switched Telephone Network (PSTN), a complex 

VoIP accompanies with more security threats, because voice packets are transmitted 

in such an open network environment. Meanwhile, VoIP communication is a real-

 



 
time multimedia application, and it has a high quality of service requirements, e.g.  

the one-way delay, i.e., “mouth-to-ear”, must be kept less than 400ms to provide 

acceptable speech quality [ITU-T G.114]. In order to protect the user privacy in VoIP 

systems, added encryption and other security measures could provide security, but 

they also inevitably cause some delay which affects the performance of VoIP 

communication. To emphasize the problem mentioned above, the main objective of 

this study was to realize covert VoIP communication with acceptable delay in the 

presence of packet loss. 

The main contribution of this study lies in utilizing a fractal-based packet loss 

prediction model to reduce the impact of packet loss on covert VoIP communications. 

And the proposed covert VoIP communication scheme could also be applied to other 

speech codecs, such as G.729, G.723.1, and so on. The packet loss prediction model 

could also be implemented on covert communications over other media like video, to 

reduce the loss of secret data. 

The rest of the paper is organized as follows. In Section 2, the related work is 

briefly introduced. Section 3 describes the proposed covert VoIP communication 

scheme, consisting of the data embedding steganographic algorithm and the 

prediction model based on fractal interpolation. The experimental setup, results and 

discussion, and comparisons with other steganographic methods are detailed in 

Section 4. Finally, the conclusion and directions for future research are given in 

Section 5. 

2. RELATED WORK 

Early steganography is widely applied in a variety of digital media, such as text, 

image [Yang et al. 2008; Lee et al. 2000; Marvel et al. 1999], audio [Darsana et al. 

2011; Cvejic et al. 2002], and video [Cetin et al. 2012] files. As a result of the 

 
 



                                                                                                                                         
insensitivity of Human Visual System (HVS), human eyes cannot make a clear 

distinction between the original image and the image with a secret message 

embedded. It is generally recognized that VoIP steganography is more challenging 

than image steganography for the wider dynamic range of Human Auditory System 

(HAS) in comparison with HVS.  

There have been some efforts to study VoIP steganography. Those steganographic 

techniques can be roughly divided into two categories. The first one is hiding secret 

data into protocol headers in TCP/IP protocols, such as the reserved field in protocol 

headers, and mostly in SIP or SDP protocol [Mazurczyk et al. 2008]. For example, the 

method was proposed in [Huang et al. 2011]. The second one is hiding secret data in 

the data block of voice packets, in which different techniques were used to embed 

secret data [Tang et al. 2014]. 

2.1 Steganographic Methods That Modify the Network Protocol 

For the first category, the packets with data embedded into protocol headers are 

likely to be dropped by an intelligent router. However, those algorithms have not 

addressed the synchronization mechanism associated with VoIP communications.  

Besides, a steganography method was developed in [Mazurczyk et al. 2008], which 

formed a covert channel based on VoIP streams. The method had the characteristics 

of most steganographic techniques; it also presented two new ideas. The first one was 

named the network steganography scheme, which utilized the unused field in 

Internet protocols, such as UDP (User Datagram Protocol), RTP (Real-Time 

Transport Protocol), and RTCP (Real-Time Control Protocol) protocols. The second 

one was called Lost Audio Packets Steganography (LACK), which made use of the 

delayed audio packets to achieve a covert channel of mixed time storage. Their 

experimental results included only the capacity of the secret data transmitted during 

a typical VoIP session, excluding the consideration of steganalysis detection. 
 



 
2.2 Steganographic Methods by Modifying the Voice Data 

For the second category, hiding secret data into speech by modifying the voice 

payload is the most commonly used. For instance, the Least Significant Bit (LSB) 

substitution is the most basic method. And at the coding stage, secret data were 

hidden by utilizing the feature of speech codec. Moreover, the secret data were 

embedded into the speech streams by analyzing the characteristics of voice. 

A great deal of research is based on the LSB method. LSB algorithm has been 

applied to many covert communications systems. The first VoIP steganographic 

technique was introduced by Aoki [Aoki 2003] in 2003; it was the first use of G.711 

codec for steganography to embed secret data into VoIP speech streams. In 2005, 

Dittmann proposed a covert communication model based on LSB VoIP 

steganography. It indicated the differences between active voice and quiet voice. But 

this method simply replaced the least significant bits of speech with the bits stream 

of secret data, and so it is easy to be detected by a simple statistical analysis. A 

design of real-time speech hiding for G.711 codec was suggested [Wang et al. 2007]. 

The secret speech was compressed with Speex, before embedding it into the least 

significant bits of each two samples.  

Some improved LSB algorithms for VoIP steganography were also developed. A 

LSB-based embedding algorithm was suggested [Huang et al. 2008], which guided 

the embedding process with a pseudo-random sequence. Miao et al. [Miao and Huang 

2011] analyzed the character of audio, and proposed an adaptive steganography 

system which implemented different embedding approaches in active frames and 

inactive frames. In addition, they designed an overflow judgment to ensure the 

synchronization of the transmission of secret data. 

A mechanism about the least significant bit based on G.711 speech codec was 

proposed [Wu et al. 2006], which calculated the statistical characteristics of speech 
 
 



                                                                                                                                         
energy to estimate the hiding capacity of the cover speech used to hide secret data. 

Experiments showed that this method achieved a greater steganographic capacity 

than traditional LSB steganography methods, and had less effect on the quality of 

cover speech. In the literature [Ito et al. 2010], researchers proposed an improved 

LSB algorithm based on tolerable distortion, which could improve quality of speech. 

At the coding stage, secret data are hidden by utilizing the feature of speech codec. 

Chang et al. [2002] proposed a steganography method that hides speech data in the 

MELP and G.729 encoded speech. Tian et al. [2008] suggested a VoIP covert 

communication model based on LSB steganography. It was an improved model based 

on the method in [Kratzer 2006]. Xu et al. [2009] proposed a steganography 

algorithm based on G.723.1 codec with 5.3 Kbits/s coding rate, which achieved 133.3 

bits/s steganographic bandwidth. A state-based steganography algorithm was 

proposed in [Zhou et al. 2012], which was implemented on G.723.1 low bit rate speech 

codec. The steganography algorithm modified the G.723.1 transmission parameters 

to hide secret data. A lossless steganographic approach for u-law of G.711 codec [Aoki 

2010] used the redundancy of G.711 codec to hide secret data without speech 

distortion. In [Huang et al. 2011], an algorithm for embedding data in some 

parameters of inactive speech frames encoded by G.723.1 codec was suggested, which 

is a high-capacity steganography method. In addition, in [Huang et al. 2012] they 

also proposed an algorithm for steganography in low bit-rate VoIP audio streams by 

integrating information hiding into the process of speech encoding. And Tian et al. 

[2009] designed an M-sequence-based LSB steganographic algorithm for embedding 

information in VoIP streams encoded by G.729a codec. In [Tian et al. 2011] they also 

proposed an adaptive partial-matching steganography method with triple M 

sequences, which used a partial similarity value to evaluate the partial matching 

between the cover object and secret data.  

 



 
In addition, an effective steganography scheme for hiding secret speech in 

narrowband speech was proposed in the literature [Guerchi and Fatiha 2009]. The 

embedding process was designed in the high-frequency and low-amplitude part of 

speech, and the output was the stego-speech with secret speech, which had quality of 

speech similar to the original speech. The process occurred in the frequency domain 

[Rabie 2006; Guerchi et al. 2008], and the digital information was embedded in the 

amplitude component. 

2.3 Summary 

The above research work focuses on the steganography algorithm instead of the 

synchronization mechanism that is essential in real covert VoIP communication 

applications. Due to inevitable packet loss in the VoIP network, the design of the 

steganographic algorithm should take into account the impact of packet loss on the 

efficiency of steganography. When packet loss occurs, not only the voice data in the 

audio packets would be lost, so does the secret data hidden in the voice data. 

However, few studies have taken into account of packet loss in VoIP communications. 

Taking into account the VoIP speech distortion caused by an inevitable packet loss 

and delay, a researcher [Aoki 2003] proposed an error concealment method. The 

method improved the side information based on the reconstruction technique at the 

sending end, and the packets were fully compatible with traditional VoIP format. The 

method in [Mazurczyk 2012] made use of packet loss and retransmission to hide 

secret data, while as the voice packet with retransmission was not used by 

applications to play out. Improved LACK steganographic method, utilizing 

intentionally excessively delayed packets to hide secret data without modifying 

speech data, was also proposed by Mazurczyk et al. [Mazurczyk et al. 2014]. The 

hidden data insertion rate is time dependent between 0 and 10 Kbits/s. However, 

 
 



                                                                                                                                         
sometimes the excessively delayed packets may be discarded, so the packets could 

not arrive at the receiver. 

To address the packet loss problem with VoIP communications, a packet-loss 

fractal prediction model was developed in this study to reduce the impact of packet 

loss on covert VoIP communications. In consideration of the retrieving of secret data 

with packet-loss occurrence, the preprocessing of the secret data was conducted in 

the divided blocks, i.e., the secret data embedded in each packet was pre-processed 

independently. Since the retrieving of secret data between packets is not associated, 

the packet-loss events would have no effect on the retrieving of secret data in the 

packets that are not missing. There is a wide recognition that packet loss is out of 

control in the real network environment. So VoIP communications in our 

experiments were implemented in a local area network linked constantly to the 

Internet, the Gilbert packet-loss model was modified to simulate packet loss in a real 

network environment, and then it is convenient to control the packet loss rate to 

compare the experimental results. 

3. PROPOSED STEGANOGRAPHY SCHEME FOR COVERT VOIP COMMUNICATIONS WITH 

PACKET LOSS 

The proposed covert VoIP communication scheme was based on the connectionless 

UDP which emphasizes low-overhead operation and reduces latency to meet the real-

time requirement, instead of TCP which is a reliable, ordered, and connection-

oriented but time-consuming communication protocol. A covert VoIP communication 

was achieved by embedding secret data into an audio signal encoded by Pulse Code 

Modulation (PCM) codec. The audio signal was chosen by a packet-loss prediction 

model, which decides whether an audio packet would be discarded. The bit streams of 

secret data were embedded into the chosen audio signal using a data embedding 

steganographic algorithm with variable embedding intervals. The extraction of secret 
 



 
data hidden in the audio packet was carried out at the receiving end, which was a 

reverse process of the data embedding phase. When the proposed scheme is 

implemented in a distributed environment, the network traffic statistic data are 

needed. The network traffic data can be collected from the statistic packets numbers 

that sent and lost in a typical VoIP communication. Then the network traffic 

statistical data can be used in the packet loss prediction model of covert 

communications. And the Gilbert packet-loss model is executed in a real packet loss 

network environment. The packet-loss prediction model is implemented at the 

sending end. 
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Fig. 1. The framework of the proposed covert VoIP communication scheme. 

 

Figure 1 shows the framework of the proposed covert VoIP communication in 

which each voice packet was predicted whether it would be discarded or not. If a 

voice packet was predicted not to be missing, it would be used to embed secret data. 

Otherwise, the voice packet would keep its original speech, and would not be used for 

hiding the secret data. Then, every packet was decided whether to be transmitted to 

the receiver or not. At the receiving end, upon the arriving packets being unpacked, 

the retrieving operation was carried out until the completion of extracting the secret 

data. Finally, the speech went through the extraction process or was played back for 

listening. The details of the data embedding steganographic algorithm and the 

fractal prediction model are described below. 

 
 



                                                                                                                                         
3.1 Data Embedding Steganographic Algorithm 

The steganographic algorithm used for the proposed covert VoIP communication 

scheme is a data embedding algorithm with variable embedding intervals 

incorporating Advanced Encryption Standard (AES). The covert VoIP communication 

system was implemented by embedding a secret message encrypted with symmetric 

cryptography AES-128 into audio signals encoded by PCM codec. The secret message 

was encrypted and embedded in the payload of VoIP audio packets (Fig. 2) before 

sending them to meet the real-time requirements of VoIP communications. At the 

receiver end, the corresponding algorithm was employed to retrieve the secret 

message, and then to decrypt it to get the original secret message. 

 

                                      

 

Fig. 2. The pseudo code of the data embedding function used. 

In the data embedding function (Fig. 2), M is the secret message to be hidden in 

an audio packet, and the length of M is an integral multiple of 16 bytes and smaller 

than the size of the audio packet. V is the voice in the payload of VoIP packet, and 

the length is the size of the audio in a packet.  

3.2 Packet-loss Fractal Prediction Model  

In this study, a packet-loss fractal prediction model was built to reduce the impact of 

packet loss on covert VoIP communications by predicting the number of lost packets 

in next packet-loss event. 

Begin 
S=encrypt(M), 
B=ConvertToBinary(S), 
do 
{ 
if (B[i]==0), V(k)=V(k)&0xfe, 
if (B[i]==1), V(k)=V(k)|0x01, 
k=k+R, 
length=length-k, 
}while(length!=0) 
end 

 

 



 
Fractal interpolation is a method to construct fractal curves, which was proposed 

by American mathematician M.F. Barnsley in 1986. The principle is to construct the 

corresponding Iterated Function System (IFS) according to a given set of 

interpolation points. The attractor of the IFS is the function graph through the given 

set of points. When the fractal interpolation method was applied to VoIP 

communications, packet-loss events would be counted in VoIP communications, and 

the given set of points is the number of packets lost in the corresponding packet loss 

event. Table I shows N packet-loss events occurred, and the number of packets lost in 

each packet-loss event. And these data were then analyzed to predict the number of 

packets lost in the (N+1)th packet loss event using the packet loss prediction model of 

VoIP communication.  

 

Table I. Notations of packet-loss events in a VoIP communication 

n 0 1 2 ... i ... N-1 N 

xn x0 = 0 x1 = 1 x2 = 2 ... xi = i ... xN-1 = N-1 xN = N 

yn y0 y1 y2 ... yi ... yN-1 yN 

xi is the sequence number of the xith packet-loss event. 

yi is the number of packets lost in the xith packet-loss event. 

 

Generally, the following affine transformation can be IFS to construct a fractal 

interpolation curve: 
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where i = 1,2,...,N. (x, y) are the coordinates of a point, and wi is the affine 

transformation relationship right of the equal, the parameters ai, ci, and di are the 

matrix elements, and ei, fi are the constant components after transformation. If the 

 
 



                                                                                                                                         
IFS attractor has to go through the given interpolation point (xi, yi), the 

transformation must meet the requirements of the following conditions, 
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In other words, the left endpoint (x0, y0) of the whole range is mapped to the left 

endpoint (xi-1, yi-1) of the subinterval, and the right endpoint (xN, yN) of the whole 

range is mapped to the right endpoint (xi, yi) of the subinterval. According to 

equations (1) (2) (3) and the given parameter di, it is easy to acquire the other 

parameters. 

   
0

1

xx
xxa

N

ii
i

−
−

= −       (4) 

   
0

01

xx
xxxxe

N

iiN
i

−
−

= −      (5) 

   
0

0

0

1

xx
yyd

xx
yyc

N

N
i

N

ii
i

−
−

−
−

−
= −     (6) 

   
0

00

0

01

xx
yxyxd

xx
xyxyf

N

NN
i

N

iNi
i

−
−

−
−
−

= −    (7) 

where ai, ci, ei, fi are the parameters of the affine transformation, which means the 

fractal feature parameters of the N packet-loss events. After obtaining the 

parameters, the IFS attractor can be determined. With the increasing number of 

times of iteration, the fitting degree of the interpolation curve continues to be 

improved. And it will be a stable and unchanging interpolation curve after lots of 

iterations, which is not only through the sampling points but also much closer to the 

original curve.  

 



 
From the iterations with different initial points, it is easy to find that the affine 

transformation IFS obtained based on fractal interpolation has similar data with the 

historical data, and no matter what the initial point, it will gradually approach the 

IFS attractor after iterations. 

According to the self-similarity and scale invariance of fractals, the extension 

portion near the interval can keep the fractal characteristic of the interval. When the 

point P(xp, yp) falls on the extension portion of the curve, it also has the same fractal 

property. And when xp = N+1, yp is the number of packets lost in (N+1)th packet loss 

event. It is much faster to iterate from the point P(xp, yp) by using the affine 

transformation IFS for approaching the IFS attractor than to iterate from the point 

Q(xp, yq) which has the same horizontal coordinate with P. The deviation between the 

attractor and the point set after iteration from point P is smaller than iteration from 

the point Q. In another word, the point with the same horizontal coordinate and the 

smallest deviation can be regarded as the predicted extrapolation point that the 

proposed model seeks for. Then yN+1 will be calculated, which is the number of 

packets lost in the (N+1)th packet loss event predicted from the packet loss 

prediction model. 

Fractal geometry is actually a natural geometry. Fractal interpolation function 

fits the curves with strong volatility by using the self-similar structure of phenomena 

in the nature. And it has been proved to be a very effective tool. In [Leland et al. 

1994] and [Willinger et al. 1997], it was proved that Ethernet LAN traffic is 

statistically self-similar by rigorous statistical analysis of hundreds of millions of 

high quality Ethernet traffic measurements collected between 1989 and 1992. Song et 

al. [2005][2006] also reported that the self-similarity arose in different fields such as 

biology, technology and sociology in a given length-scale, and networks showed a 

fractal topology. It has demonstrated that network traffic is self-similar or fractal. It 
 
 



                                                                                                                                         
is well known that burst packet loss rate exists in heavy network load, and packet 

loss scarcely occurs in low network load, indicating that packet loss is also of fractal. 

Since fractal prediction methods were well applied to short-term prediction [Xiu et al. 

2014], in this study, it was a first attempt to apply fractal prediction into predicting 

packet loss in VoIP communications. 

Based on the above thought, a fractal extrapolation method for VoIP 

communications was proposed in this study to predict the number of lost packets in 

next packet-loss event. In the proposed packet-loss prediction model, the horizontal 

coordinate is the sequence number of packet-loss event, and the vertical coordinate is 

the number of packets lost in the corresponding packet-loss event. The interval, 

which is also called the whole range, denotes all the packet-loss events that have 

been collected. And the points in the interval are the records of the number of 

packets lost in the collected packet-loss events. The point P with the horizontal 

coordinate xp means the xpth packet-loss event, and xp is in the extension portion of 

the interval. The vertical coordinate yp is the number of packets lost in the xpth 

packet-loss event, which is the predicted value the model seeks.  

The corresponding algorithm for the proposed packet-loss prediction model is 

designed as follows: 

Step 1: choose the sample points in interval which represents all the packet-loss 

events that have been collected in previous experiments. For each point, the 

horizontal coordinate is the sequence number of packet-loss event, and the vertical 

coordinate is the number of packets lost in the corresponding packet-loss event. 

Calculate the parameters of the affine transformation to obtain the IFS in the 

interval, and mark the maximum of all the vertical coordinates in the interval as ymax 

which is the largest number of packets lost in the previous experiment. 

 



 
Step 2: according to the prediction requirement, determine the horizontal 

coordinate as xp, which means xpth packet-loss event would be predicted. And 

Initialize its vertical coordinate as yp, which is an assumed value of number of 

packets that would be lost in the xpth packet-loss event. Iterate from the point P(xp, 

yp) to obtain the corresponding points set. Compare them with the average value of 

the original interpolated points in the interval, get the smallest deviation as e0, 

emin=e0. 

Step 3: increase the vertical coordinate with a given length ye, obtain the 

corresponding point set from the iteration starting from the point P’(xp, yp+ye). Get 

the deviation e’ after compared with the original interpolated points in the interval. 

Take a smaller value between e’ and emin to replace the emin, and record the 

corresponding point P with the smaller deviation. Repeat Step 3 until the vertical 

coordinate exceeds ymax. 

Step 4: the recorded point P(xp, yp+kye) with the smallest deviation is the 

predicted value that the model desires, which indicates that yp+kye packets would be 

lost in the xpth packet-loss event. 

4. RESULTS AND DISCUSSION 

4.1 Experiment Settings 

To evaluate the performance of the proposed covert VoIP communication scheme in 

the presence of packet loss, different VoIP speech samples coded by PCM G.711 A-

law were employed as the cover-speech. The proposed covert communication scheme 

was implemented on our VoIP communication platform called StegPhone. StegPhone 

is a real VoIP software application which has been developed based on MFC. The 

implement of speech signal acquisition and playback was based on winmm.lib which 

is a Windows multimedia API, and the real-time transmission of VoIP streams was 
 
 



                                                                                                                                         
developed based on jrtplib 3.9.1 library. The callee’s IP address needs to be provided 

to initialize VoIP communication, and the parameters used for sampling and 

quantizing the cover-speech were then selected. The VoIP audio samples were 

obtained using mono channel and sampling at 8 kHz. Each sample was quantized to 

be represented with 16 bits, and so there were 1024 samples in each audio packet. 

The Gilbert packet-loss model was used to estimate and set the packet loss rate.  

Figure 3 describes the experiments of testing the speech quality of the cover-

speech and the stego-speech streams with Digital Speech Level Analyser (DSLA), 

which is high-accuracy speech testing equipment made by Malden Electronics Ltd. in 

the United Kingdom. DSLA can be used to achieve a real-time measurement of 

VoIP speech quality by connecting to a microphone or earpiece device. And a set 

of parameters about speech quality can be obtained after the analysis of DSLA, 

such as PESQ, SNR, utterance and frame time offset statistics, frame by frame 

score data, voice activity and clipping analysis and so on. In the experiments, we 

used a player to playback records of English audio as the input to microphone for 

simulating the caller’s speech. The audio samples were standard English and 

Chinese speech records downloaded from the ITU (International Telecommunication 

Union) website. The VoIP communication test was completed over our laboratory’s 

local area network. Comparisons between cover-speech samples and stego-speech 

samples were carried out at the end of the VoIP call. At the receiving end, we 

measured Perceptual Evaluation of Speech Quality (PESQ) scores and Signal-to-

Noise Ratio (SNR) values of cover-speech samples and stego-speech samples using 

DSLA.  

 



 

 

Fig. 3. Speech quality measurements using DSLA. 

4.2 Gilbert Model to Simulate a Network with Packet Loss 

In the information theory, the binary channel is a classic noisy channel model. The 

average packet loss rate is used to describe the packet loss feature of a network in 

such a memoryless channel model. But in actual networks, channels usually have a 

“memory” that there is a short-term correlation between packet-loss events. A 

Markov model could be used to capture the correlation of packet-loss temporarily, 

and it adopts a two-state Markov model, which is known as Gilbert model. The 

Gilbert model is often used to describe a burst packet loss of networks, and it was 

proposed by Gilbert in 1960. Following is a brief description of Gilbert model. 

As Figure 4 shows, the general description of Gilbert model utilizes the 

probability of two independent events. Assuming a random variable X denotes 

whether the packet-loss event has occurred, X=0 means no packet loss, i.e. the packet 

arrives at the destination. And X=1 represents packet loss. In Figure 4, p stands for 

the probability of state “0” changing to state “1”, and q is the probability that state 

“1” changes to state “0”. The number of times that the packet loss event has 

happened is decided by the consecutive packet loss event, which means the number 

 
 



                                                                                                                                         
of times the transition of state “0” changes to state “1” is the same as the number of 

times the transition of state “1” transfers to state “0”. 

 

 

Fig. 4. Gilbert model. 

 

Assuming the sequence of the packet loss state is {i1, i2, ...., in}, ik=0 or 1, 1 <= k <= 

n, where 0 indicates that the packet is lost, 1 means no packet loss. Thus, there are 

four possible events, which can be represented by T1, T2, T3, and T4. The 

probabilities of the four events’ occurrences are 1-p, p, 1-q, and q, respectively. And 

p + q < 1. 

T1: 0——>0 

T2: 0——>1 

T3: 1——>0 

T4: 1——>1 

The specific procedures of the Gilbert packet-loss model at the sending end are 

described as follows: 

Step 1: Predict whether the current packet is lost or not. If the prediction result is 

that the current packet is lost, there will be no embedding operation. If the current 

packet is predicted to be survival, secret data are then embedded into the current 

packet using the steganographic algorithm in [Tang et al. 2014]. 

Step 2: Decide whether to discard the current packet according to the Gilbert 

packet-loss model. If the previous packet state is “0”, when T2 occurs, discard the 

 



 
current packet, and the state changes to “1”; when T1 occurs, include the current 

packet in the transmission queue, keep the state as “0”. If the previous packet state 

is “1”, when T3 occurs, include the current packet in the transmission queue, the 

state changes to “0”; when T1 occurs, discard the current packet, and maintain the 

state as “1”.  

In our experiments, the parameters of p, q were set ahead the communication, 

different values of p, q denoting different packet loss rates. The Gilbert model was 

used to simulate the real network scenarios with different packet loss rates. A 

random sequence with “0”, “1” was generated using the Gilbert packet-loss model. 

“0” indicates that the packet is lost, which means the current voice packet would be 

discarded; “1” means no packet loss, that is to say that the corresponding voice 

packet would be sent without any change. 

The Gilbert model with two-state Markov modes was used to create a network 

environment with packet loss in our laboratory, which was able to set a given 

packet loss rate. The parameters p and q were set by the sender to obtain an 

intended packet loss rate. 

As Table II shows, there were five different packet-loss levels setting in the 

experiments. Generally, the maximum packet loss rate for a speech codec is about 5%, 

which means the speech quality is acceptable when the packet loss rate is less than 

5%. However, in order to measure the prediction accuracy and the data retrieving 

rate at different packet loss levels, some packet loss rates more than 5% were also 

implemented. 

 

Table II. Different packet-loss levels 

Packet-loss Level Level-1 Level-2 Level-3 Level-4 Level-5 

 
 



                                                                                                                                         
p 0.02 0.05 0.07 0.10 0.20 

q 0.90 0.85 0.67 0.70 0.50 

p/q (Packet-loss rate) 0.022 0.059 0.104 0.143 0.400 

 

4.3 VoIP Steganography Results and Discussion 

4.3.1. Experimental Results 

To compare the results between embedding secret data in VoIP streams and no 

embedding in the presence of packet-loss, two sets of tests were carried out, 

respectively. Female and male, English and Chinese speech tests were performed in 

each set of experiments. Experimental analysis included the waveforms in the time-

domain and the spectrums in the frequency-domain of speech samples. The PESQ 

P.862.1 scores and SNR values of speech samples were measured using DSLA. To 

compare and analyze the performance of the proposed covert VoIP scheme in the 

presence of packet loss, the cover-speech samples were used as the reference, and the 

corresponding stego-speech samples were the degraded speech in the speech quality 

test by DSLA. 

Figure 5 shows the waveforms in the time-domain and the spectrums in the 

frequency-domain of the original cover-speech samples and the stego-speech samples 

with embedding secret data in the Gilbert packet-loss network, respectively. As Figs 

5(a1)(a2)(b1)(b2) show, there were almost no differences in the waveforms and the 

spectrums. This also meant that the proposed steganographic algorithm had no or 

little impact on the time domain and the frequency domain of the original cover-

speech samples. Compared the cover-speech samples with the stego-speech samples, 

it is obvious to see in the waveforms that some speeches are missing at packet-loss 

Level-3, Level-4, and Level-5. And the spectrums in the frequency domain are also 

 



 
different between the cover-speech samples and stego-speech samples at packet-loss 

Level-3, Level-4, and Level-5. 

 

 

a1. Waveform comparison at packet-loss Level-1    a2. Spectrum comparison at packet-loss Level-1 

 

 

b1. Waveform comparison at packet-loss Level-2    b2. Spectrum comparison at packet-loss Level-2 

 
 
 



                                                                                                                                         
c1. Waveform comparison at packet-loss Level-3    c2. Spectrum comparison at packet-loss Level-3 

 

 

d1. Waveform comparison at packet-loss Level-4    d2. Spectrum comparison at packet-loss Level-4 

 

 

e1. Waveform comparison at packet-loss Level-5    e2. Spectrum comparison at packet-loss Level-5 

 

Fig. 5. Comparisons in the time-domain and the frequency-domain of cover-speech samples and stego-

speech samples with the hidden secret data. 

 

The stego-speech and cover-speech samples were analyzed by the cross correlation 

function xcorr() in Matlab software to compare the differences of the speech samples 

at different packet loss levels. The function xcorr(s1, s2) returns the cross-correlation 

of two discrete-time sequences s1 and s2, which stand for the cover-speech and stego-

 



 
speech samples in our test. Cross-correlation measures the similarity between s2 and 

shifted (lagged) copies of s2 as a function of the lag.  

Figure 6 shows the cross-correlation results of cover and stego speech samples at 

different packet loss levels. X axis represents the lag, expressing the delay as a 

number of samples and in seconds. Y axis denotes the cross correlation degree. If x = 

0, the greater the y value, the more similar the cover and stego speech samples are, 

which means the less packets lost. And when x ≠ 0, the more points of the y value of 

zero, the greater similarity of the cover and stego speech samples. As can be seen 

from Fig. 6, the cover-speech samples and the stego-speech samples at packet-loss 

Level-1 and Level-2 have the greater similarity. And the differences are greater with 

higher packet loss levels. 

 

 

Fig. 6. The cross-correlation results of cover-speech and stego-speech at different packet loss levels. 

 

In the PESQ measurements, the cover-speech samples played by the caller were 

used as the reference signal for DSLA input, and two speech categories were 

measured as the degraded signals. One category was the stego-speech samples with 

the hidden data based on the Gilbert packet-loss model received at the receiving end, 
 
 



                                                                                                                                         
marked as “with-embedding”. The other category was the stego-speech samples 

without data embedding based on the Gilbert packet-loss model received at the 

receiving end, denoted as “no-embedding”. Figures 7 and 8 show the differences and 

variation tendency of the PESQ and SNR values at different packet loss levels. The 

data in Figs. 6 and 7 are the average values of the results obtained from 15 repeated 

experimental measurements.   

Figure 7 shows comparisons in the average PESQ score between the “no-

embedding” stego-speech samples and the “with-embedding” stego-speech samples. 

As the packet-loss level increased, the speech quality of stego-speech samples 

appeared a decreasing trend. And the “with-embedding” stego-speech samples had 

worse speech quality than the “no-embedding” stego-speech samples. When the 

packet-loss level reached Level-3, the PESQ scores of the “no-embedding” stego-

speech samples were smaller than 3, which is basically unacceptable in view of VoIP 

communication. The average variance of PESQ score between the “no-embedding” 

stego-speech samples and the “with-embedding” stego-speech samples was about 

0.717, and the variances narrowed with the increasing packet-loss level, indicating 

that the packet-loss factor has a greater impact on speech samples than the applied 

steganographic algorithm. However, the PESQ scores were unusually high at the 

packet loss Level-4 compared with those at the packet loss Level-3. The reason may 

be that most packet loss events occurred in inactive speech periods at Level-4, which 

means packet loss in inactive speech periods had less impact on the speech quality. 

And comparing with embedding secret data, packet loss in active speech periods had 

more impact on quality of speech. So sometimes the “with-embedding” stego-speech 

samples have higher quality of speech than the corresponding “no-embedding” 

speech samples. Figure 8 shows comparisons in the mean SNR values between the 

“no-embedding” stego-speech samples and the “with-embedding” stego-speech 

 



 
samples. The SNR values had almost the same changing trends as the packet-loss 

level increased. 
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Fig. 7. Comparisons of the average PESQ scores between the “no-embedding” speech samples and the 

“with-embedding” stego-speech samples. 
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Fig. 8. Comparisons of the mean SNR values between the “no-embedding” speech samples and the “with-

embedding” stego-speech samples. 

 

 

 

4.3.2. Statistical Undetectability 

 

Table III. M-W-W analysis results 

Test 
Number of 

Samples  
Rank sum z* P-value H 

Level 1 56000 3.1378e+9 0.3014 0.7631 0 

Level 2 56000 3.1365e+9 0.0744 0.9407 0 

Level 3 56000 3.1366e+9 0.0851 0.9321 0 

Level 4 56000 3.1396e+9 0.6450 0.5189 0 

Level 5 56000 3.1368e+9 0.1230 0.9021 0 

 

The Mann-Whitney-Wilcoxon (M-W-W) test was adopted to evaluate the statistical 

undetectability of the proposed steganographic algorithm. The M-W-W test is one of 

the best-known non-parametric significance tests, which can be used for assessing 

whether two independent samples of observations come from the same distribution. 

In our experiment M-W-W test was used to test the null hypothesis that samples in 

the cover-speech and the stego-speech samples are from continuous distributions 
 



 
with equal medians, i.e., the cover-speech and the stego-speech do not differ, against 

the alternative that they are not differ. The result H = 1 indicates a rejection of the 

null hypothesis, and H = 0 indicates a failure to reject the null hypothesis at a 

significance level. In our test, the significance level was set to be 0.05. In computation 

of M-W-W test, the length of speech samples was 6 seconds, and the number of 

samples (data points) in cover-speech and stego-speech was 56000. And the M-W-W 

test was conducted by using the ranksum() function in Matlab software. As shown in 

Table III, the values of H were 0 at different packet loss levels, which indicated that 

the null hypothesis was true, i.e., the cover-speech and the stego-speech did not differ. 

This means that the proposed steganographic algorithm can withstand steganalysis 

based on statistical analysis. 

 

4.3.3. Robustness Analysis 

The VoIP communication system is based on the UDP protocol, which is 

connectionless and unreliable delivery. And there is no retransmission in a VoIP 

application. A packet loss prediction was proposed to decide whether the VoIP packet 

with hidden data would be lost in a poor communication channel, therefore reducing 

the loss of secret data for increasing the robustness of covert communications. The 

higher accuracy of the packet loss prediction method, the better the robustness. 

Figure 9 presents changes in the data retrieving rate at different packet-loss 

levels. Close analysis of Figures 8 and 9 shows that both the average PESQ scores 

and the SNR values of stego-speech samples had the same varying trend with the 

data retrieving rate as the packet-loss level increased, especially the speech quality 

was unusually high at the packet loss Level-4 compared with that at the packet loss 

Level-3. These results suggest that the success rate of the fractal prediction model 

affects the performance of the VoIP communication with steganography. 
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Fig. 9. Changes in the data retrieving rate with the increasing packet-loss. 

 

The data retrieving rate stands for the accuracy of the packet loss prediction. The 

higher the data retrieving rate, the greater robustness the covert communication. 

Some secret data hidden in VoIP packets would be lost in a bad communication 

channel, the packet loss prediction could save some but not all the secret data. An 

underlying secret data retransmission scheme based on TCP was proposed to succeed 

covert communications; however, it had a big impact on the real-time quality for the 

reason of the time consuming of TCP delivery. As a result, the retransmission 

method was not included in the proposed scheme.  

4.4 Comparisons with Other Steganographic Methods 

To confirm the effectiveness of the proposed covert VoIP communication scheme in 

the presence of packet loss, performance comparisons were conducted by comparing 

the steganographic bandwidth, undetectability, and consideration of packet loss.  

The steganographic bandwidth is an important performance metrics for VoIP 

steganography. In our experiments, the VoIP audio samples were obtained using 

mono channel and sampling at 8 kHz, which means that there were 128 ms speech in 

each packet with 1024 samples. And the steganographic bandwidth can be calculated 

by the equation (8): 

 



 

(ms)packet each in length Speech 
(bit)packet each in  datasecret hidden   theoflength  Thebandwidth  phicSteganogra =  (8) 

The value of the variable embedding interval used in the data embedding 

steganographic algorithm was set as 16 for the proposed covert VoIP communication 

scheme in our experiments, and the average steganographic bandwidth in the 

experiments was determined to be 0.5kbit/s in the selected audio signals. 

Table IV shows comparisons in the steganographic bandwidth, undetectability, 

and consideration of packet loss between the proposed covert VoIP communication 

scheme and some other existing VoIP steganographic methods. Results show that the 

proposed scheme has an acceptable steganographic bandwidth with undetectability, 

but only our scheme had taken into account packet loss for VoIP communications 

with steganography. 

 

Table IV. Comparisons of our scheme with other VoIP steganographic methods  

 Steganographic 

bandwidth (Kbits/s) 

Undetectability Consideration of 

packet loss 

Proposed scheme 0.5 + + 

Miao et al. 2011 7.5 + N/A 

Wu et al. 2006  20 + N/A 

Huang et al. 2012 0.1333 + N/A 

Tian et al. 2008  0.8-2.6 + N/A 

Xu et al. 2009 0.1333 N/A N/A 

Takahashi and 

Wenke 2007 

8 N/A N/A 

Liu et al. 2008 0.2 + N/A 

Mazurczyk et al. 

2014 

0~10 

(Time dependent) 

+ + 

 

 
 



                                                                                                                                         
Some data in Table IV derived from the paper [Mazurczyk 2013]. 

 

5. CONCLUSIONS 

In this study, a fractal-based VoIP steganographic approach was proposed to realize 

covert VoIP communications in the presence of packet loss. The prediction model 

based on fractal interpolation was built to decide whether a VoIP packet was suitable 

for data hiding. The proposed steganography scheme for covert VoIP communication 

with packet loss was implemented on our StegPhone VoIP communication platform. 

Female and male, English and Chinese speech tests were carried out in each set of 

experiments. The experimental results included the waveforms in the time-domain 

and the spectrums in the frequency-domain of speech samples, and the PESQ scores 

and SNR values of the “no-embedding” and “with-embedding” stego-speech samples. 

As the packet-loss level increased, the speech quality of stego-speeches had a 

decreasing trend. Both the average PESQ scores and the SNR values of stego-speech 

samples and the data retrieving rates had almost the same varying trend when the 

packet-loss level increased, revealing that the success rate of the fractal prediction 

has a significant effect on the performance of VoIP communications with 

steganography. 

The proposed covert VoIP communication scheme with fractal packet loss 

prediction has a feature of generalizability, which means it can be applied to other 

speech codecs, such as G.729, G.723.1 and Speex. Covert VoIP communications based 

on different speech codecs need to employ different steganographic methods, 

resulting in different speech qualities and embedding capacities. When the proposed 

scheme are implemented with other speech codecs, the corresponding embedding 

algorithms should be used to obtain good quality of speech. Moreover, the packet loss 

prediction model can also reduce the impact of packet loss on the secret data. 

 



 
Further studies are necessary to determine the effectiveness of the proposed 

covert VoIP communication scheme when other low bit-rate VoIP codecs are used. A 

great effort should be made to achieve a high success rate with the prediction model. 
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