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ABSTRACT Increased energy consumption becomes a major issue in 5G cellular networks, which inspires
the network operators to deploy renewable energy sources. However, due to the fluctuating nature of
renewable energy sources, the energy harvested by base stations (BSs) may not fit for their load conditions.
The transmit power of the BS needs to be redesigned again. Hence, this paper considers power control in
energy cooperation enabled millimeter wave networks, to alleviate the harvested energy imbalance problem
and reduce the energy waste. Each BS is solely powered by renewable energy sources and the harvested
energy is allowed to be transferred between BSs. Each BS needs to determine whether the energy should
be stored in the battery or transferred to others at each time slot. In this paper, power control is formulated
as a stochastic optimization problem, aiming at maximizing the time average network utility while keeping
the network stable. An online algorithm called dynamic energy-aware power allocation is proposed based
on Lyapunov optimization, which does not need to acquire any statistical knowledge of channels and traffic
arrivals. Simulation results show that compared with the power control scheme without energy cooperation,
the proposed algorithm with energy cooperation can achieve higher network sum rate while reducing the
delay and the required battery capacity.

INDEX TERMS Energy cooperation, millimeter wave, power control, online algorithm.

I. INTRODUCTION
Nowadays, the enormous amount of data requirement pushes
the limits of energy consumption in wireless communica-
tion networks. By 2020, there will be 50 billion connected
devices [1]. Such vast level of connectivity will lead to an
unprecedented surge in global energy consumption with-
out effective energy management. According to the latest
data, Information and Communications Technology (ICT)
accounts for about 10% of the world’s energy consump-
tion [2]. In addition, the environmental issues such as carbon
emissions are also critical. These stimulate more emerging
technologies to be implemented to meet the energy saving
targets. Energy harvesting technology is one of the viable
solutions which can reduce both the carbon dioxide (CO2)
emission and the energy cost [3]. It can harvest green energy
from ambiance such as solar panels and wind turbines to
power base stations (BSs).

Although energy harvesting is a viable solution for reduc-
ing energy consumption of cellular networks, it also brings
challenges to resource allocation and wireless network archi-
tecture designs [4]. Due to the fluctuating nature of renew-
able energy sources, the renewable energy harvested at BSs
may not be adequate to meet their load conditions and it is
critical to explore new resource allocation schemes for green
5Gwireless networks. In general, based on the characteristics
of the energy harvester and the impact of the surrounding
environment, the resource allocation model for renewable
energy powered wireless networks can be offline (determin-
istic) or online (stochastic). An online algorithm is triggered
by energy arrivals or channel status variations (if any) and
decisions on transmission policy have to be made based on
only causal (the output only depends on the past and current
inputs) information about the energy harvesting process dur-
ing the transmissions. While full knowledge is known for the
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energy and data arrival rate by transmitters in offline scenar-
ios, offline schemes are always the starting points of most
researchworks in this area and provide the performance upper
bounds for online schemes. Therefore, this paper focuses on
the online scheme in energy cooperation enabled millimeter
wave (mmWave) networks with renewable energy harvesting.

A. PRIOR WORK AND MOTIVATION
Considerable research efforts have been devoted to address
the resource allocation problem with energy harvesting in the
point-to-point scenario. In [5], packet scheduling problem is
considered to minimize the transmission completion time in
a fading channel. The work of [6] aims to adaptively change
the transmission rate based on the traffic load and avail-
able energy in a single-user wireless communication system.
It considers both all bits arrived before the transmission starts
and bits arrive during the transmissions these two scenarios.
A recursive geometric waterfilling algorithm is proposed
in [7] for power control with a sum power constraint. It
targets to maximize the throughput in a fading channel.
Huang et al. [8] study the optimal power allocation prob-
lem to minimize the outage probability in point-to-point
fading channels. For online scenarios, the work of [4] uses
stochastic dynamic programming tomaximize the throughput
by a deadline under stochastic fading with causal channel
state feedback, and the capacity of the battery is limited in
this wireless fading channel. Using dynamic programming
to maximize the throughput is also considered in [9]. This
contribution optimizes the energy allocation over a finite time
horizon and studies the structure of the maximum throughput
and the corresponding optimal energy allocation solution,
including concavity and monotonicity. Meanwhile, there are
also other works for maximizing the average reward rate in
terms of message values [10] and minimizing the estimation
error covariance [11].

The implementation of energy harvesting in multi-user
systems has been considered in [12]–[14]. In [12], the optimal
packet scheduling problem is considered in an offline two-
user system, and each user has an energy harvester. The
goal is to minimize the average transmission time to the
receiver by optimizing the transmit powers and transmis-
sion rates of two users. It develops an iterative waterfilling
algorithm to acquire the departure region and solves the
problem by convex optimization. Meanwhile, the existing
works also consider the scenario with multiple users [13],
[14]. In [13], the sum-rate of an N -user fading channel is
maximized under the constraints of the battery capacity and
the maximum energy consumption. The formulated convex
optimization problem is solved by the iterative water-filling
algorithm. In [14], the transmit powers and transmission
rates are optimized to minimize the transmission completion
time in an additive white gaussian noise (AWGN) broadcast
channel. The core idea of [14] is that the total power can be
optimally split based on a cut-off power level, and accord-
ingly an algorithm is proposed to find the global optimal
policy.

Meanwhile, recent works such as [15]–[21] have focused
on energy harvesting enabled cellular networks. In [15],
power control is studied in device-to-device (D2D) enabled
cellular networks and aims to maximize the overall through-
put. In order to minimize the grid energy consump-
tion, a green energy optimization problem is addressed
in [16]. A sub-carrier and power allocation scheme in down-
link OFDMA downlink networks is proposed in [17], so as
to maximize the energy efficiency of the network while the
storage of each BS is finite. The formulated offline problem
of [17] is solved by fractional programming and Lagrange
dual analysis. In [18], The average grid power consumption
minimization problem is formulated by optimizing the BS
sleeping policy, subcarriers allocation and renewable energy
allocation. The formulated problem is solved in two steps and
a two-stage dynamic programming algorithm is established.
A two-timescale delay optimal transmission control and user
association problem for downlink coordinated MIMO sys-
tems is proposed in [19]. It formulates the problem as a
partially observed Markov decision problem and acquires a
delay-aware distributed solution to reduce the complexity.
Han and Ansari [20] propose a distributed user associa-
tion scheme called Green-energy Aware and Latency Aware
(GALA) in HetNets, which can decrease the on-grid power
consumption and the average traffic delivery latency. The
power control problem is considered in [16]. This work
seeks to find the optimal pilot signal power and the coverage
area of each BS in order to minimize the overall on-grid
energy consumption. In [21], a joint bandwidth and power
allocation approach for both uplink and downlink is proposed
to maximize energy efficiency for both UEs and network
operators.

Although batteries can store the extra harvested energy
for later use in renewable energy harvesting networks, some
BSs may always have abundant harvested energy (e.g., bet-
ter sunshine conditions) and these energy is wasted, while
other BSs’ harvested energy is insufficient. Besides, the
deployment of BSs with large energy storage brings high
expenditure of the networks [22]. Hence, the use of storage
solely cannot solve the energy fluctuating problem. With the
recent development of the smart grid that enables both two-
way information and energy flows, the concept of energy
cooperation is introduced to mitigate the energy imbalance
problem [23]. Energy cooperation allows energy to be shared
between BSs with some energy waste through the energy
transmission process. By this way, BSs can send its excessive
energy to BSs whose energy are deficient. In addition, it can
reduce the required battery capacity which can diminish the
capital expenditures (CAPEX).

Energy cooperation in renewable energy harvesting
enabled cellular networks has attracted recent attention.
In [22], the joint spectrum and energy cooperation between
two BSs in two neighboring cellular systems was studied
to minimize the energy cost through power control and
spectrum allocation. Then, the paper considers a partially
cooperative scenario where the BSs have their own interests.
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The joint communication and energy cooperation is studied
in [24] and [25]. In [24], all BSs can trade energy via the
aggregator in the smart grid with different prices in order
to minimize the total energy cost. In [25], information and
energy are assumed to be transferred between BSs via the
smart grid, and the power control problem is formulated
as an optimization problem to maximize the sum rate of
the system. The energy trading problem is also studied
in [26], with the objective of minimizing the time average
cost of energy exchange between two BSs. The formulated
stochastic optimization problem in [26] is solved by Lya-
punov optimization. Lyapunov optimization is a useful tech-
nique to solve stochastic optimization problems. It does not
demand any statistical knowledge of the channel, traffic and
energy, which can be used for power control and routing
algorithms [27].

In fifth generation (5G) wireless networks, mmWave is
one of the key technologies to deliver higher data rates
and lower latency [28]. It owns a huge swath of spectrum
between 30 GHz and 300 GHz to shift wireless transmissions
away from the current bandwidth-limited networks. How-
ever, compared with conventional cellular networks, higher
propagation loss and the use of large number of antennas
in mmWave networks give rise to high energy consump-
tion. Therefore, renewable energy harvesting in mmWave
networks is an appealing solution for reducing the energy
cost.

B. CONTRIBUTIONS AND ORGANIZATION
While there aremany prior works concerning resource alloca-
tion in energy cooperation enabled radio access networks, the
energy management problem in mmWave networks is open.
The unique features of mmWave channel including different
propagation laws and sensitivity to blockages have a sig-
nificant effect on the energy management. The conventional
energy management designs are unsuitable for mmWave net-
works, due to the ignorance of mmWave channel character-
istics. To the best of our knowledge, energy management in
energy cooperation enabled mmWave networks has not been
studied yet. Motivated by these, in this paper, we study the
energy management problem in energy cooperation enabled
mmWave cellular networks. By considering the stochastic
traffic and energy arrivals, we formulate a stochastic opti-
mization problem to maximize the time average throughput
of the total network.We propose an online algorithm based on
Lyapunov optimization. The main contributions of this paper
are summarized as follows.
• We formulate a downlink optimization problem for opti-
mizing the harvested energy, transmit powers and the
transferred energy among BSs in a mmWave cellular
network, to maximize the network utility while keep-
ing the network stable such that the network back-
log is bounded and the required battery capacity is
finite. Each BS is solely powered by renewable energy
sources, and the data and energy arrival rates are
stochastic.

• Based on the Lyapunov optimization technique, we
propose an online Dynamic Energy-aware Power Allo-
cation (DEPA) algorithm to solve the formulated prob-
lem. Then, we analyze the performance of the proposed
DEPA algorithm. It is confirmed that when the appro-
priate value of perturbation is selected, the proposed
algorithm satisfies the network stability. The data queue
and the required energy storage capacity keep in a low
level.

• Finally, we investigate the performance of the proposed
algorithm through simulations. The impacts of BS num-
bers, energy transfer efficiency and a control variable
used for Lyapunov optimization are illustrated.

The remainder of the paper is organized as follows.
Section II presents the system model and formulates the opti-
mization problem. Section III gives the Lyapunov analysis
and proposes the DEPA algorithm. After that, we present
our simulation results in Section IV. Finally, Section V gives
conclusions.

II. NETWORK MODEL AND PROBLEM FORMULATION
In this section, the system model of energy cooperation
in mmWave networks is presented which has not been
investigated before and the power control problem in
energy cooperation enabled mmWave networks is
formulated.

A. NETWORK DOWNLINK MODEL
As shown in Fig. 1 of this paper, we model a downlink energy
cooperation enabled mmWave cellular network, where BSs
are solely powered by renewable energy sources,1 and energy
can be shared between BSs through smart grid. In such a
network, there are M mmWave BSs denoted as BSj, j ∈
{1, 2, ...,M} that share the same spectrum, and users are
randomly located. User association is assumed to be already
implemented before the power allocation, and there are Nj
user equipments (UEs) denoted as UE ij (i ∈ {1, 2, ...,Nj})
served by BSj. All BSs and users are equipped with direc-
tional antennas, and the antenna gains achieved by each BS
and user are Gb and Gu, respectively.
Due to the use of higher frequencies and directional

transmissions, mmWave cellular networks tend to be noise-
limited [28]–[30], which means that the interference between
BSs can be negligible. Thus, under the framework of the
Shannon equation, the theoretical downlink data rate of a user
i connected to the BS j at time slot t is given by

Rij (t) = (Nj)−1log2

(
1+

Pj (t)Lij
(
dij
)
GbGu

σ 2
o

)
, (1)

where Pj (t) is the transmit power of BS j at time t , σ 2
o is the

noise power level. Lij
(
dij
)
is the path loss between the user i

and its associated BS j with a distance dij. Each user receives

1In this paper, to focus on the power control and energy cooperation
problem, we do not make a specific assumption of the type of the renewable
energy sources being used.
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FIGURE 1. An example of an energy cooperation enabled mmWave cellular network powered by solar panels.

(Nj)−1 of all the spectrum of BS j and the overall spectrum
of BS j is normalized to 1. The channel is regarded as static
and the data rate is considered as time-averaged. The path
loss laws are different in line-of-sight (LOS) and non-line-
of-sight (NLOS) conditions. In this paper, the mmWave path
loss model proposed in [30] is employed and each mmWave
link can be in one of three conditions: LOS, NLOS or
outage.

The unit size of time is "slots" and the amount of trans-
mitted data between user i and BS j in time slot t is
Rij (t) × (1 slot). Here, we omit the implicit multiplication
by 1 time slot when converting between the data rate and the
amount of data that transmit from the queue per time slot as
suggested in [31]. In the same manner, the unit of the Pj (t) is
joule when converting between power and energy. As such,
the transmitted data of the whole network at the time t is
given by

U (t) =
M∑
j=1

Nj∑
i=1

Rij (t) (2)

B. USER’S TRAFFIC AND DATA QUEUE MODEL
We assume that the data traffic required by the user is stochas-
tic. The amount of data traffic arrival for user i served by BS j
during time slot t is Dij (t). Let Dmax denote the maximum
allowable data traffic arrival rate per user due to backhaul
capacity constraint, then we have

0 ≤ Dij (t) ≤ Dmax,∀i, j, t. (3)

Based on the downlink data rate and traffic arrival rate, the
data queue length Qij (t) for user i served by BS j evolves as
follows:

Qij(t + 1) = [Qij(t)− Rij(t)]+ + Dij(t), ∀i ∈ U , j ∈ B,
(4)

where [x]+ = max {0, x}. At the beginning, we assume
Qij (0) = 0,∀i, j.

C. ENERGY COOPERATION AND ENERGY QUEUE MODEL
Each BS stores the energy harvested from renewable energy
sources and transferred energy from other BSs in its battery.
At time t , the available energy at BS j is Ej (t), and the
amount of BS j’s energy harvested from renewable energy
sources is ej (t). We assume that there exists the maximum
value emax for harvesting renewable energy during the day,
i.e., ej (t) ≤ emax < ∞,∀j, t . We assume that the energy
can be exchanged among BSs through the smart grid. The
transferred energy from BS j to BS j

′

is εjj′ (t). Since the
energy storage at each BS is limited, the total transferred

energy from BS j to other BSs satisfies
M∑

j′=1,j′ 6=j

εjj′ (t) ≤

ε
(out)
max <∞,∀j, t , and total transferred energy received at BS

j satisfies
M∑

j′=1,j′ 6=j

βεj′ j (t) ≤ ε
(in)
max <∞,∀j, t . ε

(in)
max and ε

(out)
max

are the maximum energy can be transferred from/to each BS
respectively. Here, β ∈ [0, 1] is the energy transfer efficiency
between two BSs. The larger this value, the smaller energy
loss in the energy exchange process. Considering the fact
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that total energy consumed by each BS should not exceed
the total power supply including the harvested energy and the
transferred energy, we have the following power consumption
constraint at time t:

Pj (t) ≤ Ej (t)+
M∑

j′=1,j′ 6=j

βεj′ j (t)

−

M∑
j′=1,j′ 6=j

εjj′ (t), ∀t,∀j ∈ B. (5)

The transmit energy of BS j at time t is Pj (t) × (1 slot),
and we omit the implicit multiplication by 1 time slot
of the Pj (t) when converting between power and energy.
Under this constraint, the energy queue length evolves as
follows:

Ej (t + 1) = Ej (t)− Pj (t)+ ej (t)

+

M∑
j′=1,j′ 6=j

βεj′ j (t)−
M∑

j′=1,j′ 6=j

εjj′ (t). (6)

D. PROBLEM FORMULATION
Wepropose an online algorithm tomaximize the time average
network utility while keeping the network stable. The utility
of an user i connected to the BS j is Rij (t). The variables
we optimized are transmit powers of BSs Pj(t), the harvested
energy ej(t) and energy transferred between BSs εjj′ (t) at
every time slot. Then, the problem is formulated as

max lim
T→∞

sup
1
T

T−1∑
t=0

E [U (t)]

s.t. C1 : lim
T→∞

sup
1
T

T−1∑
t=0

E

 M∑
j=1

Nj∑
i=1

Qij (t)

 <∞,
C2 : lim

T→∞
sup

1
T

T−1∑
t=0

E

 M∑
j=1

Ej (t)

 <∞,
C3 : Pj (t) ≤ Ej (t)+

M∑
j′=1,j′ 6=j

βεj′ j (t)

−

M∑
j′=1,j′ 6=j

εjj′ (t),∀t,∀j,

C4 : Pj (t) ≤ Pmax,∀t,∀j,

C5 : ej (t) ≥ 0,Pj (t) ≥ 0, εj′ j (t) ≥ 0,∀t,∀j, j
′

, j 6= j
′

,

var. ej (t) ,Pj (t) , εj′ j (t) , ∀t, (7)

where E[·] represents the expectation that is taken over the
potential randomness of the channel and energy states and
control decision at time t [27]. Constraint (C1) ensures that

the length of data queue is bounded to avoid an intolerant
delay. (C2) ensures that the length of energy queue is bounded
such that we only need finite battery capacity. (C3) is the
energy consumption constraint, which means the energy of
each BS obtained from renewable energy sources and other
BSs should greater than the consumption of it. (C4) is the
maximumBS transmit power constraint, and (C5) makes sure
that powers are non-negative. In the next section, we will
show how we solve the formulated stochastic problem by
Lyapunov optimization technique.

III. ALGORITHM DESIGN BASED ON LYAPUNOV
OPTIMIZATION
In this section, we develop an online algorithm for solv-
ing the stochastic optimization problem (7) with the help
of Lyapunov optimization. Compared with the conventional
methods such as Markov decision processes and dynamic
programming, Lyapunov optimization only needs the knowl-
edge of the traffic and energy arrivals of the current time slot,
which is a useful method for solving stochastic optimization
problems [26].

A. LYAPUNOV OPTIMIZATION
Firstly, the Lyapunov function is defined as

L (t) =
1
2

M∑
j=1

Nj∑
i=1

(
Qij (t)

)2
+

1
2

M∑
j=1

(
Ej (t)− θj

)2
, (8)

where θj is a perturbation. By adding a perturbation,
It can ensure that there are always enough energy in
the energy queue for transmission. The Lyapunov func-
tion is used to measure the data and energy flow in the
system.

The Lyapunov drift is used to measure the expected differ-
ence for the Lyapunov function between the time slot t and
(t + 1). Let Z (t) = [Q(t),E(t)] with Q(t) = [Qij (t)] and
E(t) = [Ej (t)], the one-time conditional Lyapunov drift is
given by

1(t) = E
[
L (t + 1)− L (t) |Z (t)

]
. (9)

In addition, considering the objective function of problem (7),
the drift-plus-penalty is defined as

1V (t) = 1(t)−VE
[ M∑
j=1

Nj∑
i=1

Rij (t)|Z (t)
]

︸ ︷︷ ︸
Penalty term

. (10)

In (10), V is a non-negative control variable which represents
the relative importance of minimizing the energy and data
queue length to a lower level and maximizing the sum rate of
the whole network. The upper bound of the drift-plus-penalty
is derived as follows.
Lemma 1: For any feasible values of ej (t), Pj (t), εj′ j (t),

V and Z (t) at time t , the drift-plus-penalty is upper
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bounded as

1V (t) ≤ A−
M∑
j=1

Nj∑
i=1

Qij (t)E
[(
Rij (t)− Dij (t)

)
| Z (t)

]
−

M∑
j=1

(
Ej (t)− θj

)
E
[
Pj (t)− ej (t)+

M∑
j′=1,j′ 6=j

εjj′ (t)

−

M∑
j′=1,j′ 6=j

βεj′ j (t) | Z (t)
]
− VE

[ M∑
j=1

Nj∑
i=1

Rij (t) | Z (t)
]
,

(11)

where A is a positive constant value satisfying

A ≥

M∑
j=1

Nj∑
i=1

Dmax

2
+

M∑
j=1

Nj∑
i=1

E

[(
Rij (t)

)2
2

| Z (t)

]

+M

(
Pmax + ε

(out)
max

)2
+

(
emax + ε

(in)
max

)2
2

. (12)
Proof: To obtain the upper bound of the drift-plus-

penalty 1V (t), we first need to calculate the difference for
the Lyapunov function between the time slot t and t + 1, i.e.,

L (t + 1)− L (t)

=

M∑
j=1

Nj∑
i=1

(
Qij (t + 1)

)2
−
(
Qij (t)

)2
2︸ ︷︷ ︸

21

+

M∑
j=1

(
Ej (t + 1)− θj

)2
−
(
Ej (t)− θj

)2
2︸ ︷︷ ︸

22

. (13)

Based on (4), the square of the data queue for user i served
by BS j at time t + 1 is upper bounded as(

Qij (t + 1)
)2
≤
(
Qij (t)

)2
+
(
Rij (t)

)2
+
(
Dij (t)

)2
− 2Qij (t)

(
Rij (t)− Dij (t)

)
. (14)

By summing (14) over all i and j, we have

21 ≤

M∑
j=1

Nj∑
i=1

(
Rij (t)

)2
+
(
Dij (t)

)2
2

−

M∑
j=1

Nj∑
i=1

Qij (t)
(
Rij (t)− Dij (t)

)

(a)
≤

M∑
j=1

Nj∑
i=1

Dmax

2
+

M∑
j=1

Nj∑
i=1

(
Rij (t)

)2
2

−

M∑
j=1

Nj∑
i=1

Qij (t)
(
Rij (t)− Dij (t)

)
, (15)

where (a) is obtained by using the backhaul capacity con-
straint in (3). Then, considering energy queue given by (6),
the square of the energy queue for user i served by BS j at
time t + 1 is upper bounded as

(
Ej (t + 1)− θj

)2
≤
(
Ej (t)− θj

)2
+

(
Pj (t)+

M∑
j′=1,j′ 6=j

εjj′ (t)
)2

+

(
ej (t)+

M∑
j′=1,j′ 6=j

βεj′ j (t)
)2
− 2

(
Ej (t)− θj

)
×
(
Pj (t)− ej (t)

)
− 2

(
Ej (t)− θj

)
×

( M∑
j′=1,j′ 6=j

εjj′ (t)−
M∑

j′=1,j′ 6=j

βεj′ j (t)
)

≤
(
Ej (t)− θj

)2
+

(
Pmax + ε

(out)
max

)2
+

(
emax + ε

(in)
max

)2
− 2

(
Ej (t)− θj

) (
Pj (t)− ej (t)

)
− 2

(
Ej (t)− θj

) ( M∑
j′=1,j′ 6=j

εjj′ (t)−
M∑

j′=1,j′ 6=j

βεj′ j (t)
)
.

(16)

By summing (16) over all j, we have

22 ≤ M

(
Pmax + ε

(out)
max

)2
+

(
emax + ε

(in)
max

)2
2

−

M∑
j=1

(
Ej (t)− θj

) (
Pj (t)− ej (t)

)
−

M∑
j=1

(
Ej (t)− θj

)
×

( M∑
j′=1,j′ 6=j

εjj′ (t)−
M∑

j′=1,j′ 6=j

βεj′ j (t)
)
. (17)

Based on (15) and (17), the one-time conditional Lyapunov
drift 1(t) is upper bounded as

1(t)

≤ A−
M∑
j=1

Nj∑
i=1

Qij (t)E
[(
Rij (t)− Dij (t)

)
| Z (t)

]
−

M∑
j=1

(
Ej (t)− θj

)
E
[
Pj (t)− ej (t)+

M∑
j′=1,j′ 6=j

εjj′ (t)

−

M∑
j′=1,j′ 6=j

βεj′ j (t) | Z (t)
]
, (18)

VOLUME 5, 2017 437



B. Xu et al.: Energy-Aware Power Control in Energy Cooperation Aided mmWave Cellular Networks With Renewable Energy Resources

where A satisfies

A ≥

M∑
j=1

Nj∑
i=1

Dmax

2
+

M∑
j=1

Nj∑
i=1

E

[(
Rij (t)

)2
2

| Z (t)

]

+M

(
Pmax + ε

(out)
max

)2
+

(
emax + ε

(in)
max

)2
2

. (19)

Substituting (18) into (10), we get the upper bound of the
drift-plus-penalty 1V (t), and complete the proof. �

Base on the stochastic optimization introduced
in [32, Ch. 4], the control decision is made at every time t
for minimizing the upper bound of drift-plus-penalty given
in the right-hand-side (RHS) of (11). Note that the penalty

term −VE
[ M∑
j=1

Nj∑
i=1

Rij (t)|Z (t)
]
in (11) is used to seek bal-

ance between minimizing queue length drift and maximizing
the network utility, and larger V represents that increasing
the data rate is more essential. Therefore, by removing the
expectation operations and constant terms in the RHS of (11),
an optimization problem needs to be solved at time t , which
is as follows:

max
e(t),P(t),ε(t)

M∑
j=1

Nj∑
i=1

Qij (t)Rij (t)−
M∑
j=1

(
Ej (t)− θj

)
ej (t)

+

M∑
j=1

(
Ej (t)− θj

) (
Pj (t)+

M∑
j′=1,j′ 6=j

εjj′ (t)

−

M∑
j′=1,j′ 6=j

βεj′ j (t)
)
+ V

M∑
j=1

Nj∑
i=1

Rij (t) (20)

s.t. C3,C4,C5.

Since the objective is to maximize (20), there will be no
energy harvesting at BS j when Ej (t) > θj, i.e. ej (t) = 0.
This also ensures that the energy storage of each BS is finite
(more details will be illustrated in the following subsection).
After the energy harvesting decision, the power allocation
policy (P (t) , ε (t)) at time t is given by solving the following
problem:

max
P(t),ε(t)

M∑
j=1

Nj∑
i=1

Qij (t)Rij (t)+
M∑
j=1

(
Ej (t)− θj

) (
Pj (t)

+

M∑
j′=1,j′ 6=j

εjj′ (t)−
M∑

j′=1,j′ 6=j

βεj′ j (t)
)

+ V
M∑
j=1

Nj∑
i=1

Rij (t) (21)

s.t. C3,C4,C5.

It can be seen that the objective function of problem (21) is
concave and the constraint functions are affine, which can
be solved by existing convex optimization softwares such as
CVX [33]. Base on the stochastic optimization introduced

Algorithm 1 Dynamic Energy-aware Power Allocation
(DEPA) Algorithm
1: if t = 0, then
2: Intialize the perturbation vector θ .

Observe the data queue length Qij (t) and the
energy queue length Ej (t), ∀i, j.

3: else
4: repeat
5: Energy harvesting decision:

BS j harvests energy when Ej (t) ≤ θj, ∀j.
6: Power control decision:

Obtain (P(t), ε(t)) by solving (21) using CVX.
7: t = t + 1.
8: Update the data queue length based on (4), ∀i, j.
9: Update the energy queue length based on (6), ∀j.
10: Until t = tend.
11: end if

in [32], problem (21) is equivalent to (7) and the original prob-
lem is solved. Finally, we obtain the proposed DEPA algo-
rithm for solving our stochastic optimization problem (7),
which is shown in Algorithm 1.

B. PERFORMANCE ANALYSIS
In this subsection, we analyze the performance of the pro-
posed DEPA algorithm, to showcase some important proper-
ties. When the channel state of each node is independent and
identically distributed (i.i.d.), the following theorem can be
obtained by using DEPA algorithm.
Theorem 1: a) The average data queue length is upper

bounded as

lim
T→∞

sup
1
T

T−1∑
t=0

E

 M∑
j=1

Nj∑
i=1

Qij (t)

 ≤ Ã+ VRmax

ξ
(22)

with

Ã = A+
M∑
j=1

θj

(
Pmax + ε

(out)
max

)

+

(
emax + ε

(in)
max

) M∑
j=1

(
θj + ε

(in)
max + emax

)
,

where Rmax ≥ E
[ M∑
j=1

Nj∑
i=1

Rij (t)
]
, and ξ is a positive finite

value.
b) Let Emax represent BS’s maximum battery capacity of

storing energy, by setting the perturbation θj as

θj = θ = Emax − ε
(in)
max − emax,∀j, (23)

the energy queue length is bounded by 0 ≤ Ej (t) ≤
Emax,∀t, j.

Proof: a): Let the network capacity region 3 denote
the set of traffic arrival rate that can be supported stably.
Assuming that the average arrival rate is strictly interior to
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3, then, there exists a stationary randomized algorithm to
achieve [32]

E
[
RALTij (t)

]
≥ E

[
Dij (t)

]
+ ξ, (24)

where RALTij (t) is the data rate under this algorithm,
E
[
Dij (t)

]
+ ξ ∈ 3, and ξ is a positive finite value. Note

that (24) is commonly used for examining the network sta-
bility [32], which indicates that each user’s average data rate
is larger than its average traffic arrival rate. Since the aim of
DEPA algorithm is to minimize the RHS of (11) under C3-C5
constraints, we first have

1V (t)

≤ A−
M∑
j=1

Nj∑
i=1

Qij (t)E
[(
RALTij (t)− Dij (t)

)
| Z (t)

]

+

M∑
j=1

(
Ej (t)− θj

)
E
[
eALTj (t) | Z (t)

]

−

M∑
j=1

(
Ej (t)− θj

)
E
[
PALTj (t)+

M∑
j′=1,j′ 6=j

εALT
jj′

(t) | Z (t)
]

+

M∑
j=1

(Ej(t)− θj)E
[ M∑
j′=1,j′ 6=j

βεALT
j′ j

(t) | Z (t)
]

−VE
[ M∑
j=1

Nj∑
i=1

RALTij (t) | Z (t)
]
, (25)

where RALT (t), JALT (t), eALT (t),PALT (t) , εALT (t) rep-
resent the control decisions under the alternative algo-
rithm satisfying (24). In light of boundedness of parameters
and (24), 1V (t) satisfies

1V (t) ≤ A− ξ
M∑
j=1

Nj∑
i=1

Qij (t)+
(
emax + ε

(in)
max

) M∑
j=1

Ej (t)

+

M∑
j=1

θj

(
Pmax + ε

(out)
max

)
− VE

[ M∑
j=1

Nj∑
i=1

RALTij (t) | Z (t)
]
.

(26)

By taking expectations over Z (t) and using telescoping
sums over t = 0, . . . ,T − 1 with respect to (26), we have

E [L (T )− L (0)]− V
T−1∑
t=0

E
[ M∑
j=1

Nj∑
i=1

Rij (t)
]

≤ T
(
A+

M∑
j=1

θj

(
Pmax + ε

(out)
max

) )

−ξ

T−1∑
t=0

E
[ M∑
j=1

Nj∑
i=1

Qij (t)
]
+

(
emax + ε

(in)
max

)

×

T−1∑
t=0

E
[ M∑
j=1

Ej (t)
]
− V

T−1∑
t=0

E
[ M∑
j=1

Nj∑
i=1

RALTij (t)
]
. (27)

Based on the energy harvesting decision of the DEPA algo-
rithm, BS j will not harvest renewable energy at time t , if
Ej (t) > θj. In this case, BS j may still seek to receive the
transferred energy from other BSs, but the transferred energy
will be completely consumed for increasing data rate at this
time slot, to minimize the upper bound of the drift-plus-
penalty. As such, Ej (t) ≤ θj + ε

(in)
max + emax,∀t, j. Therefore,

by considering (27) and E [L (t)] > 0, we can further obtain

ξ

T−1∑
t=0

E
[ M∑
j=1

Nj∑
i=1

Qij (t)
]

≤ T
(
A+

M∑
j=1

θj

(
Pmax + ε

(out)
max

) )
+ E [L (0)]

+

(
emax + ε

(in)
max

) T−1∑
t=0

E
[ M∑
j=1

Ej (t)
]

+V
T−1∑
t=0

E
[ M∑
j=1

Nj∑
i=1

Rij (t)
]
. (28)

By dividing both sides by ξT and taking a limit as T →∞,
we obtain (22) and complete the proof.

b): Since Ej (0) ≥ 0 at the beginning time, according to (5)
and (6), we have Ej (t + 1) ≥ ej (t) ≥ 0,∀j. Hence Ej (t) ≥
0,∀t, j. From (a), we note that Ej (t) ≤ θj+ε

(in)
max+emax,∀t, j,

thus Ej (t) ≤ Emax,∀t, j. This completes the proof. �
From Theorem 1, we find that the proposed DEPA algo-

rithm satisfies the network stability, and prevents the renew-
able energy overflow by selecting appropriate value of θj
under BS’s battery constraint.

IV. SIMULATION RESULTS
In this section, numerical results are presented to demonstrate
the performance of the proposed DEPA algorithm in subsec-
tion III-A.We also give comparisons by considering the cases
with/without energy cooperation. For the case without energy
cooperation, each power control decision in the DEPA algo-
rithm is obtained by using CVX [33] to solve problem (21)
with εjj′ = 0, ∀j, j

′

. Our theoretical analysis is independent of
the specific spatial distributions of BSs and UEs. In the sim-
ulation, we assume that each user’s data arrival rate follows
an independent homogeneous poisson point process with the
same mean value λ as λ = 0.5 bits/slot/Hz for the sake of
simplicity. Note that our model and proposed algorithm are
also applied to the scenario with heterogeneous data arrival
rate distributions. The energy harvesting process Ej at BS j is
modeled as a stationary stochastic process with the probabil-
ity density function fj(zj) = 1/(bj−aj),∀zj ∈ [aj, bj] where aj
and bj is the minimum and maximum harvested energy of BS
j respectively [34]. The system-level channel model and basic
parameters are illustrated in Table I, and the number of BSs,
energy transfer efficiency, and the selected perturbation will
be detailed in the following simulation results. In addition,
we run the Monte Carlo simulation for T = 5000 time slots
in the Matlab software environment.
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TABLE 1. Simulation parameters.

FIGURE 2. Average network utility and energy queue length versus V
value.

Fig. 2 shows the average network utility and energy queue
versus V values. The number of BSs is 7, β = 0.9, and
θ = V . We observe that both the average network utility and
the average energy queue length increase with V . By using
the proposed DEPA algorithm, the average network utility
quickly approaches an optimal value. For the same V, the
average network utility under energy cooperation is much
better than that without energy cooperation. More impor-
tantly, using energy cooperation, the amount of energy in the
queue is much lower, which indicates that energy cooperation
has the ability to relieve the demand for large battery capacity
at the BSs. The reason is that without energy cooperation,
each BS has to store more its harvested energy and use it dur-
ing the time slots when the harvested energy is insufficient, on
the contrary, energy cooperation allows that BS can borrow
energy fromBSs with extra harvested energy at each time slot
and BSs do not need to store large amount of harvested energy
for supporting following transmissions.

FIGURE 3. Average data queue length versus V value.

FIGURE 4. Average network utility and energy queue length versus the
number of BSs.

Fig. 3 shows the average data queue length versusV values.
The number of BSs is 7, and θ = V .We see that whenV is not
large(V < 60 in this figure), the size of average data queue
under energy cooperation is much lower than that without
energy cooperation, which indicates that the use of energy
cooperation has the advantage of reducing delay. When V
grows large, the average data queue length without energy
cooperation is close to that under energy cooperation. The
reason is that as shown in Fig. 1, the average network utility
increases with V , which decreases the amount of waiting
data. We note that in order to reduce the delay, large V is
needed for no energy cooperation case, which results in the
requirement of large battery capacity at BSs as seen in Fig. 1.
Meanwhile, when the energy transfer efficiency β is larger,
the average data queue of BSs is shorter, which means less
data is blocked.

Fig. 4 displays the average network utility and energy
queue length versus BS number. We choose V = 100,
β = 0.9, and θ = 20. It is observed that the average
network utility increases with the BS number. The utility gap
between with/without energy cooperation is expanded with
increasing BS number. That’s because when more BSs are
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FIGURE 5. Average data queue length versus the number of BSs.

deployed, more energy can be shared between BSs, which can
support higher utility and reduce the demand for large battery
capacity. Meanwhile, as mentioned in Fig. 2, the average
energy queue length of the network with energy cooperation
is lower than the network without energy cooperation.

Fig. 5 illustrates the average data queue length versus the
BS number with V = 100 and θ = 20. We see that the
average data queue length increases with the BS number,
due to more user services being provided. When adding
more BSs, the length of the average data queue with energy
cooperation increases much more slowly than the data queue
without energy cooperation. This can be explained by the
fact that when the BS number is larger, under the same data
traffic arrival rate, the increase of the network utility with
energy cooperation is much greater than the case of no energy
cooperation, which in turn substantially reduce the growth
rate of data queue length.

V. CONCLUSION
In this paper, we studied power control in energy cooperation
enabled downlinkmmWave cellular networks with renewable
energy harvesting. We formulated a stochastic optimization
problem, to maximize the time average network utility and
control the data queue and energy queue. Based on Lyapunov
optimization, We develop an online algorithm called DEPA
to solved the formulated problem. We confirmed that the
proposed algorithm can ensure the stability of networks and
prevent renewable energy overflow by selecting an appro-
priate value of perturbation used in Lyapunov function. The
results showed that compared with the system without energy
cooperation, the proposed algorithm with energy cooperation
can maximize the network utility while keeping the data and
energy queue lengths at a low level.

In this work, we assume that the interference between
BSs can be negligible as mentioned in [28] and [29], due
to fact that the mmWave cellular networks tend to be noise-
limited when it is not ultra-dense. However, in ultra-dense
mmWave networks, interference may still be severe [35].
Therefore, resource allocation in energy cooperation enabled

dense mmWave networks is needed to be investigated, which
will be our future work. In addition, here, we assume that
UEs of the same BS share the frequency resources with equal
assignment, and the transmit power of each UE data stream
in a cell is identical. Note that it is an important work to study
the more complicated case of the power allocation among
different UEs of the same BS, which depends on both channel
state information and UE’s data queue length.
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