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Abstract  10 

 11 

Introduction: 12 

Placental explant culture is an important model for studying placental development and 13 

functions. We investigated the differences in placental gene expression in response to tissue 14 

culture, atmospheric and physiologic oxygen concentrations.  15 

Methods 16 

Placental explants were collected from normal term (38-39 weeks of gestation) placentae 17 

with no previous uterine contractile activity. Placental transcriptomic expressions were 18 

evaluated with GeneChip® Human Genome U133 Plus 2.0 arrays (Affymetrix). 19 

Results  20 

We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis 21 

programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, 22 

tissue viability, and protection from apoptosis in cultured placental explants. We also 23 

identified a sub-set of genes with highly unstable pattern of expression after exposure to 24 

tissue culture.  Tissue culture irrespective of oxygen concentration induced dichotomous 25 

increase in significant gene expression and increased enrichment of significant pathways 26 

and transcription factor targets (TFTs) including HIF1A.  The effect was exacerbated by 27 

culture at atmospheric oxygen concentration, where further up-regulation of TFTs including 28 

PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic 29 

heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, 30 

protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast 31 

proliferation, differentiation, invasion, regeneration, and viability. 32 

 33 

Discussion 34 

These findings demonstrate that gene expression patterns differ between pre-culture and 35 

cultured explants, and the gene expression of explants cultured at atmospheric oxygen 36 

concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic 37 

response. 38 

 39 

 40 
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Introduction: 1 

In a recent publication [1] we reported on the damaging effect of atmospheric oxygen 2 

concentration (AOC) on placental explant morphology and RNA quality. We showed 3 

that while explants were viable after 6 days culture, there were more syncytial 4 

detachment and loss in explants cultured at the AOC (20%) than in physiological 5 

oxygen concentration (POC) for term placentae (8% oxygen), and that the RNA quality 6 

and integrity of explants cultured at the AOC declined in tandem with 7 

syncytiotrophoblast (STB) degeneration, damage and loss. This work confirmed 8 

previous reports that while AOC has generally been used during culture, it could be 9 

argued that 8% oxygen reflects in vivo physiology, and may provide optimal culture 10 

conditions for placental villous explants [2-7]. Yet, there has been no previous 11 

systematic report on the effects of AOC or POC during explant culture on term placental 12 

transcriptomic response to aid interpretations and discrimination between experimental 13 

treatment effect and culture oxygen effect. Our objectives therefore, were to investigate 14 

the differences in placental transcriptomic changes in response to tissue culture and 15 

oxygen, and the genetic alterations and pathways associated with POC and AOC 16 

culture. 17 

 18 

Methods  19 

Tissue collection and culture  20 

We collected placental explants from 6 placentae with no previous uterine contractile 21 

activity following ethics permission (granted by the Hammersmith and Queen 22 
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Charlotte’s & Chelsea Hospitals Research Ethics Committee) and written informed 23 

consent from patients. Details of methods used for placental collection, dissection, and 24 

explant culture and viability assessment have been published elsewhere [1]. In brief, 25 

approximately 2 cm3 term (38-39 weeks of gestation) human placental explants were 26 

randomly cut (3/placenta) immediately after delivery by elective Caesarean Section from 27 

healthy looking areas about 5 cm away from the umbilical cord of normal pregnancies. 28 

As previously described [1] micro explants (<50 mg wet weight) of villous tissue were 29 

dissected from each sample (3 micro explants/sample) and cultured on 15mm diameter 30 

Netwell inserts with 74µm polyester mesh bottoms attached to polystyrene inserts 31 

(Corning, UK) and incubated at the liquid-gas interface in POC (8% oxygen, 5% CO2) or 32 

AOC (95% air; 5% CO2). The micro explants were cultured in RPMI 1640 culture 33 

medium (Invitrogen, UK) supplemented with 2 mM L-glutamine, 10% fetal bovine 34 

serum, 100 IU/ml penicillin and 100 µg/ml streptomycin for 6 days. The culture media 35 

were replaced at days 2 and 4: the medium was placed in a sterile container and 36 

exposed to the appropriate oxygen tension for 2 hours before the change of medium 37 

was done.  The time for the change of medium was kept to the minimum needed (less 38 

than 5 minutes). The explants at the end of the culture period were stored immediately 39 

in RNAlater (Ambion) at -80°C. Pre-culture, 0 h con trol samples obtained from fresh 40 

placentae were stored similarly in RNAlater within 30 minutes of delivery. 41 

 42 

 43 

 44 
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RNA and Microarray Preparation  45 

RNA was extracted from explants cultured to time-point 120 h according to 46 

Chomczynski method [8] with TRIZOL reagent (Invitrogen, UK) and quality assessed. 47 

Details of the methods for RNA extraction, quality and integrity assessments are 48 

previously published [1]. Total RNA was processed into labelled cDNA with NuGEN™ 49 

Ovation™ RNA Amplification System V2 and FL-Ovation™ cDNA Biotin Module V2 50 

(Nugen). The resultant fragmented and labelled cDNA was added to the hybridisation 51 

cocktail in accordance with the NuGEN™ guidelines for microarray hybridisation onto 52 

Affymetrix GeneChip® Human Genome U133 Plus 2.0 arrays (sample per array) in 53 

Affymetrix GeneChip® Hybridisation Oven 640 for 18 hours at 45°C. Features that 54 

retained bound labelled cRNA after washing were visualized using the GeneChip® 55 

Scanner 3000 (Affymetrix). The microarray data was published in the Gene Expression 56 

Omnibus (GEO) repository with accession number GEO: GSE74446. 57 

 58 

Array Quality Control and Processing 59 

Quality control (QC) of the microarray raw data was assessed with Expression Console 60 

(Affymetrix) for .CEL files integrity. Probes with unusual signal patterns or signal 61 

strength and arrays showing low correlation between hybridization controls thus failed 62 

this initial QC measures were excluded from further analysis. The .CEL raw data were 63 

imported and processed with Robust Multi-array Average (RMA) into BRB-Array Tools 64 

version 4.5.1 – Stable [9], and further processed using the R bionconductor packages 65 

including Affy, annotate, annaffy, gcrma, globaltest, GO.db, lumi, ROC, simpleaffy, 66 
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bitops, car, gplots, GSA, impute, lars, matlab, pamr, randomForest. The arrays were 67 

log2-transformed and quantile-normalised to fit into linear model and a common scale to 68 

generate expression measure for each probe set on each array. The spot filter analysis 69 

was performed to remove spots whose signals were wrong due to small quantity of 70 

cDNA in the array, or errors during the scanning process.  Furthermore, genes showing 71 

minimal variation across the set of arrays were excluded from the analysis. Genes 72 

whose expression differed by at least 1.5 fold from the median in at least 20% of the 73 

arrays were retained.  74 

 75 

Expression pattern analysis  76 

We performed Relative Gene Expression (RGE) analysis for differentially expressed 77 

genes between the AOC (experimental) and POC (control) classes using a random-78 

variance t-test. The random-variance t-test permitted sharing of information among 79 

genes about within-class variation without assuming that all genes have the same 80 

variance [10]. This was supported with a Goeman’s global test of whether the 81 

expression profiles differed between the classes by multiple permutation of the labels of 82 

which arrays corresponded to which classes [11]. We also developed models to identify 83 

genes whose expression profiles could predict expression from explants cultured in 84 

AOC at the p< 0.01 as assessed by the random variance t-test. Compound Covariate 85 

Predictor (CCP), Diagonal Linear Discriminant Analysis (DLDA), Nearest Neighbor 86 

Classification (NNC), and Support Vector Machines (SVM) with linear kernel [12-15], 87 

were used to develop the models. Leave-one-out cross-validation (LOOCV) method 88 

was used to compute mis-classification rate. The class labels were randomly permuted 89 
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(100 random permutations) and the entire LOOCV process was repeated. We further 90 

performed Absolute Gene Expression (AGE) analysis [16] using RankProd statistics 91 

implemented in MEV_4.9 [17], at FDR < 0.001 (Confidence (1-alpha): 99.9%) to identify 92 

within class significant genes that were consistently expressed at high levels or low 93 

levels respectively for pre-culture, AOC and POC classes. Genes that were consistently 94 

expressed at high (CHE) levels in all the respective phenotype samples were classified 95 

as positive significant genes. Alternatively, genes that were consistently expressed at 96 

low (CLE) levels in all the respective phenotype samples were classified as negative 97 

significant genes. Genes that were not expressed consistently as either high or low in all 98 

the samples were classified as non-significant genes.  99 

 100 

Biological Significance analysis  101 

Gene Ontology (GO), The National Cancer Institute, (Bethesda MD), experimentally 102 

verified transcription factor target (TFT) database and Kyoto Encyclopedia of Genes 103 

and Genomes (KEGG) and BioCarta biological pathways were evaluated with functional 104 

class scoring analysis as described by Pavlidis [18] to identify differential expression of 105 

biologically relevant gene-sets between AOC and POC cultured explants.  Significant 106 

gene-sets for differential expression were summarised with: (i) the Fisher (LS) statistics 107 

(provides average log p values for the genes in the target class), (ii) the KS statistics 108 

(Kolmogorov-Smirnov statistic computed on the p values for the genes in the target 109 

class) and (iii) Gene Set Analysis (GSA) using Maxmean statistics [19] in BRB-array 110 

Tools. For comparative analysis of significant gene-set enrichment within pre-culture 111 
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time zero, POC cultured and AOC explants, the respective gene pools from the AGE 112 

analysis were tested with Benjamini-Hochberg statistics [20] implemented in  113 

WebGestalt 2013 [21] to identify biologically relevant GOs, TFTs and KEGG biological 114 

pathways.  115 

 116 

Results 117 

Absolute Gene Expression in Pre-culture and Cultured Explants  118 

As a preface to this study, we extensively evaluated RNA extraction and quality control 119 

(QC) methods to ensure a high standard of quality for the RNA samples used (results 120 

published in [1]). The biological replicate samples were representative of a realistic 121 

application of microarrays in placental biology. Thus, following the normalisation and 122 

quality control steps, 20,233 genes were used in further analyses. We performed AGE 123 

analysis using One Class RankProd statistics to identify ‘consistently high expressed’ 124 

(CHE) and ‘consistently low expressed’ (CLE) significant genes respectively in Time 125 

Zero (pre-culture) explants (designated as T0), and explants cultured in POC (8%) and 126 

AOC (20% oxygen for 6 days. FDR Confidence (1-alpha) was set at 99.9% (FDR 127 

<0.001).  128 

Total of 635, 1207 and 1760 significant genes were consistently expressed in pre-129 

culture (T0); POC and AOC cultured explants respectively (Suppl. Table 1).  Of these, 130 

224 genes were exclusively expressed in pre-culture samples (Figure 1A, sub-set 2). In 131 

contrast, 69 genes (1 CHE and 68 CLE) were exclusively expressed in POC and 574 132 
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genes (292 CHE, and 282 CLE) in AOC oxygen cultured explants only (Figures 1 A & B; 133 

Suppl. Table 1). We also identified 48 genes that were common to both pre-culture and 134 

AOC explants only. Interestingly, CHE genes appeared insensitive to POC, but rather to 135 

tissue culture and AOC. All CHE genes (except SIGLEC6) in POC explants were also 136 

expressed consistently at high levels in AOC explants (Suppl. Table 2). There was a 137 

core set of 770 consistently expressed significant genes (Figures 1 A and B sub-sets 138 

3&5; Suppl. Tables 2 & 3) that were common to both AOC and POC samples only, and 139 

these appear to be genes suggestively responding to tissue culture per se. No genes 140 

were exclusively expressed consistently between pre-culture and POC samples only.  141 

 142 

Relative Gene Expression in Atmospheric and Physiological Oxygen 143 

Concentration Cultured Explants 144 

We subsequently performed biological relevance network analysis [22] to determine the 145 

mutually biological relevance for performing relative gene expression analysis between 146 

pre-culture, and explants cultured for 6 days. The results showed no biologically 147 

relevant mutual networks between pre-culture and the cultured explants (Suppl. Paper 148 

1). We therefore performed the RGE analysis using a two-sample random-variance t-149 

test for differentially expressed genes between the AOC (experimental) and POC 150 

(control) oxygen treated classes only and identified 157 significant genes (p<0.05). The 151 

expression pattern was visualised with a Volcano plot (Figure 1C). We observed 88 up-152 

regulated (Suppl. Table 4) and 69 down-regulated genes (Suppl. Table 5) in AOC 153 

relative to POC explants. We further examined whether these genes could be 154 
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associated with explant culture in AOC. We thus performed class prediction modelling 155 

incorporating Leave-one-out cross-validation and ROC curves. The analysis confirmed 156 

the expression of 134 genes as significantly (p<0.01) associated with prolonged explant 157 

culture at AOC (Suppl. Table 6). Of these, 12 genes were strongly associated (p<0.001) 158 

with the AOC (Table 1). Three prediction algorithms: CCP, DLDA, and Bayesian 159 

compound covariate predictor (BCCP) were used to generate a ROC curve (Figure 1D).  160 

The analysis showed a very comparable ROC for all three algorithms with AUC of 161 

0.82(CCP), 0.81(DLDA), 0.81(BCCP) (Figure 1D) 162 

 163 

Ontologies of Genes responding to Physiological and Atmospheric Oxygen 164 
Concentrations Differ 165 

Table 2 shows a summary comparison of GOs, pathways and TFTs over-represented in 166 

the pre-culture and cultured explants gene signatures (detailed in Suppl. Paper 2). 167 

Figures 1 A & B sub-sets 3 and 5 contain a preserved set of genes that appears to 168 

respond to tissue culture irrespective of oxygen concentration. We therefore examined 169 

the GO, pathways and TFT associated with these preserved genes. The sub-set 3 170 

genes (CHE genes present in both AOC and POC cultured explants only, irrespective of 171 

oxygen concentration) significantly (p<0.001) enriched a cluster of cathartic ontologies 172 

including programmed cell death, cell death, death, stress response, protein metabolic 173 

process, electron transport activity, RNA translation and oxidoreductase activity (Table 174 

3; Suppl. Table 10). The sub-set 3 genes also affected regulation of cytosol, 175 

cytoplasmic and organelle parts of the placental cells. In contrast, sub-set 5 genes (CLE 176 

genes present in both AOC and POC explants only irrespective of oxygen 177 
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concentration) were mostly associated with the GO terms related to cellular 178 

communication including multicellular organismal signalling, receptor binding, ionotropic 179 

receptor, 3',5'-cyclic-GMP phosphodiesterase activity and ionotropic glutamate receptor 180 

complex (Suppl. Table 11). 181 

 182 

In addition, the AOC only CLE genes (Figure 1B sub-set 8) significantly enriched 183 

specific GO terms including Passive transmembrane transporter activity, ion gated 184 

channel activity, calmodulin-dependent cyclic-nucleote phosphodiesterase activity, and 185 

cation channel activity (Suppl. Table 12), while the CHE genes (Figure 1A sub-set 4) 186 

further enriched proteolysis involved in cellular protein catabolic process, ubiquitin-187 

dependent protein catabolic process, ligase activity, threonine-type peptase activity and 188 

ubiquitin-protein ligase activity (Suppl. Table 13). There was no specific up-regulated 189 

gene set for the POC explants. However, the POC only CLE genes (Figure 1B sub-set 190 

7) significantly enriched specific molecular functions involved in multicellular organismal 191 

process and voltage-gated ion channel activity (Suppl. Table 14).    192 

 193 

Effects of Atmospheric relative to Physiological Oxygen Concentrations 194 

We further examined closely the effects of AOC relative to POC on placental 195 

transcription factor target genes and biological pathway gene-sets. We used a two-196 

sample random variance T-test design, LS/KS permutation test and Efron-Tibshirani's 197 

GSA maxmean to probe the National Cancer Institute, (Bethesda MD), experimentally 198 

verified transcription factor target database. A total of 73 TFT gene-sets were 199 
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investigated and 15 (6 up-regulated and 9 down-regulated in AOC relative to POC) 200 

were significantly (p<0.05) enriched (Table 4). The down-regulated TFT gene sets 201 

including REL, ETV4, ATF3, STAT1, JUND and STAT5B are seemingly involved in cell 202 

growth, proliferation, invasion, regeneration, differentiation, transformation, tissue 203 

viability, protection from apoptosis, and glands development (Table 4). Conversely, the 204 

up-regulated TFTs such as HIF1A, PPARA, CEBPD, STAT3, and CEBPE are mostly 205 

associated with oxygen regulation, immune and inflammation responses; leptin 206 

mediated response; lipid metabolism; suppression and mis-regulation of cell growth and 207 

proliferation; cell morphogenesis; induction of apoptosis; and oxygen regulation (Table 208 

4).  209 

 210 

Results from the RGE pathway analyses were consistent with the AGE GO and 211 

transcription factor target gene sets analysis. For example, as expected Peroxisome, 212 

Nuclear Receptors in Lipid Metabolism and Toxicity, Glycerolipid metabolism, and 213 

Reversal of Insulin Resistance by Leptin pathways were up-regulated (Tables 5; Suppl. 214 

Tables 15 and 16) in line with PPARA and STAT3 TFT gene-sets up-regulation. 215 

Similarly, RNA degradation, Nucleotide excision repair, and mRNA surveillance 216 

pathway were up-regulated in line with over-expression of CEBPE target gene-set. 217 

 218 

 219 

 220 

Discussion  221 
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It is well accepted that placental explant culture is an important model for studying 222 

placental transport, proliferation, differentiation, morphology, metabolism and endocrine 223 

functions under conditions akin to normal physiology. It is also clear that gestational age 224 

mismatch with ex vivo oxygen concentration affects these placental functional 225 

properties [23,24]. In this report, we have provided comprehensive evidence on 226 

differences in transcriptomic expression underpinning general cell biology and 227 

biochemical processes in response to placental explants culture at AOC and POC.  A 228 

key finding is the observation of the dichotomous increase in the number of significant 229 

placental genes consistently expressed in line with oxygen concentration. Whereby, 230 

more genes were consistently expressed at high levels than were expressed at low 231 

levels. Interestingly, the disparate transcriptomic response not only affected parts or 232 

extracellular environment of the placenta cells but also impacted on the elemental 233 

activities of the gene products at the molecular level, such as binding or catalysis.  234 

 235 

The uncovering of the placental gene sub-sets mediating programmed cell death; 236 

response to stress; cell differentiation, and inhibition of cell proliferation was novel. 237 

Albeit transcriptomic pathways at the moment, the findings are nonetheless exciting as 238 

the current data provides evidence to encourage review of our understanding and 239 

further study of the effects of culture conditions on trophoblast apoptosis, differentiation 240 

and proliferation. For, it is reported previously that trimester 1 villous explant culture in 241 

approximately 3% oxygen stimulates increased trophoblast proliferation, while culture in 242 

AOC appears to support proliferation but prevents invasiveness; and that AOC 243 

increases apoptosis in term villous explants [25-27].  244 
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 245 

Our current findings introgressively suggest that placental explant response to tissue 246 

culture per se induces expression of genes with preponderance towards apoptosis 247 

irrespective of culture oxygen concentration. And that, the magnitude of the 248 

programmed cell death could be sensitive to AOC. For example, we observed that AOC 249 

was associated with down-regulation of trascription factor JUND target gene set 250 

involved in apoptosis protection. Moreso, we observed relative up-regulation of  PPARA 251 

TFT gene set in explants cultured at AOC. Thus, considering that PPARA ligand 252 

activation has been linked to induction of apoptosis [28,29], it is plausible to surmise 253 

that AOC could exacerbate placental programmed cell death through activation of the 254 

pro-apoptotic target gene sets via PPARA TFT. Furthermore, PPARA is associated with 255 

lipid metabolism, cell differentiation, inhibition of cell proliferation, up-regulation of 256 

immune and inflammation responses [26,27]. Therefore, it is equally consistent to 257 

extend the suggestion that poor trophoblast proliferation associated with AOC could be 258 

mediated through activation of PPARA TFT gene set. 259 

 260 

Certainly, HIF1A is well known to be constitutively expressed in the placenta to mediate 261 

hypoxic adaptation during placentation [30]. It has also been suggested that HIF-1A can 262 

be induced by factors other than hypoxia, including placental hormones, cytokines and 263 

growth factors, and well-oxygenated environment (∼20% oxygen) [23,30,31].  We 264 

observed that HIF1A TFT gene sets were significantly enriched in response to AOC.  265 

The comparative analysis also showed that while no HIF1A target gene set was 266 

significantly enriched in pre-culture explants, the homolog V$HIF1_Q3 containing the 267 
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motif GNNKACGTGCGGNN target gene set was significantly enriched in both AOC and 268 

POC samples. In addition, the target gene set for V$HIF1_Q5 containing the motif 269 

CGTACGTGCNGB was also enriched in explants cultured in AOC. Thus, suggesting 270 

that high oxygen could be an intrinsic regulatory mechanism for HIF activation in human 271 

placenta. 272 

 273 

Our findings do not only provide evidence to confirm that well oxygenated (non-hypoxic) 274 

environment regulates HIF1A target gene sets in the placenta, but also provide exciting 275 

insights into the regulation of placental development through activator protein-1 (AP-1; 276 

FOS/JUND). AP-1 proto-oncogenes have been linked to regulation of placental gene 277 

expression in relation to oxygen concentration [32,33]. Our finding showed that JUND 278 

and FOS target gene sets were also significantly enriched in response to AOC. While 279 

our current data does not provide evidence on the interplay between HIF1A and AP1 280 

pathways in the placenta, there are previous reports that suggest AP-1 may synergise 281 

with HIF-1 to regulate hypoxic gene expression in the placenta [32-36]. It is therefore 282 

plausible to suggest for further work that HIF1 and AP-1 target gene sets could provide 283 

a co-regulatory response or feedback pathways in the regulation of placental 284 

development. 285 

 286 

Indeed, we have provided novel transcriptomic evidence not only to show that explant 287 

culture per se could trigger placental gene sets that regulate programmed cell death 288 

and stress response but also to support the consensus that AOC is pathological for 289 

placental explant culture [6] by exacerbating a primed defective response.  290 
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Tables  395 

 Table 1: Genes significantly associated with 20% oxygen culture 396 
Symbol Name Fold-change t-value   p-value 

GNAZ guanine nucleotide binding protein (G protein), alpha z 

polypeptide 

-1.95 -5.999 0.000103 

NPPB natriuretic peptide precursor B -3.37 -5.917 0.000115 

AIG1 androgen-induced 1 -1.46 -5.468 0.000221 

C10orf90 chromosome 10 open reading frame 90 -1.95 -5.003 0.000444 

TPH1 tryptophan hydroxylase 1 -1.69 -4.873 0.000543 

PNMA2 paraneoplastic antigen MA2 -2.55 -4.855 0.000558 

PRPS1 phosphoribosyl pyrophosphate synthetase 1 -1.85 -4.782 0.000626 

MMP12 matrix metallopeptidase 12 (macrophage elastase) -2.67 -4.546 0.00091 

NEU1 sialidase 1 (lysosomal sialidase) 1.29 4.529 0.000936 

C10orf12 chromosome 10 open reading frame 12 1.7 4.566 0.000882 

LOC100129890 similar to hCG1750329 1.58 5.029 0.000427 

ABHD4 abhydrolase domain containing 4 1.57 6.331 0.0000651 

The prediction rule was defined by the inner sum of the weights (wi) and log intensity expression (xi) of significant genes. 397 
Modelled predictors: A sample was classified to the class 20% oxygen if the sum was greater than the threshold; that is, 398 
∑iwi xi > threshold. The threshold for the Compound Covariate predictor = -155.831; threshold for the Diagonal Linear 399 
Discriminant predictor = 318.343; threshold for the Support Vector Machine predictor = -7.845 (supplementary Table 4 contains 400 
full list of 20% oxygen concentration culture genes). 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 
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Table 2: Enrichment analysis summary table  

Enrichment  Biological 

Processes 

Molecular 

Process 

Cellular 

Component 

KEGG Pathways Transcription Factor 

Targets 

Con Total 40 11 40 42 251 

8% Total 40 15 40 61 400 

20% Total 40 23 40 121 497 

Overlap      

Enriched in Pre-culture only 5 2 9 2 4 

Enriched in 8% Oxygen only 2 1 4 0 7 

Enriched in 20% Oxygen only 1 8 3 55 92 

Enriched in all explants 32 8 30 35 235 

Enriched in Pre-culture and 8% only 1 0 0 0 0 

Enriched in Pre-culture and 20% only 2 1 1 5 12 

Enriched in 8% and 20% only 5 6 6 26 158 

Details of enriched pathways and GO terms are provided in supplementary tables  
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Table 3: Ontologies of Genes Responding to Tissue Culture Irrespective of Oxygen Concentration 
Database GO ID Name C O E R rawP adjP 

BP GO:0032268 regulation of cellular protein 

metabolic process        

1250 64 27.85 2.3 1.89E-10 3.89E-07 

BP GO:0051246 regulation of protein metabolic 

process        

1413 68 31.49 2.16 6.52E-10 4.47E-07 

BP GO:0006091 generation of precursor 

metabolites and energy        

451 34 10.05 3.38 5.03E-10 4.47E-07 

BP GO:0006950 response to stress        2952 111 65.78 1.69 2.29E-09 1.18E-06 

BP GO:0016265 death        1706 74 38.01 1.95 9.60E-09 2.82E-06 

BP GO:0008219 cell death        1704 74 37.97 1.95 9.13E-09 2.82E-06 

BP GO:0009987 cellular process        12899 316 287.43 1.1 9.01E-09 2.82E-06 

BP GO:0022900 electron transport chain        148 17 3.3 5.15 3.28E-08 8.04E-06 

BP GO:0016071 mRNA metabolic process        613 37 13.66 2.71 3.52E-08 8.04E-06 

BP GO:0012501 programmed cell death        1545 67 34.43 1.95 5.90E-08 1.21E-05 

MF GO:0005515 protein binding        7337 215 155.05 1.39 8.23E-12 2.83E-09 

MF GO:0003723 RNA binding        854 41 18.05 2.27 7.36E-07 0.0001 

MF GO:0008092 cytoskeletal protein binding        638 32 13.48 2.37 5.46E-06 0.0006 

MF GO:0003743 translation initiation factor 

activity        

50 8 1.06 7.57 9.04E-06 0.0006 

MF GO:0015078 hydrogen ion transmembrane 

transporter activity        

101 11 2.13 5.15 9.26E-06 0.0006 

MF GO:0004129 cytochrome-c oxase activity        28 6 0.59 10.14 2.16E-05 0.0009 

MF GO:0016676 oxoreductase activity, acting on a 

heme group of donors, oxygen as 

acceptor        

28 6 0.59 10.14 2.16E-05 0.0009 

MF GO:0015002 heme-copper terminal oxase 

activity        

28 6 0.59 10.14 2.16E-05 0.0009 

MF GO:0016675 oxoreductase activity, acting on a 

heme group of donors        

29 6 0.61 9.79 2.68E-05 0.001 

MF GO:0005488 binding        11955 281 252.65 1.11 3.14E-05 0.0011 

CC GO:0005737 cytoplasm        9130 267 185.24 1.44 3.32E-20 8.80E-18 

CC GO:0044444 cytoplasmic part        6772 208 137.4 1.51 8.35E-15 1.11E-12 

CC GO:0005829 cytosol        2372 101 48.13 2.1 7.20E-14 6.36E-12 

CC GO:0044424 intracellular part        12237 304 248.28 1.22 2.98E-13 1.97E-11 

CC GO:0005622 intracellular        12564 306 254.92 1.2 7.36E-12 3.90E-10 

CC GO:0043226 organelle        10651 268 216.11 1.24 1.17E-09 5.17E-08 

CC GO:0043229 intracellular organelle        10636 267 215.8 1.24 2.00E-09 7.57E-08 

CC GO:0044446 intracellular organelle part        6725 189 136.45 1.39 5.69E-09 1.88E-07 

CC GO:0044422 organelle part        6812 190 138.21 1.37 9.62E-09 2.83E-07 

CC GO:0044464 cell part        14643 329 297.1 1.11 1.87E-08 4.58E-07 

C: the number of reference genes in the category; O: the number of genes in the gene set and also in the 
category; E: the expected number in the category; R: ratio of enrichment; rawP: p value from 
hypergeometric test; adjP: p value adjusted by the multiple test adjustment     
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Table 4: Enriched Transcription Factor Target Gene Sets at high oxygen 
Transcription Factor 

Gene-Sets 

Function  Number 

of genes 

p-value  Maxmean Di 

REL_T00168 A proto-oncogene. Involved in NF-
κB transcription. Promotes B-
cell survival and proliferation and 
lymphoma 

23 0.00101 (-) 

RELA_T00594 Involved in NF-κB dependant cellular 
metabolism, chemotaxis. Modulates 
immune responses. Positively associated 
with cancer. 

81 0.00417 (-) 

SPI1_T02068 Activates gene expression during 
myeloid and B-lymphoid cell 
development. Regulates purine-rich 
sequence and alternative splicing of 
target genes.  

84 0.00494 (-) 

HOXA9_T01709 Regulates gene expression, cell 
morphogenesis, cell differentiation 

9 0.005 (+) 

FOS_T00123 AP1 transcription factor complex. 
Regulates cell proliferation, 
differentiation, and transformation. 
Associated with apoptotic cell death. 

39 0.005 (-) 

HIF1A_T01609 Hypoxia regulation 72 0.01 (+) 

ETV4_T00685 Activates matrix metalloproteinase 
genes. Associated with invasion and 
metastasis of tumour cell 

71 0.01188 (-) 

CEBPE_T04883 Transcriptional mis-regulation in cancer.  7 0.01483 (+) 

PPARA_T05221 Lipid metabolism, cell differentiation, 
inhibits cell proliferation. Ups immune 
and inflammation responses. Induces 
apoptosis 

50 0.01561 (+) 

ATF3_T01313 Induced upon physiological stress in 
various tissues. A marker of 
regeneration following injury. 

11 0.02371 (-) 

STAT1_T01492 Mediates and upregulates genes 
expression for cell viability. Induces 
cellular antiviral state. 

48 0.0256 (-) 

CEBPD_T00583 Growth suppression 21 0.02734 (+) 

JUND_T01978 AP1 transcription factor complex. 
Protects cells from p53-dependent 
senescence and apoptosis. 

15 0.03 (-) 

STAT5B_T05736 Mediates signal transduction from 
cytokines and growth hormones. 
Involved in TCR signalling, apoptosis, 
mammary gland development.  

23 0.03393 (-) 

STAT3_T05694 Mediates responses to interleukins, 
KITLG/SCF, LEP and other growth 
factors. Cell cycle regulation. 

50 0.03948 (+) 

Table shows 15 out of 73 investigated gene sets. LS/KS permutation test found 12 significant gene sets. Efron-
Tibshirani's maxmean test found 6 significant gene sets (under 200 permutations). (+) and (-) represent respectively, 
up or down-regulated transcription factor target gene set in high oxygen explants (20%) relative to low oxygen (8%), 
as determined with Efron-Tibshirani's maxmean test (Detailed of gene-sets in suppl. Table)
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Table 5: Significant Pathway Gene Sets Associated with high Oxygen 
Pathway Pathway ID Pathway description Number 

of genes 

p-value  Maxmean 

KEGG hsa00030 Pentose phosphate pathway 28 0.00013 (+) 

 hsa00561 Glycerolipid metabolism 51 0.00058 (+) 

 hsa03420 Nucleotide excision repair 45 0.005 (+) 

 hsa04710 Circadian rhythm 23 0.005 (+) 

 hsa00310 Lysine degradation 44 0.00665 (+) 

 hsa00400 Phenylalanine, tyrosine and tryptophan 

biosynthesis 

5 0.00749 (+) 

 hsa00620 Pyruvate metabolism 40 0.00913 (+) 

 hsa00053 Ascorbate and aldarate metabolism 18 0.0111 (+) 

 hsa04146 Peroxisome 81 0.015 (+) 

 hsa03010 Ribosome 87 0.015 (+) 

BioCarta h_vitCBPathway Vitamin C in the Brain 11 0.005 (+) 

 h_ace2Pathway Angiotensin-converting enzyme 2 

regulates heart function 

13 0.005 (+) 

 h_leptinPathway Reversal of Insulin Resistance by Leptin 11 0.005 (+) 

 h_npp1Pathway Regulators of Bone Mineralization 10 0.005 (+) 

 h_plateletAppPathway Platelet Amyloid Precursor Protein 

Pathway 

14 0.01 (+) 

 h_cardiacegfPathway Role of EGF Receptor Transactivation 

by GPCRs in Cardiac Hypertrophy 

18 0.01 (+) 

 h_erkPathway Erk1/Erk2 Mapk Signaling pathway 28 0.01354 (+) 

 h_alkPathway ALK in cardiac myocytes 37 0.01593 (+) 

 h_nuclearRsPathway Nuclear Receptors in Lipid Metabolism 

and Toxicity 

35 0.03298 (+) 

 h_akap95Pathway AKAP95 role in mitosis and 

chromosome dynamics 

12 0.035 (+) 

KEGG hsa05150 Staphylococcus aureus infection 53 0.00022 (-) 

 hsa05323 Rheumatoid arthritis 88 0.00043 (-) 

 hsa00590 Arachidonic acid metabolism 57 0.00379 (-) 

 hsa04350 TGF-beta signaling pathway 84 0.00404 (-) 

 hsa04610 Complement and coagulation cascades 71 0.005 (-) 

 hsa00603 Glycosphingolipid biosynthesis - globo 

series 

14 0.005 (-) 

 hsa05014 Amyotrophic lateral sclerosis (ALS) 55 0.005 (-) 

 hsa00232 Caffeine metabolism 8 0.00758 (-) 

 hsa04940 Type I diabetes mellitus 44 0.01932 (-) 

 hsa05144 Malaria 53 0.01969 (-) 

BioCarta h_compPathway Complement Pathway 19 0.0001 (-) 

 h_classicPathway Classical Complement Pathway 14 0.0006 (-) 

 h_antisensePathway RNA polymerase III transcription 5 0.005 (-) 

 h_mspPathway Msp/Ron Receptor Signaling Pathway 7 0.00708 (-) 

 h_eicosanoidPathway Eicosanoid Metabolism 22 0.00967 (-) 
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 h_p38mapkPathway p38 MAPK Signaling Pathway 36 0.01104 (-) 

 h_lectinPathway Lectin Induced Complement Pathway 12 0.01205 (-) 

 h_il10Pathway IL-10 Anti-inflammatory Signaling 

Pathway 

13 0.01312 (-) 

 h_alternativePathway Alternative Complement Pathway 9 0.01335 (-) 

 h_inflamPathway Cytokines and Inflammatory Response 29 0.01494 (-) 

Table contains the top 10 most significant up and down-regulated biological pathways from KEGG and BioCarta. 
Supplementary Tables 15 and 16 contain full list of the significantly enriched pathways associated with high oxygen. 
(+) and (-) represent respectively, up or down-regulated transcription factor target gene set determined with Efron-
Tibshirani's maxmean test 
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Figure 1:  Expressed Genes in Explants Cultured at Physiologic and 

Atmospheric Oxygen Concentrations 

Figure 1A shows overlap of consistent high level expressed (CHE) genes between pre-culture, and 
explants culture at AOC and POC. Figure 1B shows overlap between pre-culture CHE genes and 
cultured explants consistent low expressed (CLE) genes. Figure 1C shows a volcano plot of 157 
significant genes (blue dots). Random variance model parameters at a= 1.31652, b= 17.03489, 
Kolmogorov-Smirnov statistic= 0.01 and a nominal significance level (dotted line) of each univariate 
test at p< 0.05 (210 exact permutations). Figure 1D shows the ROC curve from the Bayesian 
Compound Covariate Predictor for AOC associated genes. S1 – S8 = Gene Sub-sets 1 – 8 
T0 = Pre-culture CHE genes; AOC = Atmospheric Oxygen Concentration; POC = Physiologic Oxygen 
Concentration; +ve = CHE; -ve = CLE.  
 
 

NB: Print figure 1 in colour  
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Highlights: Oxygen and Tissue Culture affects Placental Gene Expression 

• Gene expression patterns differ between pre-culture and cultured explants 

• Tissue culture up-regulates apoptosis and response to stress genes in 

placenta 

• Atmospheric Oxygen Concentration up-regulates HIF1A transcription target 

gene set 

• Atmospheric Oxygen Concentration regulated genes favour apoptosis and 

inflammation  
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