
UWL REPOSITORY

repository.uwl.ac.uk

An empirical examination of interdisciplinary collaboration within the practice

of localisation and development of international software

Ressin, Malte ORCID: https://orcid.org/0000-0002-8411-6793 (2015) An empirical examination of

interdisciplinary collaboration within the practice of localisation and development of international

software. Doctoral thesis, University of West London.

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/2858/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

An Empirical Examination of Interdisciplinary
Collaboration within the Practice of Localisation and

Development of International Software

Malte Ressin

A thesis submitted in partial fulfilment of the
requirements of The University of West London for

the degree of Doctor of Philosophy

A thesis submitted in partial fulfilment of the
requirements of The University of West London for

the degree of Master of Philosophy

October 2015

October 2015

In 1923, Austrian author Felix Salten wrote a novel about a buck's life in
the woods, experiencing from birth the ruthlessness of nature, intrusion
of man, maturation into adulthood, and finally ascension to solitary
leader. The popular book, a pitiless commentary on the relationship
between nature and humans, was soon picked up by a young cartoon
producer to be made into an animated movie for children. Walt Disney's
Bambi premiered in cinemas in August 1942.

In the original novel, written in German, Bambi is a roe deer or “Reh”, a
species only occurring in Europe. Because Disney assumed that the US-
American audience would relate better to a local species, Bambi was
changed into a white-tailed deer or “Weißwedelhirsch”, or short
“Hirsch”. It is a minor change since both species are related, but they are
visually distinct: Roe deer have no tail, and more importantly, their
bucks do not grow majestic and impressive antlers like most other deer.

When Disney's Bambi reached German cinemas in December 1950, the
dubbing translators had kept closely to Salten's book. At Bambi’s birth,
his mother’s species is identified as “Reh”. But because the visuals
remained unchanged, once Bambi grows up and meets his father, their
antlers clearly show both to be “Hirsche”.

Thus, a generation of German children grew up with the so-called
“Bambi-Irrtum” or Bambi error: the understanding that “das Reh ist die
Frau vom Hirsch”, that instead of being a distinct species, roe deer are
female deer.

i

Abstract

Acceptance on international markets is an important selling proposition for software

products and a key to new markets. The adaptation of software products for specific

markets is called software localisation. Practitioner reports and research suggests that

activities of developers and translators do not mesh seamlessly, leading to problems such

as disproportionate cost, lack of quality, and delayed product release. Yet, there is little

research on localisation as a comprehensive activity and its human factors.

This thesis examines how software localisation is handled in practice, how the localisation

process is integrated into development, and how software developers and localisers work

individually and collaboratively on international software. The research aims to

understand how localisation issues around the above-mentioned classifications of cost,

quality and time issues are caused. Qualitative and quantitative data is gathered through

semi-structured interviews and an online survey. The interviews focused on the individual

experiences of localisation and development professionals in a range of relevant roles.

The online survey measured cultural competence, attitude towards and self-efficacy in

localisation, and properties of localisation projects. Interviews were conducted and

analysed following Straussian Grounded Theory. The survey was statistically analysed to

test a number of hypotheses regarding differences between localisers and developers, as

well as relationships between project properties and software quality.

Results suggest gaps in knowledge, procedure and motivation between developers and

translators, as well as a lack of cross-disciplinary knowledge and coordination. Further, a

grounded theory of interdisciplinary collaboration in software localisation explains how

collaboration strategies and conflicts reciprocally affect each other and are affected by

external influences. A number of statistically significant differences between developers

and localisers and the relevance of certain project properties to localisation were

confirmed. The findings give new insights into interdisciplinary issues in the development

of international software and suggest new ways to handle interdisciplinary collaboration

in general.

ii

iii

Table of Contents

List of Abbreviations and Acronyms .. vii

List of Tables .. ix

List of Figures ... x

Chapter 1 Introduction ... 1

1.1 Software Localisation ... 1

1.2 Current Challenges in Software Localisation ... 2

1.3 The Problem Statement ... 3

1.4 Aims and Objectives ... 4

1.5 Research Questions .. 6

1.5.1 Empirical Study of Software Localisation .. 6

1.5.2 Human Factors in Developer-Translator Collaboration .. 6

1.5.3 Project Properties and Localisation .. 8

1.6 Research Contributions .. 9

1.7 Thesis Structure .. 9

1.7.1 Chapter 2: Software Localisation and Internationalisation 9

1.7.2 Chapter 3: Research Methodology and Method .. 10

1.7.3 Chapter 4: Qualitative Results .. 10

1.7.4 Chapter 5: Quantitative Results .. 10

1.7.5 Chapter 6: Conclusion ... 11

Chapter 2 Software Localisation and Internationalisation .. 12

2.1 Literature Search Strategy ... 13

2.2 From Culture to Locale ... 13

2.2.1 Cultural Models ... 14

2.3 GILT ... 17

2.3.1 Locale .. 18

2.3.2 Translation .. 19

2.3.3 Localisation ... 20

2.3.4 Internationalisation ... 22

2.3.5 Globalisation ... 25

2.4 Scope of Localisation .. 29

2.4.1 Localisation Requirements .. 30

2.4.2 Locale-specific Design and Cultural Marker .. 32

2.4.3 Cultural Markers and Usability ... 34

2.5 Localisation Factors, Issues and Challenges ... 36

iv

2.5.1 Localisation Issues .. 39

2.5.2 Role Relationships and Causes of Localisation Issues .. 40

2.5.3 Future Localisation Challenges ... 42

2.6 Facilitation and Support of Localisation .. 42

2.6.1 Translation Tools .. 43

2.6.2 Platform Support .. 50

2.6.3 Outsourcing .. 51

2.6.4 Standards .. 52

2.7 Software Localisation Practice ... 56

2.7.1 Interdisciplinary Issues in International Software Development 57

2.7.2 Cultural Knowledge for Software Developers .. 59

2.7.3 Contrasting Engineers and Translators ... 60

2.8 Summary .. 62

Chapter 3 Research Methodology and Method .. 65

3.1 Qualitative and Quantitative Research.. 65

3.1.1 Mixed Methods ... 67

3.2 Using Grounded Theory to Explore Software Localisation .. 67

3.2.1 Selecting Qualitative Methods ... 68

3.2.2 Grounded Theory .. 75

3.2.3 Application of Grounded Theory .. 83

3.3 Quantitative Research ... 89

3.3.1 Selecting Quantitative Methods ... 90

3.3.2 Questionnaire Construction ... 91

3.3.3 Survey Presentation and Pilot .. 100

3.3.4 Survey Analysis ... 101

3.4 Population and Sample .. 102

3.5 Ethics .. 104

3.6 Summary .. 105

Chapter 4 Qualitative Results .. 106

4.1 The Research Process .. 106

4.1.1 Participants and Interviewing ... 106

4.1.2 Core Emergence and Implementation of the GT Process 109

4.2 A Theory of Interdisciplinary Collaboration in Software Localisation 112

4.2.1 External Influences ... 114

4.2.2 Conflicts .. 128

4.2.3 Strategies .. 142

v

4.3 Discussion ...151

4.3.1 Borrowing of Models and Concepts across Disciplines151

4.3.2 Interdisciplinary Work as a Social System ...152

4.3.3 Dominance of Software Engineering ..153

4.3.4 Authority and Hierarchy ..156

4.3.5 The Theory of Agency ...158

4.3.6 Organisational Control in Software Localisation ..159

4.4 Summary ..161

Chapter 5 Quantitative Results ..163

5.1 Sample Description ..163

5.1.1 Respondents..164

5.1.2 Projects of International Software ..166

5.2 Variable Distributions and Data Preparation ...168

5.3 Hypothesis Results ...169

5.4 Discussion ...176

5.4.1 Distinctness of Developers and Localisers ..176

5.4.2 Cultural Competence and the Scope of Localisation ..177

5.4.3 Software Localisation and Project Properties ...178

5.4.4 Generalisability of the Sample ..180

5.5 Summary ..181

Chapter 6 Conclusions ..183

6.1 Summary of Findings ..183

6.1.1 Conjunction of Qualitative and Quantitative Results184

6.2 Contribution to Knowledge ..185

6.2.1 A Grounded Theory of Interdisciplinary Collaboration.....................................185

6.2.2 Localisation is Difficult Due to its Multidisciplinary Character186

6.2.3 Localisation Issues are Caused by the Separation of Disciplines186

6.2.4 Cross-Disciplinary Knowledge Trumps Cultural Competence186

6.2.5 Support for the Notion of a Software Engineering Mind-Set187

6.3 Implications for Practice ..187

6.3.1 No Complete and Comprehensive List of Cultural Differences187

6.3.2 Localisation as Process Rather than Deliverable ..188

6.3.3 Counteracting Control, Agency and Dominance in Localisation189

6.3.4 Creating Cross-Disciplinary Knowledge ..189

6.4 Limitations ..190

6.5 Future Work ...192

vi

Appendix A Survey ... 194

Appendix B Informed Consent Information Sheet .. 204

Appendix C Interview Excerpt ... 205

Appendix D Memo example .. 207

Appendix E Sample Request for a Call of Participation ... 208

Appendix F Interview, Transcription and Analysis Tools ... 209

Appendix G Publication Sources for Initial Literature Review ... 210

Publications .. 211

References ... 212

Credits .. 242

vii

List of Abbreviations and Acronyms

ACM: Association for Computer Machinery

ACT: Attitude towards Computer Technology

ANOVA: Analysis of Variance

APA: American Psychological Association

API: Application Programming Interface

ASCII: American Standard Code for Information Interchange

ASTTI: Association Suisse des Traducteurs, Terminologues et Interprètes

ATL: Attitude Towards Localisation

BSA: British Sociological Association

CAT: Computer-Assisted Translation

CQ: Cultural Intelligence

CQS: Cultural Intelligence Scale

EU: European Union

GALA: Globalization and Localization Association

GILT: Globalisation Internationalisation Localisation Translation

GMX: Global information management Metrics eXchange

GT: Grounded Theory

G11N: Globalisation

HCI: Human-Computer Interaction

HSD: Honest Significant Difference

ICAPS: Intercultural Adjustment Potential Scale

IEEE: Institute of Electrical and Electronics Engineers

IETF: Internet Engineering Task Force

IP: Internet Protocol

ISO: International Organization for Standardization

ITS: Internationalization Tag Set

I18N: Internationalisation

LE: Localisation Effort

LISA: Localization Industry Standards Association

L10N: Localisation

viii

LSP: Localisation Service Provider

M: Mean

MFC: Microsoft Foundation Classes

MT: Machine Translation

OS: Operating System

RQ: Research Question

SD: Standard Deviation

SEL: Self-Efficacy in Localisation

SEU: Self-Efficacy in Usability

SPSS: Statistical Package for the Social Sciences

SRX: Segmentation Rules eXchange

TBX: Term Base eXchange

TM: Translation Memory

TMS: Translation Memory System

TMX: Translation Memory eXchange

T9N: Translation

UCS: Universal Character Set

UI: User Interface

UTF: Unicode Transformation Format

UWL: University of West London

UX: User Experience

VoIP: Voice-over-IP

WPF: Windows Presentation Foundation

XAML: Extensible Application Markup Language

XLIFF: XML Localisation Interchange File Format

XML: Extensible Markup Language

XP: Extreme Programming

ix

List of Tables

Table 3-1 List of hypotheses .. 89

Table 3-2 Relationship between survey questions and constructs 92

Table 3-3 General changes to ACT ... 94

Table 3-4 Semantic changes to ACT ... 94

Table 3-5 Examples of semantic changes to ACT ... 95

Table 3-6 Origins of LE items ..100

Table 3-7 Scales of constructs ..102

Table 4-1 Interviewees ...107

Table 5-1 Nationality of respondents ..164

Table 5-2 Highest level of education of respondents ..165

Table 5-3 Role of respondents ...165

Table 5-4 Localisation training of survey respondents ..165

Table 5-5 Software types of reported projects ..166

Table 5-6 User types of reported projects ...166

Table 5-7 Localised software elements of reported projects ..167

Table 5-8 Number of languages of reported projects ...167

Table 5-9 Development model of reported projects ...168

Table 5-10 Variable distributions ...169

Table 5-11 Overview of the survey analysis results ...169

Table 5-12 Independent samples t-test results ...172

Table 5-13 Pearson test results ..173

Table 5-14 Chi-square test results ...173

Table 5-15 Phi coefficient test results ..174

Table 5-16 Spearman rank correlation test results ...174

Table 5-17 ANOVA test results ...175

Table 5-18 Post-Hoc Tukey HSD result for H13 ..175

Table 5-19 Post-Hoc Tukey HSD result for H14 ..175

x

List of Figures

Figure 2-1 The project management triangle .. 38

Figure 3-1 The research process in Grounded Theory .. 79

Figure 4-1 Initial coding node structure .. 111

Figure 4-2 Descriptive categories of software localisation issues 111

Figure 4-3 Emergence of interdisciplinary collaboration during software localisation 113

Figure 4-4 Emergence of the category External Influences .. 114

Figure 4-5 Emergence of the category Conflicts ... 128

Figure 4-6 Emergence of the category Strategies ... 142

https://d.docs.live.net/35c3cac072631ff1/Dokumente/Thesis%20V2/thesis%20amended.docx#_Toc439645140
https://d.docs.live.net/35c3cac072631ff1/Dokumente/Thesis%20V2/thesis%20amended.docx#_Toc439645143

1

Chapter 1 Introduction

Software localisation is an important aspect for internationally published software. This

research aims to research the causes of problems in software localisation and the

adaptation of software for international markets. In particular, it examines how

localisation budget, quality and schedule is influenced by developer-translator

collaboration, development, localisation infrastructure and processes.

1.1 Software Localisation

International software is software to be used in different countries. Such software needs

to be adapted to the target markets’ languages and cultures in order to ensure usability

and acceptance. Failure to consider the cultural background of users disrupts

communication between software and user, and threatens eventual use. Successful

adaptation, on the other hand, increases the software’s effectiveness and efficiency.

Localisation plays a crucial role in spreading software across cultural boundaries and is

therefore understood as both a business objective to successfully enter new markets, and

inclusion counteracting the digital divide by allowing smaller and underprivileged cultures

access to information technology.

The adaptation of a product for specific markets is called localisation. Localisation usually

includes translation of text, changing units and symbols for currencies and

measurements, and modifying the formats for displays of time or other measures. More

advanced adaptations extend to colours, layout, functionality and provisions for technical

infrastructure, or may go as far as catering for different business models. Localisation is

usually conducted by translators. It is often separately performed on an otherwise

finished product.

Closely related to localisation is the process of internationalisation. This is the activity of

separating culturally dependant and independent parts of the software by extracting or

removing all cultural references. This creates a culturally neutral version that can be

configured to specific cultures. Internationalisation is usually done by software engineers.

Originally, just as software was limited by hardware constraints, it was also constrained

by culture when it was created in Western countries for a Western audience. Thus, many

fundamentals in computing were strongly influenced by Western culture. This manifested

2

itself in lack of support for conventions such as non-Latin scripts and right-to-left

languages. Considerable effort was undertaken to overcome many of these early

restrictions, for example through the creation of the Unicode standard so that software

would support any script in the world. Accordingly, the tasks, abilities and concerns of

software localisation today are fundamentally different from those 20 years ago.

The importance of software localisation continues to increase because, as the global

proliferation of computers and adoption of the World Wide Web continues, users in new

regions gain access. Accordingly, more localisation is required. In addition, software is

now developed in countries other than the Western world, which in turn becomes a

localisation target.

The scope of localisation increased as well. Software use was originally restricted to very

few professional groups. But as the advent of desktop computing and the personal

computer proliferated software to non-technical and untrained users, the notion of

usability and user experience (UX) have gained importance in the design of human-

computer interaction (HCI), of which culture has become an important aspect.

Similarly, one of the premises of HCI used to be that human use of computers is

conscious, visible, and can be designed for. But this is changing as computers and

software become more and more ubiquitous and pervasive. As computing areas such as

mobile devices, social computing, augmented reality and robotics spread, interfaces

diversify, take on new modes, become ephemeral and sometimes disappear altogether.

This switch from interface-driven to interaction-driven use necessitates stronger

consideration of users’ behaviour, values and expectations, and localisation has to move

beyond the presentation layer to include all aspects of software.

1.2 Current Challenges in Software Localisation

Challenges in localisation have been identified as cost, quality, and time, i.e. the effort

required, impact of localisation on the product, and the delay it causes to development

completion.

Software localisation is considered a comparatively expensive undertaking. Exact

numbers are notoriously difficult to obtain and obviously depend on a number of factors

such as localisation provider, content volume and number of languages. Hall (2002)

3

estimates localisation costs to make up around 10% of total development costs. A

number of examples are discussed in Collins (2001), bracketing typical localisation costs

between $50,000 and $300,000 per language, with staff costs often including additional

engineering.

Localisation also takes time. In particular, the time needed to localise source content, but

also to handle localisation-related bugs. The practice of simshipping, i.e. of releasing

international software simultaneously in many markets, curtails available time for

localisation even further.

Two other challenges in localisation have been mentioned in the literature: volume, i.e.

handling large amounts of content into ever more languages, and access, i.e. providing

localisation relatively quickly and cheaply for content which otherwise would not be

localised. Extreme cases of cost and time require immediate or near-instantaneous

localisation at no, or virtually no, expense. For example, messages on online social

networks or customer support documents are often processed through machine

translation, crowdsourcing, or a combination of the two.

Shortcomings in localisation practice are a lack of defined processes, an incomplete

understanding of localisation activities, and collaboration issues between software

engineering and localisation.

It has further been noted that localisation is often approached from a very technical point

of view as something that can be parameterised and isolated, focusing on an interface-

driven approach to software localisation instead of designing for cultures.

1.3 The Problem Statement

This research started as a puzzle from my experiences as localisation team leader in a

mid-sized software company: I had observed that most time was spent on handling

localisation issues that had been created by trivial causes, and these causes defied any

attempts at proactive prevention. Our despair usually came in the form of if-only, for

example:

 If only software engineers finalised user interface (UI) text a month before product

release, there would be no translation-caused release delays.

4

 If only UI designers remembered to leave at least 30% buffer space for translation-

expanded text, there would be fewer instances of cut text in the UI.

 If only translators referred to the terminology when translating, we would have

fewer retranslations.

Comparing notes with colleagues at other companies confirmed that similar issues exist

despite organisational differences, suggesting that the difficulty experienced in

localisation might originate in the way localisation is conducted in the context of software

development. Process-related shortcomings in localisation practice have further been

acknowledged in the literature, e.g. a lack of standard processes (Abufardeh and Magel,

2008b), an incomplete understanding of localisation activities and workflow (Lenker et al.,

2011), and issues of collaboration between software engineering and localisation

(Abufardeh and Magel, 2010; Lewis et al., 2009). Accordingly, there have been calls to

examine the collaboration of software engineering and localisation (O’Sullivan, 2001a;

Collins, 2001).

1.4 Aims and Objectives

A review of research and literature around software localisation1 will establish the

following:

1. The development of global software is an effort involving the two disciplines

translation and engineering. Generally, these activities are separated into

internationalisation and localisation.

2. Most research on software localisation examines internationalisation, localisation,

software engineering and translation in isolation. Further, most research is

focussed on an isolated aspect in the context of localisation such as the influence

of culture on UIs, or the evaluation of technological aids such as translation tools

and APIs.

3. There is comparatively little research on the practice of software localisation and

the causes of localisation issues.

Conversely, the original research problem, i.e. what makes software localisation difficult

and what shapes the contributions of individual disciplines, is narrowed down: first, an

1 See chapter 2.

5

empirical examination of software localisation as a whole as opposed to its individual

constituents. Second, an examination of the collaboration between developers and

localisers. And third, identifying the causes of localisation issues.

The literature review will show that technological developments have been employed to

address issues in software localisation. For example, Unicode simplifies the use of any

script in software, Localisation APIs trivialise internationalisation of many common

software functionalities and UI elements, and CAT tools facilitate collaboration of multiple

translators while lowering cost and turnaround time.

However, the sociological aspects of software localisation are left unexplored, specifically

how development and localisation professionals work on software localisation, and how

they work with each other. Both existing research (e.g. Collins, 2001; O’Sullivan, 2001a;

Lewis et al., 2009; Abufardeh and Magel, 2010) and my own experience suggests that

localisation issues are caused by this cooperation. Understanding underlying causes and

effects in internationalisation and localisation activities might go a long way towards

avoiding them.

The literature review will further suggest that project properties have an influence on

localisation. Such properties might be use of localisation tools, choice of development

models, relationship between developers and customers, and user feedback. Similarly,

the distinctiveness of developers and localisers is suggested to be of potential

importance, e.g. shared or distinct mental models and so on. Accordingly, the research

aims are explained as follows:

 To understand the reciprocal influences between engineering and localisation

processes.

 To understand how localisation issues are caused during cooperative work of

software engineers and translators.

 To understand the distinctness of developers and localisers relevant to

localisation.

 To understand the relevance of cultural competence in software localisation.

 To understand the influence of project and product properties on localisation

quality.

6

This leads to the following research objectives:

1. Analyse accounts about localisation practice, in particular regarding the

cooperation of developers and localisers.

2. Examine the role of human factors in localisation as a process.

3. Examine differences of cultural competence between developers and localisers.

4. Determine the influence of project properties on localisation.

1.5 Research Questions

Two different kinds of research objectives are becoming apparent. Research objective 1

and 2 aim at describing and exploring a particular situation. Research objectives 3 and 4

operate within suggested frameworks, here human factors, cultural competence, and

project properties. Accordingly, exploratory research is appropriate for objective 1 and 2,

while explanatory research is appropriate for objectives 2 to 4.

1.5.1 Empirical Study of Software Localisation

To complete the first research objective, research into the work of engineers and

translators seems in order. An examination of how engineers and translators work

individually and collectively during internationalisation and localisation leads to a large

host of specific questions: What activities do engineers and translators conduct for

internationalisation and localisation? How do they conduct these activities? What

influences how they conduct them? How do engineers and translators communicate?

What do they communicate about? What factors influence what they communicate

about, and what not? This is summarised into two research questions (RQs):

RQ 1: How is localisation conducted individually and collaboratively by developers and

localisers, and how does this shape each discipline’s activities?

RQ 2: How are issues caused during localisation and internationalisation?

1.5.2 Human Factors in Developer-Translator Collaboration

In the literature review, distinctness of developers and localisers and localisation issues as

a potential consequence is discussed, in particular regarding cross-disciplinary knowledge

(Bauer and Rodrigo, 2004; Russo and Boor, 1993; Sikes, 2011) and collaboration

(O’Sullivan, 1989; Honkela et al., 1997). Law (2003) sums this up as human factors

7

affecting developer-translator collaboration. Next, it will be discussed what human

factors are relevant and to what research questions they lead.

For one, there is the distinctness of cultural competence. Its importance for developers

has been repeatedly stated, both explicitly (Abufardeh and Magel, 2008b; Ryan et al.,

2009; Immonen and Sajaniemi, 2003a) and implicitly (Law, 2003; Abufardeh and Magel,

2009; Mahemoff and Johnston, 1998; Abufardeh and Magel, 2010; Smith et al., 2007;

Carey, 1998; Hogan et al., 2004; Liem et al., 2011). On the other hand, the argument is

made that because software development is technical, handling of culture is not at the

core of software development business (Linna and Jaakkola, 2010). It remains to be seen

whether there actually is a difference in cultural competence between developers and

localisers.

Related topics are localisation scope and localisation requirements (Giammarresi, 2011;

Kalliomäki et al., 1997), the assessment of which is based on an understanding of culture

(see e.g. Hoft, 1996). Hence, if indeed there is a cultural competence gradient between

developers and localisers, this might lead to different assessments of localisation scope.

Cultural competence and attitude towards localisation effectively are about the

relationship developers have with the localisation discipline. However, the relationship

vice versa is just as important (Law, 2003; Immonen and Sajaniemi, 2003a), particularly

whether localisers feel able to handle technical aspects of internationalisation. Cultural

competence is a very central consideration in localisation. It has been suggested that

cultural skills are affected by nationality or language skills (e.g. Carey, 1998).

Some authors have suggested that, along the lines of a focus on technology, software

developers are not favouringly predisposed towards software localisation (Honkela et al.,

1997; Sikes, 2011). Developers might not even feel responsible towards the outcome of

localisation. In other words, there might be an attitude gradient between developers and

localisers.

The literature review presents the project management triangle of cost, quality and time.

Some authors have suggested that cultural requirements are often sacrificed during

development due to time and budget shortage (Tuffley, 2003; Dunne, 2011), just like

software projects in general seem to prioritize cost and time over quality (Boehm, 2006,

8

2011; Blackburn et al., 1996). Similarly, the concerns regarding product quality might

differ between developers and localisers (Abufardeh and Magel, 2009).

In other words, the previous considerations suggest to examine the distinctness of

developers and localisers regarding cultural competence, attitude towards localisation,

and assessment of software quality and priorities in software development. This leads to:

RQ 3: In what regards are developers and localisers distinct?

1.5.3 Project Properties and Localisation

In the literature review, the three localisation factors cost, quality and time are

introduced as relevant properties in which localisation success can be assessed. Besides

the individual and collaborative work of developers and localisers, these factors are

affected by company culture and established practices, available resources, or market

conditions (Giammarresi, 2011). More specific influences have been postulated for

specific project properties, most prominently type of software (e.g. Abufardeh and Magel,

2010; Hall, 2000; Giammarresi, 2011), type of user (e.g. Liu and Zhang, 2011), relationship

between customer and user (e.g. Honkela et al., 1997; DePalma, 2006), number of target

locales (e.g. Ryan et al., 2009), and influence of the software development model (e.g.

Fissgus and Seewald-Heg, 2005; Abufardeh and Magel, 2010). Further, there are both

expressed and implied suggestions that the localisation outcome can be related to the

commercial character of a project, i.e. whether it is a commercial project or not (e.g.

Wolff, 2006; Exton et al., 2010).

The aim is to determine how these project properties affect the three localisation factors

cost, quality and time. These are inherently difficult to measure, as discussed in section

2.5. Localisation expenses are often not tracked (DePalma, 2006), and localisation quality

lacks standardisation (e.g. Tarquini et al., 2010). Hence, localisation effort is chosen as

dependent variable2, leading to the following research question:

RQ 4: What dependencies exist between localisation effort and development project

properties?

2 A detailed operationalisation of localisation effort will be discussed in subsection 3.3.2.

9

In all, four research questions were identified. The methods of answering them are

discussed in chapter 3.

1.6 Research Contributions

The thesis contributes to an understanding of how international software can be

developed efficiently. It describes software development and localisation practice used by

software engineers, translators, and their managers. Further, it describes the origins of

these practices in each discipline’s underlying practices, objectives and agendas, as well

as the interdisciplinary conflicts arising from them. A grounded theory of interdisciplinary

collaboration during software localisation explains how external influences based on

general and discipline-specific success criteria, tools and processes provoke different

strategies employed by, and cause conflicts between, localisers and developers during the

facilitation of interdisciplinary collaboration. Further, the research contributes evidence

of gradients in cultural competence and attitude towards localisation between developers

and localisers, and of the relationship between localisation and certain project properties.

1.7 Thesis Structure

The thesis is structured into six chapters3:

1.7.1 Chapter 2: Software Localisation and Internationalisation

In the second chapter, existing literature is reviewed. First, the meaning of culture is

discussed and the key terms locale, localisation, internationalisation, globalisation and

translation are defined. Then, existing research in software localisation and related areas

is discussed. The literature review will show that software localisation is an activity

involving many disciplines, including engineering and translation, that most existing

research examines localisation scope, activities, and their context in isolation, that there

3 The thesis structure is loosely based on the structure for social science research reports suggested by
Wisker (2008). Writing was endeavoured to be gender-neutral throughout the thesis. In order to obscure
interviewees’ identities, they are consistently referred to using the masculine form. In quotes, ellipses
without square brackets (“…”) indicate a pause. Occasional modifications and shortenings for clarity are
indicated by square brackets. Ellipses in square brackets (“[…]”) indicate the omission of words, sentences,
or paragraphs. Typeset, layout and referencing style follow The University of West London (UWL) thesis
style regulations (UWL, 2015). Presentation of statistical results are based on the guidelines of the American
Psychological Association (APA) (APA, 2009).

10

is relatively little research on the causes of localisation issues in general, and that there

have been few comprehensive studies of the practice of software localisation.

1.7.2 Chapter 3: Research Methodology and Method

Based on the research questions and the literature review, two independent studies are

constructed. The research aims are to understand the reciprocal influences between

software engineering and localisation, the origins of localisation issues in collaborative

work, the distinctness of developers and localisers, and the relevance of cultural

competence for software localisation. An interview case study using Grounded Theory

(GT) will explore localisation professionals’ perceptions of social processes, human

interactions and organisational contexts involved in the development and localisation of

international software. A survey study will test a number of hypotheses about the

distribution of cultural competence, self-efficacy, opinions and attitude about localisation

in professional localisation roles, and localisation projects and their properties.

1.7.3 Chapter 4: Qualitative Results

The qualitative research shows that the main concern of interviewees is the facilitation of

interdisciplinary collaboration between linguistic and technical professionals, determined

by constraints, conflicts and the chosen collaboration strategies, which in turn influence

each other. The behaviour of developers and localisers can be characterised through a

dominance of engineering considerations and processes, and a self-serving behaviour of

localisers characterised by the theory of agency.

1.7.4 Chapter 5: Quantitative Results

The quantitative research confirms some of the assumed relationships. Compared to

localisers, developers score lower on both cultural competence and attitude towards

localisation, but this does not translate into a difference of localisation scope assessment

or overall quality criterion prioritisation. Localisation is affected by the existence of a

development model and certain software types, and the more locales are targeted, the

more effort is expended. However, user type, relationship to the user, and commercial

nature of a software project do not affect localisation.

11

1.7.5 Chapter 6: Conclusion

The limitations of the qualitative and quantitative approaches and analysis methods are

discussed. Further, the research contributions are discussed and their potential

implications for practice elaborated. Potential for future research is explored.

12

Chapter 2 Software Localisation and Internationalisation

In the first chapter, software localisation was introduced as the adaptation of software for

use in international markets in order to foster acceptance and use of increasingly

pervasive and relevant software, both as a business and inclusiveness objective. The

introduction also set the original problem statement: to examine how localisation issues

are caused by the process of software localisation in the context of software

development.

This chapter introduces research and development with relevance to software

localisation, software internationalisation, processes and work steps, and limitations on

them. It discusses the nature of localisation and influences on the process and the work

of developers and translators, including localisation and internationalisation

requirements, bugs, tools and utilities, standards, rules and guidelines, organisational

forms and existing empirical research. Sections 2.1 details the literature search strategy.

Sections 2.2 and 2.3 introduce relevant terminology and explore seminal research on

culture, cultural differences, and the consequences for software products published in

international markets. Sections 2.4 and 2.5 review scope of localisation, the localisation

factors cost, quality and time, and localisation issues, i.e. bugs and process difficulties.

Section 2.6 explores how research and practice tackle internationalisation and localisation

through technical and procedural means. Section 2.7 discusses existing research on

software localisation practice and contrasts it with existing empirical research on causes

of localisation issues. The following will be shown:

First, the adaptation of software for international markets is a multidisciplinary activity.

Second, the majority of software localisation research is located around the context of

software localisation, i.e. evaluation and examination of activities and tools used during

translation, internationalisation and localisation.

Third, there is comparatively little research about the practice of software localisation

and internationalisation in the context of software development, and this existing

research suggests that the practice and engineer-translator cooperation are in need of

improvement.

13

Fourth, while there is a good amount of research and development toward improving

localisation, there is comparatively little research examining the causes of issues, and

research that does is often limited to specific issues or narrows down to a particular

localisation aspect.

The findings from this chapter narrow down the problem statement to original research

aims and objectives, and eventually the research questions as discussed in the

introduction, leading to the choice of research methodologies in chapter 4 to examine the

activity of software localisation.

2.1 Literature Search Strategy

For this literature review, publications were perused when they addressed in any way

definitions and motivation for localisation, human factors in software localisation and

work practice of localisers and developers working on international software, including

tools, utilities, standards and processes.

Because there are competing meanings for the terms localisation, language, translation

and internationalisation, a search in common literature search databases led to a lot of

false positives. Instead, this literature review started by a systematic manual search

through the most relevant publications, as well as some websites listing peer-reviewed

publications on localisation and related topics. Appendix G lists these resources.

2.2 From Culture to Locale

The activity of software localisation originates from the requirement to adapt software.

The more complex software becomes, the more likely it is that it is not globally applicable

to all markets. Barber and Badre (1998) explicate this by observing that there is no such

thing as one global interface suitable for all cultures. And indeed, culture is the term

under which idiosyncrasies of different software markets are often subsumed, with a

market’s specific requirements referred to as cultural differences. To understand how

culture is tackled during the development of international software, the term and

applicable definitions in science and software development are discussed.

The meaning of the term culture is complex. In general use, culture can refer to, among

others, achievements in the field of art, individual sophistication, tradition and mores, or

accepted norms and expected behaviour in professional or social groups. It is an

14

ambiguous and flexible term (del Galdo, 1996) used frequently in academia and everyday

life, yet with many meanings. Kroeber et al. (1952) counted more than 156 different

definitions, none of which are generally agreed (Kamppuri, 2011). The ambiguity of the

term culture has been commented on by many researchers in computing (Smith et al.,

2007; Goggins and Mascaro, 2011; Kamppuri, 2011).

How culture is handled in production environments is significantly shaped by how culture

is perceived (Sun, 2002; Sturm, 2002). For this reason, it is important to discuss views on

culture expressed in software development.

Rauterberg (2006) explains culture as the integration of human behaviour, attitudes,

norms, values, beliefs, actions, and communications in ethnic, religious or social groups.

In other words, culture can be understood as attitudes, beliefs and behaviours of a group,

including special interest groups such as religion, race, society, organisation, nationality,

history, language or level of technical sophistications (del Galdo, 1996; Kamppuri, 2011;

Linna and Jaakkola, 2010). Cultural values have been linked to biological and social factors

(Ito and Nakakoji, 1996; Kamppuri, 2011).

In the context of HCI, culture is a cognitive phenomenon affecting artefacts and behaviour

(Kamppuri, 2011). It is located on or close to the level of language and national culture, as

opposed to e.g. culture of smaller groups (Clemmensen and Roese, 2010), although the

notion of national culture is problematic as well (Smith et al., 2007) as many nations4 are

comprised of various ethnic groups differing in languages, traditions, norms, etc. India,

Russia and the USA are examples of nations that are neither linguistically nor culturally

homogeneous. But because a language can subtly differ between different nations as

well, e.g. in the case of British English, US English and Australian English, culture cannot

be equated with language either (Abufardeh, 2008, pp.9, 10).

2.2.1 Cultural Models

Culture has been examined in science through cultural models. These models specify so-

called cultural dimensions, also called international variables (Hoft, 1996). The notion is

based on research by Edward T. Hall and suggests to find behaviour, properties or

4 The term nation is mostly applied either socio-culturally, referring to collectives of people with common
characteristics such as language, culture and ethnicity, or geopolitically, referring to country states. In this
thesis, it is used in the latter way for consistency with the terms national and international.

15

artefacts that consistently differ across cultures. Hall developed a number of cultural

dimensions from his field work in Europe, the Middle East, Asia, and with indigenous

cultures in North America, for example to what degree messages are context-dependant,

and whether time is perceived as monochronic, i.e. sequential, or polychromic, i.e.

parallel5 (Hall, 1959, 1966, 1977). Hall asserts that cultures can be described by their

position on a spectrum of a number of such cultural dimensions. His conclusions have

been criticised for being based on observations on qualitative insights on the level of

larger geographical areas, e.g. the Eastern Mediterranean, Western or Northern Europe

that are not necessarily culturally homogeneous (Ahmed et al., 2008).

A number of cultural models exist and have been categorised into four meta models

(Hoft, 1996; Linna and Jaakkola, 2010). The objective vs. subjective model distinguishes

between objective culture and subjective culture, i.e. between tangible and visible culture

such as artefacts, behaviour, and organisation on one side, and values, norms and other

psychological features on the other side. The iceberg model views the subconscious

aspects of culture such as values and beliefs as an iceberg’s large underwater body. On

this is built the comparatively small visible part of the iceberg above the surface, e.g.

artefacts and behaviour. The pyramid model shows culture as middle layer and linking

element of human nature, which is common for all humans and therefore serves as the

pyramid’s base, and personality, which is individual and is at the pyramid’s stop. The

onion model describes culture as consisting of different layers, where the outer layers

represent artefacts and behaviour, and the layers further inward stand for norms, values

and beliefs.

Cultural models have been used to inform the adaptation of software for different

cultures (e.g. Hoft, 1996), and in HCI and behavioural research both as source for

hypotheses towards the examination of cultural fit of UIs (e.g. Hall, 2000), and to explain

findings (Kamppuri, 2011). On the other hand, cultural models have been described as

encouraging stereotypes and generalisation (Kamppuri, 2011) and applying an unsuitable

unit of analysis, i.e. nations or larger regions (Hua et al., 2014).

5 This is also referred to as M-time and P-time.

16

Some research uses Trompenaars’ model of national cultural differences (Trompenaars

and Hampden-Turner, 1998)6, developed from a survey of 8,841 managers in 43

organisations. It considers culture as the problem solving strategies of groups, in

particular in the context of business management. For this reason, its application outside

of this context has been criticised (e.g. Hoft, 1996).

2.2.1.1 Hofstede’s Cultural Dimensions Model

Hofstede’s Cultural Dimensions Model (Hofstede and Hofstede, 2005) is arguably the

most popular cultural model. Hofstede considers culture as a group-discrete cognitive

programming he calls software of the mind, e.g. norms, expectations, concepts, and

responses to the environment which people acquire throughout their life from their social

environment. Through empirical research on ca. 116,000 employees at IBM in the late

1960s and early 1970s, six linearly independent dimensions of cultures were determined:

 Power distance: Does social hierarchy form relationships?

 Individualism vs. collectivism: Are people individuals or part of a group?

 Masculinity vs. femininity: Is society oriented towards either male values such as

power and wealth, or female values such as empathy and friendship?

 Uncertainty avoidance: Are future events perceived as controllable?

 Long-term vs. short-term orientation: Is motivation gained through immediate

rewards or future payoffs?

 Indulgence vs. self-restraint: Do social norms control self-gratification?

Due to it being one of the first models to tackle the phenomenon of culture in a

quantitative way through comparatively straightforward dimensions, Hofstede’s model

has become ubiquitous and dominant wherever culture is supposed to make an impact. It

has been widely adapted in many fields from politics via science to economy and

6 Trompenaars describes the following cultural dimensions:

 Universalism vs. particularism: Do morals and judgement follow rules or relationships?

 Individualism vs. communitarianism: Are people perceived as individuals or as part of a group?

 Neutral vs. emotional: Are emotions subdued or expressed freely?

 Specific vs. diffuse: Are private and business life separated?

 Achievement vs. ascription: Is status gained through achievements or through titles?

 Sequential vs. synchronic: Is time perceived as coherently linear or circular, or as incoherent?

 Internal vs. external control: Is our environment perceived as controllable, or does it control us?

17

continuously tested against new data, being augmented where necessary7. For the same

reasons, it has been extensively scrutinized, and various methodological issues were

criticised (see Kamppuri, 2011; McSweeney, 2002). Among others, Hoft (1996) criticized

that the questionnaire employed was not culture neutral, and McSweeney (2002)

considered Hofstede’s approach to determining cultural dimensions through survey

difference analysis tautological. Abufardeh and Magel (2010) pointed out multiple

selection biases in Hofstede’s data, which was almost exclusively gathered at one specific

company and therefore reflects more on organisational than national culture. Further,

Hofstede did not present results consistently on a national level. While results were

itemised for many countries, some nations were merged into culturally inhomogeneous

conglomerates such as the Arab World (see Ahmed et al., 2008). Further, the model’s

indications do not always match up with observation, as e.g. noted by Hall et al. (2009)

regarding a perceived reluctance of organisations to make decisions in a society which is

assumed to have low uncertainty avoidance. Similarly, Kamppuri (2011) reports

interactions in Tanzania and Finland that frequently did not match Hofstede’s model.

This might hint towards misunderstanding of the actual applicability of cultural models

(Kamppuri, 2011): On one hand, Hofstede appears to encourage the application of his

model, particularly in the sector of technology. On the other hand, Hofstede

differentiates between cultural values, i.e. preferences as described by his cultural

dimensions, and cultural practices, which are not directly described by his model.

Hofstede argues that values are more stable than practices, but it does question the

model’s use when designing products for different cultures.

2.3 GILT

Now that user groups requiring culturally adapted software versions can be specified

through locales, the notion of software localisation can be discussed, that is, the

adaptation of software for users in different locales. Localisation is part of the so-called

GILT8 framework standing for Globalisation, Internationalisation, Localisation,

7 Originally, Hofstede’s model consisted of four dimensions. Long-term vs. short-term orientation was
added in the second edition in 2001, indulgence vs. self-restraint was added in the third edition in 2010.
8 Dunne (2006) suggests to refer to it as TLIG because practitioners build awareness in that order.

18

Translation9 (Anastasiou, 2009; Yuste, 2005). Although these terms, particularly the first

three, are commonly used, there is only a rough consensus on their meaning and relation

to each other (Schäler, 2007; Dunne, 2006). In short, translation refers to the transfer of

text from one language to another, localisation is the adaptation of a product to a specific

locale, internationalisation is the activity of preparing a product for adaptation to specific

locales, and globalisation stands for the practice of distributing a product globally. Each of

these activities has their own characteristics, rules and pitfalls.

2.3.1 Locale

The ambiguous character of the term culture was mentioned earlier and is reflected in

the differing structures of cultural models. This ambiguity is problematic for two reasons:

First, the notion of adapting software for different cultures implies a finite list of cultures

to adapt for. But there is no generally agreed upon list of cultures. A similar problem was

already touched upon in the previous section on cultural models considering different

units, e.g. regions or nations.

It might appear that nations are a very convenient unit to adapt software to, so that for

each nation, there is a version. Assuming that there are currently 195 nations10, these

might be mapped on one byte. It might further appear that nations map nicely to certain

aspects in which software needs to be adapted, such as law, which generally differs

between nations.

However, distinguishing software adaptations on a national level implies that culture is

nationally homogeneous. Unfortunately, as was already mentioned when scrutinising

Hall’s and Hofstede’s cultural models earlier, this is not the case and many nations are

both culturally and linguistically inhomogeneous. For example, the USA includes

population groups with cultural traditions from Europe, Latin America, Africa and Asia,

but also Native American traditions. Similarly, many nations have more than one official

language, e.g. Switzerland and Canada, or large population groups with their own

language, such as the Latino population in the USA. So, by creating nation-specific

9 Globalisation, Internationalisation, Localisation and Translation are often abbreviated as G11N, I18N, L10N
and T9N, with the middle number indicating the count of omitted letters.
10 At the time of writing, the United Nations (2015a, 2015b) have 193 member states and acknowledge two
non-member states.

19

software, one would in part miss adaptations for cultural groups on a sub-national level,

i.e. French speakers in Canada.

Another segregation might be suggested on the level of languages so that for each

language there is one version. That, too, brings difficulties due to linguistic and cultural

inhomogeneities. For example, the predominantly English countries Australia, New

Zealand and Canada use the metric system, whereas the USA and the UK each use their

own system of imperial measurements. French is an official language in France, but also

in the culturally distinct nations Ivory Coast and Congo.

The second problem of the ambiguity of culture for development of international

software is to determine along what dimensions software has to be adapted for each

culture.

To solve those two problems, the notion of locale has been introduced. A locale defines a

set of linguistic, cultural and technical specifications including script, orthography rules,

units of measurements, and data presentation formats (Tarquini et al., 2010; Hudson,

1997; Dr. International, 2003; Anastasiou and Morado Vázquez, 2010; Mahemoff and

Johnston, 1998; Hall, 2000). A locale is specified through a language-region pair, i.e. the

combination of an ISO 639 language code and an ISO 3166-1 country code (ISO TC 37/SC

2, 2002; ISO TC 46, 2013). These locales can be amended by additional information

related to sorting instructions, character classifications and formats. For example, en-US

refers to the English-speaking US market, en-GB refers to the English-speaking United

Kingdom.

2.3.2 Translation

Translation between two languages, also called interlingua translation or translation

proper, is the “interpretation of verbal signs by means of some other language” (Munday,

2009, p.5), more mundanely understood as the transfer of text from a source language to

a target language to facilitate communication (Anastasiou and Schäler, 2010; Malmkjaer,

2008). Translation is not done word for word, but meaning for meaning, and therefore

applies to more than just words on a page without perfect equivalence (Munday, 2009;

Schubert, 2009).

20

Bauer und Rodrigo (2004) distinguish between sender-commissioned translation and

receiver-commissioned translation. The former, e.g. a website or software for customers,

usually demands high quality, whereas the latter, e.g. a social media user reading updates

from foreign friends, often accepts less than perfect translations.

The activity of translation depends on what is translated, and translators specialise

accordingly. Russo and Boor (1993) makes the case that translating UIs is more difficult

than for example literary translation because of the many subtleties included. Translating

for software also includes auxiliary activities such as researching information (Schubert,

2009), string management (Hogan et al., 2004), post-editing (Rico and Torrejón, 2012),

and even content creation (Yuste, 2005). At times, even tasks closer to software

engineering can become part of a translator’s activities, e.g. resizing of UI elements to

accommodate text expanded during translation (Fissgus and Seewald-Heg, 2005; Hartley,

2009).

2.3.3 Localisation

Localisation is the process of adapting a product for a specific locale by translating or

otherwise adapting the relevant locale-dependent content for the benefit of users in said

locale (Esselink, 2000; Collins, 2002; Dunne, 2006; Lenker et al., 2011; Liem et al., 2011;

Sikes, 2011). It can be seen as a special case of accessibility, i.e. the adaptation of

software for diverse user groups with very specific needs, and a way to diversify and

reach more users (Perlman, 1999).

Localisation can apply to services and physical wares. The two most common kinds of

software localisation deal with applications and websites (Anastasiou, 2009). Its

cornerstones are the translation of text and the adaptations to cultural conventions

(Anastasiou and Schäler, 2009), but the exact scope of localisation is somewhat deeper

and fuzzier and includes consideration of locale-specific data and number formats as well

as date and time formats, calendar systems, units of measurement, currency, images,

icons and symbols, aesthetics, conventions for names, sound and colour, gender roles,

depiction of national borders and geography, locus of control, functionality, UI layout and

time zone handling (He et al., 2002; Cyr and Trevor-Smith, 2004; Hall, 2002; Anastasiou

and Morado Vázquez, 2010). The scope of localisation will be discussed in section 2.4.

21

2.3.3.1 The Relationship between Translation and Localisation

Although, as discussed previously, the scope of localisation goes beyond text translation,

language quality is a fundamental aspect of successful localisation (Exton et al., 2010;

Anastasiou and Schäler, 2009). Software communicates mostly through text (Sikes, 2011).

Accordingly, localisation consists most prominently of translation, hence localisation is

perceived as translation for software (Dunne, 2006; Sikes, 2011). Insofar, localisation is

conceptually related to screen translation, e.g. the translation of movie subtitles, and

Chiaro (2009) argues that it might often be the more fitting term when localisation is

limited to UI text translation.

Nonetheless, there are different interpretations of the relationship between translation

and localisation: Translation and localisation is seen by some as identical, being merely

synonyms for the same concept applied in different contexts. Others see in localisation a

comprehensive activity of which translation is a part of.

Illustrating the first, Hartley (2009) writes that it has long been accepted in the translator

community that localisation is a specialist term used when the concept of translation is

applied to software. Hartley is aware of the different scope localisation work requires,

e.g. resizing of the UI, but appears to understand translation as the larger concept of

adapting a product beyond text translation (see Munday, 2009; Law, 2003). In other

words, Hartley finds localisation and translation conceptually identical, and localisation as

merely the concept of translation applied to software. A similar view is given by Dohler

(1997), who argues that localisation of information technology products is a translation of

the whole product, rather than just a product’s textual elements like packaging and

handbooks.

On the other hand, many authors explicitly understand localisation and translation as not

synonymous, arguing that localisation is distinct from translation because it also involves

non-textual elements such as layout, icons, colour, and sound (e.g. Anastasiou, 2010b;

Anastasiou and Schäler, 2010; Collins, 2002; Sikes, 2011; Hudson, 1997), and that the

notion of localisation as software translation does not apply precisely because

translations are affected by restrictions such as available space in the UI (Anastasiou and

Schäler, 2009). Further, localisation is different from translation because software as a

product is less language-centric and more communication- and information-centric

22

(Fissgus and Seewald-Heg, 2005), and because translated text is only part of a software

product, whereas in translation of a book, translation is the whole product (Chiaro, 2009).

Following this argument, localisation was different from translation even if it merely

focused on UI text.

The relevance of this point is that in commercial software development, localisation is

often limited to textual elements in software (e.g. Abufardeh and Magel, 2010), or at best

include other superficial presentational elements for replacement, e.g. symbols and

graphics (Kamppuri, 2011, p.24). This seems to be a deliberate decision to simplify

localisation, rather than a lack of need to adapt the software further, as e.g. reported by

Sun (2004b).

2.3.4 Internationalisation

There are two ways of adapting software for locales. A trivial approach is to create copies

of the code for each locale and make the required adaptations for each locale in the

respective copy. This is referred to as retrofitting. Since it creates redundancy and

duplication of effort, e.g. if a bug requires code modification in each copy of the code, it is

generally considered to be an expensive way of conducting localisation (Kumhyr et al.,

1994; Dohler, 1997).

The relatively cheaper approach is to design software in such a way that all locale-

dependent aspects can be configured. This is commonly called software

internationalisation (Caddell and Hall, 2005; Liem et al., 2011; Carey, 1998; Barbour and

Yeo, 1997; Hudson, 1997), but has also been referred to as enabling (Kumhyr et al., 1994;

Hudson, 1997), design-for-localisation (Hall, 2002), or globalisation11 (Dr. International,

2003; Dröge et al., 2006).

Software internationalisation can be understood in different ways: Some see it as

separation of locale-dependent and locale-independent software elements (e.g. Caddell

and Hall, 2005; Carey, 1998), others as developing a culture-neutral software core (e.g.

11 A different meaning for globalisation as global business strategy is introduced in subsection 2.3.5.

23

Barbour and Yeo, 1997), yet others as designing software to be configurable12 for various

locales (e.g. Liem et al., 2011; Sikes, 2011). Esselink (2006) suggests it should be all three.

Internationalisation is sometimes implied to be simplification and reduction of

ambiguities (Kumhyr et al., 1994) or even the removal of any locale-relevant content so

that localisation is not required (e.g. Law, 2003). A large body of advice on how to make a

product more culture-neutral can be found in Microsoft Corporation Editorial Style Board

(2004). However, the main objective of internationalisation is efficient localisation

(Combe, 2011), including localisation maintenance, for example easy resizing of UIs to

accommodate for translated text which has changed in length (Tarquini et al., 2010).

Further, internationalisation simplifies testing if testing for many locales can be reduced

to one test (O’Sullivan et al., 2003).

Internationalisation requires code creation without assumptions of any single locale (He

et al., 2002). Sikes (2011) breaks down internationalisation to three task: removal of

culture-dependant elements from software design, separation of presentation and

application logic in the software architecture, and support of global norms, e.g. character

sets and locale-dependent application behaviour.

Software internationalisation can be implemented in three different ways13 (Carey, 1998;

Lehtola et al., 1997): In compile-time internationalisation, modified code is created and

compiled for each target locale, similar to re-engineering. In link-time internationalisation,

locale-specific objects and resource files are created during compilation of the code from

a common code base. In run-time internationalisation, one set of object and resource files

are created and locale-specific resources are loaded during software execution (e.g. Exton

et al., 2010). The latter approach supports locale switching at runtime, but requires the

most computing power due to the needed dynamic link calls (Kokkotos and Spyropoulos,

1997a).

12 Despite being identical for all intents and purposes, configuration files contain guidelines or commands
while resource files contain values (Kokkotos and Spyropoulos, 1997a).
13 He et al. (2002) distinguishes between internationalisation and localisation approaches and lists seven
permutations: run-time localisation, compile-time localisation, compile-time internationalisation with
compile-time localisation, compile-time internationalisation with link-time localisation, compile-time
internationalisation with run-time localisation, design-time internationalisation with link-time localisation,
and design-time internationalisation with run-time localisation.

24

The necessities of the project should dictate the most suitable localisation or

internationalisation approach, i.e. whether to re-engineer, internationalise, retrofit, or

even reverse-engineer an already compiled product. Depending on whether software

needs to be partly internationalised, i.e. supporting only specific locales, or fully

internationalised, i.e. supporting any possible locale (Barbour and Yeo, 1997), some

approaches are suitable for one or few locales, while others are preferable if software is

localised into many locales (He et al., 2002). The required effort is determined by

internationalisation scope and method, which are therefore dependent on motivation,

i.e. business potential if applicable (Honkela et al., 1997).

There is a consensus that internationalised software products are more efficient in

development due to their single code base, and consume fewer time and resources

during localisation, leading to cost savings and a faster time to market (He et al., 2002;

Carey, 1998). Accordingly, internationalisation practically is a requirement for software

localisation (Anastasiou and Schäler, 2009; He et al., 2002; Dunne, 2006). The overall

success of a localisation project depends to a major extend on the quality of its

internationalisation (Giammarresi, 2011).

Internationalisation can be part of the original development, or may be applied to

existing, not yet internationalised software (Hall, 2002; Honkela et al., 1997). The latter is

referred to as re-engineering (Peng et al., 2009) or re-enabling (Mahemoff and Johnston,

1998). Re-engineering already finished software is generally connected with additional

effort and expenses (Mahemoff and Johnston, 1998; Kumhyr et al., 1994; O’Sullivan,

2001a). Law (2003) describes the case study of an internet portal where re-engineering

existing prototypes cost ca. 1 month. Particular challenges were the refactoring of code to

accommodate universal character encoding and the general transformation from static to

dynamic UI text. Similarly, the inclusion of right-to-left languages can require extensive

reengineering (Giammarresi, 2011). Exton et al. (2010) describe the effort to re-engineer

an existing application to use their Babel Client Library localisation framework. The

authors detail the kinds of difficulty to be expected when retrofitting an existing

application and conclude:

[A]lthough it is possible to retro fit an existing application with the
[Babel Software] architecture it is not advisable and so [Babel Client

25

Library] should be incorporated into a client application's design during
the initial development phase. (Exton et al., 2010, p.46)

Similarly, when contrasting Japanese and English versions of a website and discussing

usability issues, localisation and internationalisation, Tarquini et al. (2010) found that

websites not developed with internationalisation in mind are not easy to localise.

Accordingly, it is recommended to include internationalisation from the start of design

and development (Kumhyr et al., 1994; Hudson, 1997; McConnell, 2004, p.48; Dröge et

al., 2006, p.423; Ryan et al., 2009; Tarquini et al., 2010). Initially higher costs of early

internationalisation will be compensated by savings in the long run (Collins, 2002;

Hudson, 1997), and Hudson et al. (1997) discuss the practice of involving the

internationalisation department early in product development in order to save time,

reduce costs, and foster locale-dependent awareness.

Internationalisation does not only mean engineering effort, but also affects software

development in other ways, as examined by Abufardeh and Magel (2009), who found that

the impact on software security and performance were the most important.

Internationalisation also leads to scattering, i.e. code changes affecting multiple classes,

and tangling, i.e. code changes affecting elements which are also affected by

requirements other than internationalisation/localisation. Scattering and tangling suggest

that cultural factors go beyond the UI and create functional requirements with

implementations throughout the software, thus complicating its development due to the

many changes of interrelated parts and hampering reusability, extensibility, and

traceability of software artefacts. Abufardeh and Magel (2009) call this crosscutting

concerns and recommend to integrate the identification of such crosscutting concerns

into the software development lifecycle as early as possible to reduce cost and time.

2.3.5 Globalisation

The term globalisation is often used in two different ways in the context of software

localisation. As mentioned previously, the term is sometimes used synonymously with

internationalisation.

Other than that, globalisation refers to transforming many local markets into a single

global market in which individuals and businesses operate and compete (Dunne, 2006;

26

Sikes, 2011; Hudson, 1997). It is effectively a marketing term (Anastasiou, 2009) referring

to an overall strategy of a more or less global business presence or services, often but not

necessarily including locale-adapted software. For a software vendor, internationalisation

and localisation is the implementation of globalisation in order to operate globally

(Hartley, 2009).

The topic of globalisation touches on the motivation for localisation. Different objectives

are possible. Anastasiou et al. (2010) distinguish between ordinary or mainstream

globalisation, focused on economic aspects and exclusively driven by term sales, and out-

of-the-ordinary globalisation for social, political and cultural aspects, driven by

independence and open to the community. Similarly, Ryan et al. (2009) distinguishes

between informative motivation, i.e. increasing the availability of information or

software, for example in the case of the - political - EU localizing content for its member

states, and commercial motivation, i.e. increasing business by accessing new markets and

attracting new users.

As will be discussed later in detail, software localisation requires considerable effort. In

the context of this research and relating to the distinction between informative and

commercial motivation discussed above, I would like to argue that this effort is spent in

order to satisfy one of two objectives: either culture-centred localisation, i.e. to enable

populations, languages and cultures, or business-centred localisation, i.e. localisation to

ensure international product proliferation and success. These will be discussed in more

detail next.

2.3.5.1 Culture-Centred Localisation

Culture-centred localisation refers to catering for specific cultures, for example to

preserve minority cultures that would otherwise fade. For small indigenous cultures,

localisation is essential for full participation in technological developments and therefore

preserving their active use (Barbour and Yeo, 1997; Hall, 2004; Caddell and Hall, 2005).

Speedy localisation is important, as once a new technology has been adopted, users avoid

even those changes increasing usability or accommodating their culture (Wolff, 2006;

Clemmensen, 2010).

27

Likewise, Ito and Nakakoji (1996) discusses the suitability of the typewriter metaphor for

word processing in Japan14. Due to the complexity of Japanese script, typewriters had not

been widely used. Instead, Japanese was written in a 20x20 grid of rectangular squares. It

is suggested that the import of foreign word processing software based on the typewriter

metaphor forestalled the creation of a word processing metaphor more suitable to

Japanese writing. Nowadays, of course, word processing based on the typewriter

metaphor is the norm in Nippon.

Localisation has also been identified as a prerequisite for development through the

provision of information technology to developing countries, bridging the digital divide

between developing and developed world15 (Abdelnour-Nocera et al., 2011; Hall, 2002,

2004). However, ideally only localised IT technology should be provided in order to avoid

technology rejection due to it being perceived as a power relationship statement

(Amichai-Hamburger, 2010). The introduction of foreign culture through new technology,

e.g. English as dominant IT language, can also develop a life of its own with severe

consequences for local languages (Caddell and Hall, 2005; Wolff, 2006; Hall et al., 2009).

There also appears to be a certain political aspect to localisation. For example, Hall (1998)

notes that while Nepali is written in a derivative of the Devanagari script for which a

Unicode16 encoding exists, this is rejected, apparently because Nepal prefers its own

encoding for reasons of socio-political differentiation17. A further role is played by socio-

political agendas, e.g. participants of the Unicode standard encoding process apparently

preferring exclusive Unicode code points for their ethnicity’s script, rejection the notion

of sharing code points with congruent scripts of different ethnicities (Hall et al., 2014;

Hall, 2015).

2.3.5.2 Business-Centred Localisation

Software localisation, i.e. the adaptation for different markets, obviously increases a

software product’s potential for sales (Schäler, 2007; Hartley, 2009; DePalma, 2006).

14 The Japanese typewriter metaphor is also mentioned by del Galdo (1996), Nardi et al. (2011) and
Clemmensen (2010).
15 The term digital divide is also applied to other, non-national minorities. For example, Pérez-Quiñones et
al. (2005) apply it to women vs. men in information technology.
16 Unicode is discussed in subsection 2.6.4.1.
17 Similarly Ali and Kohun (2007) request recognition of Kurdish culture by implementing a Kurdish locale in
software development frameworks.

28

Many software companies conduct the majority of their sales outside of their domestic

market (for numbers, see e.g. Tarquini et al., 2010; Hall et al., 2009). Motivations for what

Lenker et al. (2011) call enterprise localisation might be reactive, i.e. to satisfy customer

requests, or strategic, i.e. to expand into new markets (Giammarresi, 2011), though

market entry itself does not immediately require localisation (DePalma, 2006). Far from

being a question of mere profit, del Galdo (1996) and Giammarresi (2011) suggests that in

a globalised word and a global market, localisation is not only an option, but a necessity

for software development companies to survive. Accordingly, DePalma (2006) found that

about a quarter of the examined companies measure their localisation return on

investment, but 74% localised because they felt they have to.

In any way, business-centred localisation differs from culture-centred localisation on two

important points: First, it is an industrial process with respective constraints and

requirements, e.g. minimum turnaround speed and cost (Hall, 2004). Software

localisation brings with it significant cost18, e.g. discussed by Hall (2002) and Collins

(2002), which must be justifiable in a business sense (Hoft, 1996; Hua et al., 2014), e.g. if

localisation of the product results in enough additional product sales to make up for the

additional cost19 (Sikes, 2011). And second, business-centred localisation has a different

focus and different priorities than culture-centred localisation. For example, Dr.

International (2003, p.8) lists consistent look, feel, and functionality of software across

different locales as objective of localisation and points out that customers might have an

expectation for software to be widely identical. In particular, corporate customers prefer

localised, yet homogeneous software for reduced effort in technical support and training.

Further, the permissible effort in a profit-oriented international software project,

including the decision what to internationalise and localise, is obviously limited by

expected revenue (Hudson, 1997).

Consistency across different locale versions is at odds with cultural adaptation. For

example, comparing to the example given earlier of the unsuitable typewriter metaphor

for word processors in Japan, one can see how not using the typewriter metaphor would

18 Exton et al. (2010) argues that this cost furthers the digital divide mentioned above.
19 Wolff (2006) implies that market pressure caused by the availability of localised software from volunteer
and open source efforts might lead to localisation for commercial software. Honkela et al. (1997) note that
localising for minority languages as a gesture of goodwill may affect revenue in other markets positively.

29

violate consistency across locales. Similar concerns apply to locale-adapted designs (Hall,

2002), navigation and layout (Abufardeh and Magel, 2010; Collins, 2002). It might be this

requirement for consistency which leads to localisation often restricting itself to textual

and linguistic aspects of software.

2.4 Scope of Localisation

Earlier in this chapter, the ambiguity of culture was discussed, locale was introduced as an

indicator replacing culture, and localisation was defined as adaptation of software for

different locales. This section will explore what adaptations can or need to be made in

software. This localisation scope significantly influences both scale of software

internationalisation, and localisation deliverables, and has a significant impact on the

extent of developer-translator collaboration. The importance is implicitly acknowledged

by software localisation models and frameworks specifically aiming to tackle culture in

the context of software development, e.g. the model by Sturm (2002), or the models and

processes developed by Stamey and Speights (1999) and Smith et al. (2004).

Chavan et al. (2009) lists language, aesthetics, religion, popular culture, history,

geography and climate, among others, as objects of localisation. Tarquini et al. (2010) has

made an effort to give a higher-level categorisation of these elements into linguistic,

cultural and technical items: Linguistic items include right-to-left languages, scripts and

character sets. Cultural items include legal regulations, representation such as symbols,

addresses and currencies, and political and business conventions. Technical items include

keyboard inputs, local service providers, layout resizing, and foreign script support.

Kumhyr et al. (1994) makes a conceptually different categorisation, distinguishing

between product-independent adaptations required regardless of functionality, e.g. the

need to translate UI text, and product-dependent adaptations specific to what software

does, e.g. considerations of regional tax law in accounting software.

The locale-adaptation classifications of several authors distinguish representation and

functionality. Lagus et al. (1997) distinguished between adaptations based on cultural

factors derived from customs and beliefs and local conventions, both of which mostly

affecting representation, and local practices, i.e. formulae and processes, which affect

software on a functional level. A similar classification with a stronger focus on quality and

30

localisation depth from the somewhat different medium video games is given by Thayer

and Kolko (2004), who distinguish between three levels of scope and complexity: Basic

localisation translates only text. Complex localisation further adapts GUI and icons. And in

blending, look and feel, functionality and usability are adapted to match requirements of

a different culture.

This categorisation seems conceptually similar to the distinction of the following three

levels of cultural HCI adaptation of del Galdo and Nielsen (1996):

1. The interface is able to process user's language, script, and formats, which in the

opinion of the authors is achieved in most products.

2. The interface has been subjected to common usability methods in order to make it

usable and understandable for international users.

3. The system accommodates cultural characteristics of the user, for example by

moving the design beyond offensive and nonsensical icons to address specific

cultural values such as the way communication and business is conducted.

It stands out that on the first two levels, del Galdo and Nielsen (1996) talk about

capabilities of the UI, whereas they refer to system capabilities for the highest level. The

five levels of localisation given by Honkela et al. (1997), i.e. none, minimum, moderate,

high and complete localisation, do not distinguish between either representation and

functionality, or different UI element classes.

There is the implication that there is localisation of presentation, and localisation of

behaviour (see e.g. Abufardeh and Magel, 2008a). Schäler (2007) distinguishes between

shallow level and deep level localisation: the former considers cultural conventions such

as colours, symbols, sounds, signals, and product names, whereas the latter considers

underlying value systems. Ito and Nakakoji (1996) distinguish between functional design

so that a product is usable by foreign users, and good international HCI design.

2.4.1 Localisation Requirements

So, specifically what needs to be internationalised in software, i.e. made localisable?

Obviously, UI text should be translated so that it is natural and user friendly, i.e. clear and

consistent (O’Sullivan, 1989). Correct language is important as errors can lead to a

decrease in acceptance. For example, simple spelling mistakes can insult Arabic users

31

when they are addressed in the wrong gender (Abufardeh and Magel, 2010). This is a

particular concern when text is modified at run-time, e.g. if placeholders are filled in.

Visually correct representation of text also relates to data representation, i.e. formatting

and display, and relates to operations such as sorting and collation sequences (Kokkotos

et al., 1997; Law, 2003).

Beyond the obvious translation of text, localisation also needs to consider visual aspects

of the UI. The locale dependence of colour associations is discussed in Barber and Badre

(1998), Russo and Boor (1993) and Badre and Laskowski (2001). For example, in the

Western world the colour associated with death is black, whereas in the Middle East and

Southeast Asia, it is White. Symbols, icons and imagery carry different meanings in

different locales. For example, the thumbs-up gesture has a positive connotation in

Western culture, but is an offensive insult in Persian countries. Conversely, examples of

non-Western symbols likely undecipherable for Western readers are given by Marcus

(1996). Further, subtext and perceived aesthetic of sound and music vary widely between

cultures (O’Keeffe, 2009).

The previously mentioned adaptations are mostly representational differences, or

functionality closely associated with representation, such as list sorting. Other localisation

requirements relate to software behaviour rather than presentation. Such differences are

more difficult to translate into different locale-dependent requirements. A starting point

are the previously mentioned operations related to data presentation, e.g. sorting, and

extend to any locale-related software business rule, i.e. account and financial rules and

logistic and operations practices (Abufardeh and Magel, 2010; Hall, 2000; Abdelnour-

Nocera et al., 2003). Considerable differences in infrastructure could lead to further shifts

in software requirements. Smith et al. (2007) relate how a lack of fixed power lines or a

reliance on alternative energies might influence engineering choices, e.g. towards batch

processing. Nardi (2011) discuss cultural and physical influences on the process of

withdrawing money. And the more cultures differ, the broader the adaptations that are

required: Another banking-related example by Hall et al. (2002) describes the capability

of Indian banking websites to give to charity or conduct rituals to bless a financial

transaction.

32

Localisation requirements are regularly associated with even higher levels of cultural

differences, e.g. it is often pointed out that Western and Southeast-Asian cultures are

fundamentally different in problem-solving strategies, where the Western approach is

based on analytic reasoning and cause-and-effect-thinking, and the East-Asian approach

is holistic and dialectic (see Rauterberg, 2006; Christiansen, 2010). Zahedi et al. (2001)

proposed cultural factors believed to determine web document effectiveness.

Many examples of cultural differences could be discussed. However, in order to arrive at

a well-localised product, such punctual evidence of cultural differences have only limited

usefulness as guidepost to decide comprehensively what to localise and what not to

localise: First, the more subtle and subconscious the cultural differences become, the

more likely it is that they will not be noticed or cannot be expressed in gritty examples as

those above. Second, obvious cultural differences do not necessarily translate into what

would seem to be the logical consequence in UIs, so for example the previously

mentioned colour association of white with death Japan contradicts empirical data as

Japanese web sites use white to a large extent (Cyr and Trevor-Smith, 2004)20. Third, for

many cultural differences and idiosyncrasies, it is not clear how to translate them into

localised software behaviour.

In practice, a more empirical approach of defining localisation requirements is applied,

e.g. by having product adaptations to specific markets being guided by examining

respective users in the market through ethnographic studies (Liu and Zhang, 2011).

2.4.2 Locale-specific Design and Cultural Marker

This begs the question how it is known what elements in software are locale-dependent.

Is there empirical evidence?

Barber and Badre (1998)21 identified culturally relevant conventions on websites through

statistical means and usability inspections of several hundred websites from different

countries and languages, and used these insights to develop guidelines to increase the

cross-cultural usability, or culturability, of web sites. Juric et al. (2003) identified general

issues of cross-cultural web design and found culture-specific design elements of South

20 Similarly, Sun (2002) questions the usefulness of cultural guides advising Asian developers on the
meaning of the colour red in the USA.
21 The study is also reported in Badre (2000).

33

Korean and UK websites, particularly regarding colour, menu layout, and animations. Cyr

and Trevor-Smith (2004) analysed 30 municipal websites each of Germany, Japan and the

USA in order to find culturally preferred design elements and the degrees of difference,

and confirmed variance across cultures for language and script, layout, symbols, content,

structure, navigation, external links and colours.

These studies assumed that localisation or lack thereof have an effect on performance

and hence usability, and concluded that usability must be defined in terms of cultural

context as culture defines what is useable and what is not.

While the previous studies identified cultural markers bottom-up, i.e. based on data, a

number of other studies attempted to find locale-specific software aspects through top-

down methods only, i.e. by conducting content analysis and using cultural models as a

framework. Marcus and Gould (2000) mapped cultural properties of Hofstede’s - at the

time five - cultural dimensions to implementations of websites from various locales,

concluding that depending on the context, extensive adaptations of websites for different

locales would be necessary. Some of their postulations were later confirmed by other

researcher’s results, e.g. culture-dependent website navigation was supported by Cyr

(2008).

Ahmed et al. (2008) explored cultural values of Malaysia and Britain with relevance to

web sites by conducting a content analysis for three Malaysian and British websites each.

They examined how Hofstede’s individualism and collectivism dimension and Hall’s high

vs. low context dimension was reflected in the websites and found considerable

differences in cultural values on Malaysian and British websites, concluding that the

world-wide web is not culturally homogeneous.

Choi et al. (2005) used interviews with Finnish, Korean and Japanese participants about

videos showing mobile data service use to examine the relationship between four cultural

dimensions derived from Hofstede and Hall, and design attributes of mobile data services

for feature phones. They arrived at a list of 52 design attributes related to culture with

relevance for the design of future mobile data services.

34

Stamey and Speights (1999) conducted a case study that combined bottom-up analysis of

existing websites with top-down theories of culture to develop a methodology for

localising US-American websites for Mexican customers.

Limitations of the previous studies include the predominant use of websites and

restrictions to examining aspects of presentation while neglecting function or behaviour.

When content analysis is not formal, there is a chance that the locale-dependence of the

identified software elements and their mapping to existing cultural models is more a

product of the researcher’s wish, than actual locale-dependency and a data-model fit. As

Sun (2002) criticised, such studies assume and confirm an incorrect view of culture as a

static collection of cultural markers, although culture is dynamic and cultural markers are

nothing more than its manifestation. Nonetheless, it can be expected that as computers

become more ephemeral, ubiquitous and pervasive, new interfaces and modes will

provide more openings for culture to play a role (Harper et al. (eds.), 2008). e.g. in

augmented reality (Rauterberg, 2006), robotics (Levy, 2007; Weiss and Evers, 2011; Evers

et al., 2008), or mobile devices (Chiaro, 2009; Grigas, 2014).

2.4.3 Cultural Markers and Usability

An issue with the studies mentioned in the previous section is that in isolation, they do

not actually show the necessity of cultural adaptation: Just because software products

differ between two cultures does not necessarily mean that this difference has to be

reflected in future products for success, particularly if the differences are primarily

optical. They might also be chance or fashion, and simply irrelevant.

This would be in conflict with the assumption that the presence of cultural markers has a

positive influence not only on product acceptance, but also on usability and user

performance (Barber and Badre, 1998; del Galdo, 1996; Hall, 2002). For example, text

input for Indian characters on mobile phones might be affected by the need for 38 key

presses in order to enter certain Sanskrit characters (Clemmensen, 2010). This has been

verified by so-called cultural usability tests.

Choong and Salvendy (1998) conducted a study showing that with regards to

performance and UI, there are differences between American and Chinese users.

35

Americans performed better with alphanumeric and mixed icons, Chinese users

performed better with pictorial and mixed icons.

Badre (2000) examined the relationship between culture and website design and

usability, showing that websites with Italian cultural markets required fewer clicks for

navigation on average than with US cultural markers, and that US subjects might prefer

foreign designs, but do not perform better on domestic websites.

Aryana and Liem (2011) examined usability differences for Turkish and Iranian mobile

phone users through interviews, focus groups and usability studies. Cyr (2008) found that

localising websites increases trust, satisfaction and customer retention, i.e. repeat visits,

in e-commerce websites.

The results align with theoretical predictions. The UI is one of the most important aspects

of software, and its quality is determined by UI text language and design (Irmler and

Hartwig, 2000). Although users learn quickly to link a representation, e.g. a symbol, to its

underlying function, understanding a representation facilitates this learning (Liem et al.,

2011), and cultural background has a strong influence of the understanding of UI

elements (Smith et al., 2007).

Sun (2004a, 2004b) examined users of text messaging in the US and China through

surveys, observations, interviews and diary studies, and concluded that localisation of

operational functions ignores that international users then effectively use the localised

product differently, with different goals and objectives, than users in the original locale.

The author suggests to localise for concrete use cases within specified contexts and to

consider social aspects during localisation.

However, although usability and related factors such as dependence and acceptance are

important factors for the success of software (Sommerville and Dewsbury, 2007) and

individuals are more likely to interact with technology if it appears easy to use and

appealing (Agarwal and Karahanna, 2000), the research results discussed above are

limited to a subset of global locales. Further, most studies on culture and HCI are

questionnaire-based quantitative cross-cultural comparisons conducted with university

students who more often than not speak English, and are analysed on the level of

36

national groups, not regions (Clemmensen and Roese, 2010). Hence, there is only limited

validity and applicability of the results.

There are also indications that for users, locale-dependent performance is not

paramount. First, a lack of cultural fit can be compensated by users (Sun, 2004b). Second,

some users appear to consider unlocalised software good enough or even superior (Cyr

and Trevor-Smith, 2004; Hall, 2006). Third, socio-economic rationales and preferences

can supersede individual preferences (Wolff, 2006; Schäler, 2007; Hall et al., 2009).

2.5 Localisation Factors, Issues and Challenges

A localised product must meet local needs while reaching the market within reasonable

time (Hudson, 1997). Additionally, as for any project, there is also a limit on cost that can

be accrued and of effort that can be expended. The localisation factors cost, quality and

time (Hudson, 1997) are the criteria of successful software localisation (Karkaletsis et al.,

1995).

Localisation costs can be considerable (Collins, 2001; Ryan et al., 2009). For example,

DePalma (2006) report a survey where 0.25% and 2.5% of the international revenue was

spent on localisation, but noting that exact accounting of localisation cost to locales,

products and activities is difficult. External or exclusive costs such as staff costs for

translators are comparatively simple to break out, but internal localisation costs, i.e.

efforts of project managers and software engineers for which internationalisation and

localisation work and localisation bug fixing is only part of their work, is complex

(DePalma, 2006). Further costly localisation expenses include software purchases,

compilation of information kits for localisers, localisation testing and terminology setup

(Honkela et al., 1997). Localisation cost is also linked to volume, i.e. word count and

number of target locales (Ryan et al., 2009), as a localisation service provider (LSP22) or

freelance translator charges per word and each target locale requires at least one

additional translator. Another major contributor to localisation cost is the handling of

localisation bugs (O’Sullivan, 2001a). Further costs might be created through the purchase

of localisation tools. As with many other efforts, although localisation cost cannot be

known definitely while product development is ongoing, they must be forecast

22 Also called localisation vendor or translation agency, though the latter technically offer different services.

37

nonetheless (Sikes, 2011). A noted imprecision of the term cost is its implication of an

exact, clearly defined financial value such as the salary of translators. However, many

localisation-related costs do not appear separately on spreadsheets and are difficult to

determine, i.e. the time spent by software engineers satisfying internationalisation

requirements in the software or fixing localisation-related bugs.

Localisation quality has not been standardised yet (Lewis et al., 2009; Tarquini et al.,

2010). McHugh et al. (1997) suggest to understand localisation quality in terms of the ISO

9126 standard23 (ISO/IEC JTC 1/SC 7, 1991), which defines software quality through

functionality, reliability, usability, efficiency, maintainability, and portability. These would

accordingly be mapped to meeting local user needs, apparent friendliness towards a local

user, software effectiveness in the locale, documentation correctness, difficulty of

internationalisation and localisation, and extent of internationalisation and localisation.

Alternatively, McHugh et al. (1997) suggest to understand localisation in terms of

technical quality, linguistic quality, and how a product compares to the competition.

Localising a product takes time (Collins, 2001), with the main concern being the impact

internationalisation and localisation have on the release date (Caesar and Fehrenbach,

2005). From the software industry’s point of view, time to market is extremely important.

Due to the high frequency of innovation, being second risks losing the market, so even

moderate delays can have disastrous effects on success. Accordingly, the software

industry has developed an almost obsessive relationship with time to market (Boehm,

2011, 2006; Blackburn et al., 1996).

Software localisation has been impacted by this through the practice of simshipping24, i.e.

the simultaneous release of all locale versions of a product (Ryan et al., 2009; Hartley,

2009; Zhou, 2011), a requirement often originating in marketing departments (Kahler,

2000). Even a moderate time between domestic and localised availability allows

competitors to develop and release a competing, localised product and seize the market

of a locale. Further, many customers do not want to wait for localisation and instead

obtain a domestic version. This might impact the acceptance of localised versions and

23 ISO 9126 has since been superseded repeatedly. The current standard for software quality is ISO 25010
(ISO/IEC JTC 1/SC 7, 2011).
24 The opposite of simshipping, i.e. localisation after the release of the initial version, is called post-release
(Zhou, 2011).

38

drive software piracy when a domestic version is not legally obtainable. In extreme cases,

there is a danger to misinterpret any delay between releases of different locale versions

as slight or preference of rival locales, leading to reputation loss for company and

product. For example, Edwards (2012) warns that delays between the release of Hebrew

and Arabic versions might lead to such sentiments in the locale for which the product was

released later.

Simshipping is believed to increase pressure on localisers (Ryan et al., 2009). Estimates

vary wildly, but it can be assumed that translators can translate between 1,000 and 2,000

words per day (see Combe, 2011). Because UI texts can easily contain more than 10,000

words, delaying a product release until translation is finished can cause significant delays.

On the other hand this parallel working of engineering and localisation is credited with

benefitting complex localisation projects where application functionality has to be

localised and engineering can react to input from localisation (Zhou, 2011). However,

simshipping and parallel engineering and localisation has also been associated with

increasing the difficulty of estimating cost and time in project management (Sikes, 2011).

Figure 2-1 The project management triangle

The three factors cost, quality and time map to the so-called project-management

triangle. The idea behind it is that a project is located somewhere in the triangle spanned

by the three factors, and can move towards any one factor, or within limits decrease the

distance to two, but never towards all three. In fact, getting closer to one factor always

comes at the cost of increasing the distance towards at least one of the other two factors.

The applicability of this concept to localisation can be illustrated by Collins’ (2001)

discussion of on-site localisation: Having translators on-site increases quality, but comes

on budget

on time on quality

39

at a higher cost than off-site localisation. Dunne (2011) applied the project management

triangle to localisation, noting that in localisation projects, “[c]ost rules, quality is

assumed, but in the end, schedule wins” (Dunne, 2011, p.120).

2.5.1 Localisation Issues

In the previous subsection, three localisation factors were introduced: cost, quality and

time: Regular software localisation and internationalisation incurs cost and takes time,

and delivers a product with a specific localisation quality. This relationship was already

elaborated on in the previous subsection. This subsection will look at localisation issues,

i.e. problems related to localisation. These can be separated into product-related and

process-related problems.

The most obvious localisation issues are probably product-related problems, i.e. quality

problems with the software, or in other words, localisation-related bugs. A localisation

bug is anything in the final software product that can be classified as an error. Localisation

bugs range on a severity scale from comparatively minor, such as a disputable translation

leading to a minor aesthetics issue, to serious, such as a malformed placeholder leading

to abnormal program termination. In between are incorrect, ambiguous, partially

displayed and missing localisations and translations, incorrect vocabulary, disregarded

writing conventions such as direction, punctuation, spacing rules, sorting and collation, or

failure to consider locale-dependent techno-cultural aspects such as character encoding,

keyboard shortcuts and technical infrastructure (Ryan et al., 2009; O’Sullivan and Hyland,

2004; Collins, 2001; Pérez-Quiñones et al., 2005; O’Sullivan, 1989).

Localisation quality has been the subject of various studies examining translation quality,

consideration of locale requirements, and applicability of the use case for the

international market (O’Sullivan et al., 2003). Localisation bugs can lead to usability

issues, and the link between usability and localisation has been discussed earlier. Even if

no usability issue is apparent, a – possibly subconscious – effect of localisation bugs on

product acceptance should not be underestimated as the effect of localisation bugs can

range from inconsequential annoyance to perceived offense. For example, Abufardeh and

Magel (2010) explains how simple writing mistakes might insult Arabic users who are

addressed in the wrong gender. DePalma (2006) elaborates that depending on the

market, perfection for its own sake can determine product success.

40

However, localisation issues can go beyond the product itself and affect the process, e.g.

in the form of superfluous engineering and localisation efforts incurring unnecessary cost

and causing unnecessary delay of the final software. Such issues include duplication of

effort (Hogan et al., 2004), particularly repeated translation of text for which translations

already exist from previous translations. Additional cost and delay can be caused by

quality assurance and quality control efforts as a response to localisation bugs. In fact, the

impact the correction of localisation bugs has on product cost and schedule at one time

was believed to be so huge that O’Sullivan (2001a) stated that complexity and time for

fixing localisation bugs is the main cause of localisation costs. However, as discussed

earlier, as these would be internal localisation costs, it is difficult to separate them from

other internal costs unrelated to localisation25.

2.5.2 Role Relationships and Causes of Localisation Issues

Localisation issues are not of equal concern for each role involved in developing

international software. Some errors concern engineers, others concern translators or

linguists, even others concern project managers, and so on (O’Sullivan and Hyland, 2004).

For example, issues-related localisation concerns from an engineering perspective might

be whether the application has been properly internationalised, i.e. all locale-relevant

content has been completely separated from the code, whether all content storage files

adhere to standardised formats, whether all UI text can display any possible Unicode

characters, whether all functions processing strings can handle non-Latin languages and

script, and so on (O’Sullivan and Hyland, 2004).

Equally, different sources of localisation issues have been identified in the literature.

Many localisation bugs are caused by incomplete or incorrect internationalisation (Pérez-

Quiñones et al., 2005; Ryan et al., 2009; Hogan et al., 2004; O’Sullivan, 1989). These, and

localisation bugs caused by lack of contingency for text expansion during translation, have

been attributed to lack of knowledge of software engineers (O’Sullivan, 2001a; Pérez-

Quiñones et al., 2005). The consequence of lack of knowledge about culture which leads

to ethnocentric misconceptions in the design of software products in the form that it is

25 The “thousands” of localisation bugs observed by O’Sullivan (2001a, p.7) will probably not occur in
software developed with today’s technology since arguably many of those bugs are avoided by the use of
localisation APIs and localisation frameworks. Nonetheless, the link between localisation quality issues and
cost and time remains.

41

assumed that interpretations and understanding of software functionality are universal

across different cultures, when they are not26 (Vatrapu, 2011). Accordingly, such

localisation bugs are not caused by localisation, but are an inherent property of the

English product (O’Sullivan, 1989). Besides quality, Law (2003) reported an impact on cost

and time through the need for additional quality assurance and quality control caused by

lack of understanding of culture.

A lack of planning, communication and coordination have also been identified as source

of localisation issues:

Good translations require communication between translation and engineering roles to

remove ambiguities of the meaning of the source text (Russo and Boor, 1993; O’Sullivan,

1989). Usually, this requires the translator to know the context of the text to be

translated. Context is information informing about the situation of an item, e.g. person,

place or other object, relevant to the interaction between user and application, including

user and application themselves (Aryana and Liem, 2011). For example, the term manual

download might refer either to the download of an instruction manual, or a manually

initiated download as opposed to an automatically initiated download. Considering that

not all target languages can cover both meanings with one term, a translator has a 50%

chance of picking the wrong meaning with merely the text to go on, and thus providing an

incorrect translation (Freigang, 2000).

The responsibility for the lack of communication has particularly been assigned to

localisation agencies, and when designers and programmers were uncooperative towards

translators with respect to providing context information (O’Sullivan, 1989; Combe, 2011;

DePalma, 2006; Honkela et al., 1997).

It is often stated that this kind of communication is handled by so-called localisation kits

including material giving the translators context for the source content (Honkela et al.,

1997). However, employing such unidirectional communication through localisation kits

relies on the assumption that there are either no issues for translators to note, or no

questions for them to have. Neither assumption is correct (Sikes, 2011).

26 Some examples of Western products failing in international markets are given in Chavan et al. (2009).

42

2.5.3 Future Localisation Challenges

In the development of global application, previous challenges had been identified as the

adoption of Unicode, and advanced internationalisation architectures (Law, 2003). In the

literature, the expectation has been voiced that there will be continued pressure to

reduce localisation cost and time, increasing localisation quality, and that localisation

volume will continue to increase (Ryan et al., 2009).

The use of technology, for example of machine translation and computer-assisted

translation, will equally continue. Increased use of such technology will continue to

enable the spreading of translation jobs over several translators in parallel. Together with

translation from updated material, translators can expect to translate more and more

fragmented source texts (Bikmatov et al., 2013; Esselink, 2003).

This development also robs translators of context. Accordingly, context provision to

translators and enabling translators to preview their translations in the eventual

publication format, e.g. the final UI, have been identified as another challenge to

overcome (Bikmatov et al., 2013).

2.6 Facilitation and Support of Localisation

In the previous sections motivations, scope of localisation, issues, and perceived future

challenges were discussed. This section will look at practice, existing research and

development towards decreased cost and time, and increased quality.

Because the building blocks of computer programs, e.g. source code and UI definition, are

generally generated on a computer, it is only natural to localise software, i.e. adapt or

translate said building blocks, using a computer as well. Accordingly, software has

become a tool to facilitate and improve localisation. Factors facilitating localisation have

been identified as translation tools, platform support, Unicode and UI guidelines (del

Galdo, 1996; Vouros et al., 1997). Additionally, this section will discuss outsourcing and

standards.

43

2.6.1 Translation Tools

Translation tools refers to software helping a translator to translate. So-called Computer-

Assisted Translation (CAT)27 tools can be categorised into three types of linguistic

resources (Lenker et al., 2011): translation memories, machine translation, and

terminology databases. The lines between them are blurring (Reineke, 2005), and these

linguistic resources are often combined into one application called a translator’s

workbench or translation editor and include text processing functions such as spell, syntax

and style checking as well as import and export functions for various file formats,

including source code and binary files (Vouros et al., 1997; Freigang and Reinke, 2005).

Since these tools improve the task without changing it radically, Exton et al. (2010)

classified them as enabling technologies. A case study of CAT tools was conducted by

Schäler (1994), finding an increase in translation speed, improved consistency in

translations and therefore improved translation quality, and decreased translation cost.

Wolff (2006) noted that certain features of translation tools, e.g. automatic spell checking

and automatic checks for correct punctuation, spacing, and placeholder use, enable non-

native speakers of a language to at least determine what translations require a review,

thus lowering the workload of translators.

On the other hand, usage of translation tools comes with its own issues and

disadvantages. Translation tools require considerable training (Bowker, 2005; Wolff,

2006; Moorkens, 2012a) but affect work practices and are therefore controversially

viewed by translators (Wolff, 2006; Stoeller, 2011). Translation tools have also been

found to impose the tool developers’ interpretation of translation and localisation onto

translators (Hartley, 2009; Dohler, 1997), introduce new problems into work processes

that are difficult to mitigate (Schäler, 1994), and the maintenance efforts required to

ensure their effectiveness is often underestimated (Sikes, 2011).

Nonetheless, it is expected that the use of translation tools will increase (Yuste, 2005), as

will their functionality and their adaptation to the needs of translators and localisation

teams (Irmler and Hartwig, 2000).

27 CAT tools are those tools directly related to translation and localisation. General-use software with
merely the potential to assist in localisation as a general industrial process, e.g. workflow and content
management tools, are not discussed here.

44

2.6.1.1 Translation Memories

A Translation Memory (TM), also called Translation Memory System (TMS) or repetition

manager, is a software tool that keeps track of previously used translations. TMs store

source text and its corresponding aligned28 translations in the form of translation units

into which the text has been segmented, usually along sentences, headings etc. (Bowker,

2005). The fundamental idea behind TM is that every translation is available for

subsequent use. This could either be continued use, for example if an already translated

string is moved to a different file or place, or re-use, for example if a new string has

previously been translated in a different place or project. Existing translations of identical

source texts are called 100% matches, and those of similar source texts fuzzy matches

(Freigang and Reinke, 2005; Bowker, 2005), with a percentage value expressing how

similar the matches are.

TM usage comes with the side effect of increasing effectiveness of collaboration between

translators. It is increasingly common to have multiple translators translate a body of text

(Munday, 2009), which is perceived to threaten consistency as translations by different

translators diverge (Vouros et al., 1997; Law, 2003). The ability of TMs to compare

translations of similar units is supposed to help translators keeping their translations

consistent.

Obviously, TMs work best for translation of text with a certain amount of repetition and

have been identified as tools specifically for technical translation (Hartley, 2009). Their

use is practically indispensable in localisation for its effected translation speed increase

(Yuste, 2004; Lenker et al., 2011; Moorkens, 2011), confirmed through case studies (e.g.

Schäler, 2007; Bauer and Rodrigo, 2004) and experiments (Bowker, 2005). Bowker (2005)

also gives comprehensive insight into how TMs are used in practice and provides

numbers: Efficiency gains through TM usage can range from 10% to 70%, with 30% being

considered a realistic figure.

Obviously, however, the translation quality within a TM is always dependent on the

original translator, and TM usage makes most sense when working with repetitive,

frequently revised or updated text. Further, the efficiency increase requires the overall

28 Alignment is usually done during translation. If done retroactively for existing corpora, this is called post-
translation alignment (Bowker, 2005).

45

context of translations not to deviate much (Bowker, 2005; Moorkens, 2012a, 2012b). It is

hence recommended to exclude text with uncommon terminology or unique style from

TMs (Bowker, 2005) and be careful when mixing text from different departments or times

in TMs. TM efficiency also increases when applying source text standardisation such as

controlled language (Hudson, 1997; Allen, 1999; Moorkens, 2012a), i.e. language

restricted in grammar, vocabulary and syntax in order to lower complexity, avoid

ambiguity and provide consistency (Vouros et al., 1997).

While the advantages of TM usage are acknowledged, research results also indicate a

number of limitations and disadvantages: The more analytic a language is, i.e. the less the

grammar requires words to be modified, the more helpful TMs can be, whereas the more

synthetic a language is, the more difficult it is to apply such tools. Respective difficulties

for Baltic languages are discussed by Rusakevičienė and Kriaučionytė (2012). Further,

Schäler (1994) noted that the tool enforced an inflexible work process on users which is

likely to slow down experienced translators, and Bowker (2005) found that while use of a

TM increases translation speed, quality dropped at the same time as translators are

tempted to be uncritical about translation proposals coming from a TM. Moorkens (2011,

2012a) identified, categorised and measured consistency in TMs, finding as considerable

cause clients’ focus on time and cost savings over quality and a wide range of clients’

often incorrect assumptions regarding translation practice. These observations confirm

that TM usage removes context and increases distance between translator and source

text, requiring additional pre- and post-translation work (Ottmann, 2005).

Bowker’s study results are discussed by Pym (2008) as manifestation of Toury’s laws of

growing standardisation and of interference, stating that features of the source text, such

as metaphors, become a regular target language feature. The law of interference predicts

the carrying-over of source text characteristics, such as structure, into the translated text.

In short, Pym concludes that usage of TMs increases standardisation in translations, but

also properties which are uncharacteristic of the target language. While the former is not

all bad since it leads to increased consistency in translations, that is, precisely the benefit

TMs are supposed to produce, Pym criticises the practice of segmentation as such

because imposing the source text’s segmentation makes a translation more difficult to

comprehend to the point where limitations of TMs have more influence on the

46

translation than the actual source text and there would be no net improvement in

comprehensibility through the use of TMs.

Bowker (2005) and Moorkens (2012a) also points out that identical source text segments

can warrant different translations based on the context, i.e. the preceding or succeeding

segments in the text. Consequently, identical source text can and should not necessarily

be translated consistently.

2.6.1.2 Machine Translation

Machine Translation (MT) is the automated translation of text through software. There

are two main families of MT methods: rule-based machine translation, also known as

classical approach or knowledge-based machine translation, based on codifying a

language’s rules into software, and statistical machine translation, inferring translations

by statistically analysing a corpus of available parallel texts of source and target language.

MT currently still has weaknesses considering the context for translations, e.g. non-literal

meanings such as irony, ambiguity or humour (Morado Vásquez et al., 2011). In software

localisation, concerns regarding MT revolve around the field’s typical rapid invention and

change of novel technical terms for which no equivalents exist yet in target languages,

further the abbreviated UI language with little grammatical structure, single-word labels,

in particular homographs, and the mix of technical instructions as part of text, e.g.

placeholders and inclusion of keyboard shortcuts (Hogan et al., 2004; Elsen, 2005;

Kumhyr et al., 1994).

Although there is no agreed measurement of translation quality (Lewis et al., 2009),

various methods of assessing MT quality and MT strengths and weaknesses (e.g. Bohan et

al., 2000; Vasiļjevs and Sāmīte, 2012) have been examined. Yao et al. (2002)

computationally measured the quality of software localization-oriented MTs by running a

number of string comparison algorithms against machine and human translations and

measuring the string differences, statistically showing computational results to correlate

with human evaluations. Pérez-Quiñones et al. (2005) examined the quality of a

commercially available MT software through comparison with crowdsourced and human

translations, and the suitability of back-translations for the evaluation of MT quality.

47

Nonetheless, there is a trend towards more translation automation (He et al., 2002), with

MT eventually taking over the task of translating altogether. Enabling good translation

now might lead to a solid basis for MT in future projects (Irmler and Hartwig, 2000).

However, even in that case, translators will shift their competences towards terminology

work, TM maintenance, terminology work29, corpus maintenance, application of

controlled language, or simply switch to more sophisticated translation tasks not suitable

to MT and projects requiring careful assessment of cultural issues beyond translation

(Yuste, 2005). In fact, this practice has already been reported from the industry, e.g. by

Hudson et al. (1997).

MT has already found its niche applications in software localisation and globalisation

strategies, e.g. in online communication, social networking and other applications of what

Elsen (2005) calls gisting, where quick or cheap availability of approximate meaning is

more important than a perfect translation (Morado Vásquez et al., 2011). Obviously,

these are dramatic differences in translation requirements (Lewis et al., 2009; Morado

Vásquez et al., 2011), and Bauer and Rodrigo (2004) differentiates such receiver-

commissioned translation from the classic sender-commissioned translation where quality

demands remain high. Examples of respective applications of MT are described in Thicke

(2012), Stewart et al. (2010), and Porsiel (2008).

2.6.1.3 Terminology Databases

Terminology refers to a systematic collection of words and terms and their meanings in

defined contexts. A terminology database is similar to a glossary, but goes further, aiming

to increase consistency in source texts and translations by providing a corpus of terms

and definitions of their meanings for use by source text authors and translators (Bowker,

2005; Vouros et al., 1997). The need for terminology databases has been identified in

localisation case studies, e.g. in Law (2003).

Active terminology lookup during translation is supposed to increase translation quality

(Bowker, 2005), and managing terminology in a source text is assumed to increase the

efficiency of MT and TM for during translation dramatically (Bowker, 2005; Moorkens,

2012a). However terminology databases require a significant amount of setup work and

29 Terminology management is discussed in subsection 2.6.1.3.

48

ongoing and maintenance effort by dedicated staff, translators and content creators

(Karkaletsis et al., 1995; Bowker, 2005; Bauer and Rodrigo, 2004; Schubert, 2009; Vouros

et al., 1997). Terminology should be translated before the actual content (Vouros et al.,

1997). The incorporation of a terminology database into product development and

localisation is illustrated in a case study by Bauer and Rodrigo (2004).

2.6.1.4 Provisioning Locale-specific Information

The examination of cultural differences and the scope of internationalisation and

localisation has been discussed in subsection 2.4. Of course, identifying cultural markers

and applicable cultural models is only half the work. At worst, it leaves a lot of doubts

what really needs to be internationalised, and at best, it says what needs to be

internationalised, but not how.

A number of authors suggest development some kind of repository containing data or

information which helps directly or indirectly with localisation. The idea of storing cultural

information for various purposes is not new. For example, Bumeder et al. (2003)

presented a repository for improving intercultural collaboration. With respect to software

localisation, Ryan et al. (2009) focuses on reducing localization costs by a tool called

Localisation Knowledge Repository (LKR), a library containing development guidelines

regarding content, presentation, navigation, accessibility, and other issues compiled from

primary research, secondary research, existing literature and best practice. The intention

is for LKR to incorporate internationalisation guidelines into the development process

(Anastasiou, 2009).

Assumedly, results from culture-HCI studies would feed into such a database as suggested

by Ryan et al. (2009). Similar ideas also appear in publications of other researchers, i.e. a

central repository for culture-specific information (Mahemoff and Johnston, 1998) and

“resource banks of local knowledge so that developers can avoid misunderstandings”

(Smith and Dunckley, 2007, p.2).

Hall et al. (2003) argue that guidelines across cultures for the development of UI

interfaces are not optimal because they are specific to the culture in which they were

developed. Instead, the authors suggest to use design patterns as an aid to design cultural

UI because these “encapsulate context” (Hall et al., 2003, p.87). They introduce design

49

patterns as an alternative to guidelines, as a solution to a problem subject to a specific

situation or context. Patterns all contain a statement of the problem, the context in which

the problem occurs, and a description of one or more proven solutions in that context.

The authors emphasize the key difference between guidelines, which are rules-driven,

and patterns, which are data-driven. Guidelines are hence culturally specific, fail to

consider context, are difficult to apply to specific cases and have no internal structure. To

a given problem, there should be a different pattern for each culture. The authors link this

to Trompenaars and Hampden-Turner (1998) explaining culture as the problem-solving

strategies of groups of people, with each pattern having been proven to be effective in

providing a solution for each culture. The authors further suggest a development of

“pattern calculus” (Hall et al., 2003, p.90) so that unknown design patterns for cultures

can be calculated from existing design patterns from similar cultures.

However, the idea of cultural design rules has critics: Collins (2002) points out a drawback

of design rules, suggesting that any effort to come up with design rules for localization

will eventually be stereotypical and miss cultural variations.

Liem et al. (2011) points out that the established design standards, rules and guidelines

usually fail to address issues relating to culture for two reasons: First, the use of

standards, rules and guidelines does not guarantee good design to begin with - standards,

rules and guidelines can just as well justify bad design. And second, cultures are

inherently subjective and hence cannot be objectively described – they are not

ontologically objective. Consequently, cultures cannot be objectively described,

measured, or codified into guidelines. Similarly, Sun (2002) interprets cultural guidelines

as a manifestation of a positivistic scientific view that is not applicable to culture.

Kamppuri (2011, p.24) notes that guidelines and checklists for design are a symptom of

the technical approach to culture in software development.

Without intending to criticise the notion of databases, guidelines, repositories etc., I note

that all these papers effectively propose a kind of tool with an objective. All these tool

proposals imply that the provisioning of cultural information, or of processed cultural

information in the case of the design patterns proposal of Hall et al. (2003), will improve

software localisation in some way.

50

However, the integration of these tools, as well as existing tools such as MT, into the

software development process is not discussed. That is understandable as each software

development project is different, and the applied method or process in each project

differs in some way from others as well. In other words, there is no standardised software

development process, and diversity among software development processes is high, as

noted by various scholars, e.g. Lindvall and Rus (2000).

2.6.2 Platform Support

Platform support refers to existing code that can be exploited by software developers so

that they do not have to implement respective locale-dependent code themselves.

Generally speaking, platform support comes on two levels, on the operating system level

and on the library level.

Operating system support handles locale characteristics and user preferences, meaning

Unicode and locale support (Hall, 2000), i.e. the operating system contains scripts and a

database of locales with various characteristics and provides the respective user settings

and preferences to an application. Library support generally covers locale-dependent

input and output handling as well as provision and handling of locale-neutral data, e.g.

through predefined data types for locales, date, time, currency or Unicode strings. It

usually comes in the form of an application programming interface (API) and as part of UI

libraries.

Requirements and a possible implementation for such API libraries are outlined in Lehtola

et al. (1997). Many common modern software development frameworks include

internationalisation support in the form of UI abstraction and resource structures for easy

externalisation of text and images. This simplifies localisation insofar as it decouples

software compilation and localisation and allows for easy provision of locale-related

content. Further, international software support is provided through locale support and

locale-sensitive UI elements whose locale-dependent functionality is handled internally,

reducing the need to write locale-dependent code for locale-dependent representation,

i.e. numerical representation, sort orders, collation and so on (O’Sullivan, 2001a;

O’Sullivan et al., 2003; Hogan et al., 2004; Hall, 2002).

51

In practice, software developers can create an internationalised application by using

existing UI elements provided through existing APIs and relying on the API for locale-

specific implementations. In the application, the intended locale is set through calling an

API function at runtime, setting an application-global variable. The application can then

use API function calls to instantiate the UI elements, e.g. an item list, and fill it with

content, e.g. a label and items to be listed. Since the actual UI element, here the list item,

was implemented by the external party to exhibit different behaviours according to the

globally set locale, the software developer does not have to implement locale-specific

behaviour, e.g. locale-dependent sorting rules for lists. What the software developer does

have to provide, however, is localised content of the list. Modern APIs provide a

framework for managing such locale-specific content in separate resource files.

A particular example of a localisation-specific API is the Babel Software Micro-

Crowdsourcing architecture (Exton et al., 2010). Crowdsourcing is the idea of soliciting

work, often repetitive or comparatively trivial, from a large crowd, often in the form of an

online community. It is already being applied practically, often to provide or proofread

translations (e.g. Facebook, 2008), but requires an active community of a certain size,

which might be an issue for languages, locales and software with a small population or

user base (Morado Vásquez et al., 2011). The Babel Software Micro-Crowdsourcing

architecture combines translation-related UI editing ability with crowdsourcing

management. The text of each UI element can be edited in situ without exiting the target

application. UI text edits are sent to a remote server for management and coordination,

e.g. through manual review.

2.6.3 Outsourcing

A very common practice in software localisation is outsourcing of text translation and

other adaptation activities (Dohler, 1997; Immonen and Sajaniemi, 2003a; Yuste, 2004).

Localisation is predestined for this because localisation projects require extensive

resources, but only last a limited time (Combe, 2011). Giammarresi (2011) report that

87% of all companies outsource30 their translation and localisation work. When

30 Strictly speaking, outsourcing refers to transferring activities which previously were conducted in-house
to external companies. However, it appears that a major part of the literature uses the term in a more
relaxed fashion as reference to simply contracting out activities, regardless of whether they were originally
done in-house or not.

52

translation is not generally part of their core competencies, employment of translators

only makes business sense for large companies that create enough content to continually

require translations and have the human resources to manage translators (Combe, 2011).

Localisation outsourcing works best in a constantly managed, long-term relationships

with a vendor possessing an appropriate skill level (Papaioannou, 2005). Localisation

outsourcing can increase efficiency including lower localisation cost and duration, bring

flexibility in processes and organisational structures, and lower localisation cost

accounting complexity. However, it also means a loss of control over processes and

quality, an eventual dependency on vendors due to loss of localisation skills, and the risk

of increased localisation cost and time through management overheads, communication

with the vendor, and vendor profit margin (Papaioannou, 2005; Honkela et al., 1997;

Collins, 2001).

Because the software company and the language provider are in a buyer-seller or client-

vendor relationship (Combe, 2011; Milder, 2000), localisation outsourcing is often not

perceived as the long-term commitment or strategy it should be, and the need to involve

the vendor in the process of creating an international product is often not seen.

Giammarresi (2011) blames this on the companies’ desire to shed a risk and an activity

rather than purchasing a service, and laments that vendors are involved too late in the

process to provide any assistance beyond simple translation. Accordingly, DePalma (2006)

found that in practice, many software companies give their vendors relatively little

direction and information through style guides, terminology and context information,

impacting localisation quality.

2.6.4 Standards

A number of industry standards relevant to software localisation, internationalisation and

translation exist. Some have been defined by the International Organization for

Standardization ISO. For example, the previously mentioned ISO 639 is a collection of five

standards for the naming and representation of languages and language groups (ISO TC

37/SC 2, 2002), ISO 3166 does the same for countries and their subdivisions as well as

other areas of geographic interest (ISO TC 46, 2013). ISO/IEC TR 11017 defines an

internationalisation framework, i.e. locale-dependent functionality to be provided by

applications (ISO/IEC JTC 1/SC 22, 1998). ISO/IEC 14651 defines a method for sorting and

53

ordering text data and a template to define locale-relevant ordering and sorting changes

(ISO/IEC JTC 1/SC 2, 2011). ISO/IEC TR 30112 defines formats and functionality for the

description of cultural conventions and character names (ISO/IEC JTC 1/SC 35, 2014). RFC

5646 by the Internet Engineering Task Force (IETF) defines a language tag format for use

in internet standards, protocols and documents. Trans-WS is a standard for the provision

of translation web services, specifying remote function calls for the submission and

retrieval of source and translated files or localised content.

The relevance of understanding standards in this research is in how they shape and

influence the work of developers, e.g. by simplifying and unifying development work in

the case of Unicode, and localisers, e.g. by providing a localisation process infrastructure

in the form of file formats. Following, these standards are discussed.

2.6.4.1 Unicode

Unicode was developed in order to provide support for international scripts beyond those

contained in single byte character sets such as the US-ASCII31 character encoding scheme

and CP-1252. These encoding schemes used 7 or 8 bits to encode characters, which

means that they can enumerate 127 or 255 characters, which is sufficient for most of the

characters of the Latin alphabet, but not enough to include other scripts such as the

Greek alphabet, Cyrillic script, and Japanese Kana and Kanji. To display these scripts,

applications have to switch encoding schemes or code pages, as they are called in this

context. For example, the code page defined by ISO 8859-1 (ISO/IEC JTC 1/SC 2, 1998)

contains all characters for USA and Western European languages, ISO 8859-2 (ISO/IEC JTC

1/SC 2, 1999a) contains all characters for Eastern European languages, and ISO 8859-3

(ISO/IEC JTC 1/SC 2, 1999b) contains the Cyrillic character set. Scripts containing more

than 255 characters are encoded in so-called double-byte code pages, e.g. Japanese in

CP-932 and Traditional Chinese in CP-936 (Dr. International, 2003). But code pages come

with limitations such as increased software complexity (Hall, 1998).

The stated goal of Unicode is to eventually provide support for any script in existence

without code pages. It is developed in tandem with the standard ISO/IEC 10646 (ISO/IEC

JTC 1/SC 2, 2014), which defines the Universal Character Set (UCS). Unicode contains the

31 ASCII stands for American Standard Code for Information Interchange.

54

UCS, but additionally contains specifications such as collation, sorting, and bidirectional

writing, as well as additional properties for each character required by these

specifications. Characters defined by Unicode can be used through a collection of so-

called Unicode transformation format (UTF) encoding schemes, e.g. variable-length UTF-8

and UTF-16 or fixed-length UTF-32. All encodings are able to refer to the entirety of

Unicode code points.

Ideally, Unicode is supported on the operating system level of a system (Portanieri and

Amara, 1996). It is supported by all major platforms and in most modern programming

languages. Adapting existing code-page-based source code to Unicode can be a complex

and intensive effort depending on the circumstances such as programming language and

extent of existing Unicode support. An automated conversion technique is demonstrated

by Peng et al. (2009).

Prior to the widespread adoption of Unicode, considering code page and script handling

was an essential consideration in internationalisation (Hall, 1998; Arthur, 1998). Unicode

simplified internationalisation insofar as software developers do not have to worry about

code pages and memory footprint limitations of different scripts and can assume that all

major writing systems are supported (Hall, 2002; Law, 2003). Encoding of different writing

systems into Unicode is ongoing, with Unicode 8.0 being the current version at the time

of writing (Allen et al., 2015). Procedural difficulties in encoding scripts arising from the

interdisciplinary nature of encoding, in particular from conflicts between socio-political

and technological views, are explored in Hall (1998, 2015) and Hall et al. (2014).

2.6.4.2 File Standards

Internationalisation means that locale-dependent information is kept separate from the

program code. Often, this information is stored in separate files for each locale. For this

task, a number of proprietary resource file formats have been developed over time. For

example, Sachse (2005) explores resource file formats for the Microsoft Foundation

Classes (MFC) and Windows resources, Microsoft .Net and for the Delphi programming

platform, but also localisation-related open file formats such as the Gettext Portable

Object Format, Extensible Markup Language (XML) and the XML Localisation Interchange

File Format (XLIFF). Extensive research has been conducted in the development and

improvement of these and similar file format standards. Many of these standards are

55

based on XML and were created on initiatives of the Globalization and Localization

Association (GALA) (GALA, 2015) and the Localization Industry Standards Association

(LISA)32.

There are three rationales for developing open standards: First, to provide file formats

suited for tasks for which no standards exist yet. Second, to improve on drawbacks and

failures of existing file formats. And third, to allow exchange of localisation-related

information across organisations and tools regardless of proprietary vendor-controlled

formats, i.e. to prevent vendor lock-in (Anastasiou, 2009; Anastasiou and Morado

Vázquez, 2010; Anastasiou, 2010a).

The majority of standard formats discussed here aim to exchange information and are

based on the XML, i.e. human-readable text files using so-called tags to define content

and its properties. Many of these formats include metadata, i.e. information related to

the content such as author name, creation date and subject matter, which is believed to

help with translation by providing context to the translator (Esselink, 2003).

The most prominent interchange format is probably XLIFF, developed to enhance

interoperability and data exchange between localisation tools (Wasala et al., 2012;

Morado Vázquez and Mooney, 2010). XLIFF can store text and binary resources,

alternative translations, and metadata. Development is ongoing, the current version at

the time of writing is XLIFF 2.0 (Amaya et al., 2014). Although the adoption of XLIFF has

been hampered by a lack of awareness, incomplete adoption and the format’s limitations,

it has already achieved widespread adoption (Wasala et al., 2012; Anastasiou, 2010b;

Lewis et al., 2009).

Another widely adopted file standard is Translation Memory eXchange (TMX) for the

exchange of whole TM databases (Lewis et al., 2009), although differing implementations

have led to compatibility issues between tools (Zerfaß, 2005). An add-on to TMX called

Segmentation Rules eXchange (SRX) facilitates the exchange of segmentation rules

according to which translation units are created from longer texts during alignment.

Information about these rules is necessary because leveraging of TMs is hampered when

the tools create different translation units from the same text.

32 LISA shut down on 28 February 2011 (Lingotek, 2011).

56

Other file format standards are TermBase eXchange (TBX) for terminology data, Open

Lexicon Interchange Format (OLIF) for lexical data, and Global information management

Metrics eXchange (GMX), a family of three standards, GMX-V, GMX-C and GMX-Q, for

localisation-related metrics regarding volume, complexity and quality (Lewis et al., 2009).

A special case is the Internationalization Tag Set (ITS) standard, defining XML tags that can

be included in any XML file to provide metadata, context and translation instructions for

content in other XML formats.

Many open standards lack the adoption in current tools, and the situation is of course

worse for legacy software which will never adopt these standards. However,

development for open standards can be comparatively uncomplicated. A good example is

given by the Work in Context System by Bikmatov et al. (2013), which uses existing

technology to display source text from XML or XLIFF files along with context information,

metadata and translation instructions in a browser.

2.7 Software Localisation Practice

Only a limited number of comprehensive studies in software localisation not restricting

themselves to specific aspects or contexts are extant. Some descriptive publications

regarding internationalisation and localisation practice exist. For example, Hudson (1997)

describes design, organisation and localisation of seven major software companies. Jin

(1997) describes the implementation of a word processor based on the API framework

outlined by Lehtola et al. (1997) and the internationalisation architecture described by

Kokkotos and Spyropoulos (1997a, 1997b).

A more analytical study is given by Law (2003), describing internationalisation and

localisation of a brokerage platform for some European locales including a survey of

translators which reported demand of effort and time, and lack of suitable software tools.

Localisation and internationalisation practice has also been part of research that has a

somewhat different scope. While examining consistency in translation memories,

Moorkens (2012a, 2012b) conducted interviews with translators, managers and engineers

on localisation processes as a means to triangulate his research results and identify

inconsistency sources.

57

Immonen and Sajaniemi (2003a) conducted semi-structured interviews with professionals

in management roles at six software companies and four LSPs from Finland to determine

current practices and problems in software localisation with a focus on communication

and cooperation processes. They found that the main problem seemed to be insufficient

and limited communication between software developers and language vendors.

Based on a study of eight software development companies, O’Sullivan (2001b)33

described a generic software localisation process and its relation to the software

development process. He reviewed five development phases: functional specification,

design and implementation, quality assurance, beta testing, and rollout and code review

and found a large degree of procedural consistency with only minor differences across all

eight companies. Further, O’Sullivan investigated causes of localisation errors and tried to

develop an understanding how software can be localised without introducing full-fledged

bugs into the software projects.

Ongoing process and software improvements have reduced relevance of some of the

details described by O’Sullivan. For example, Locale support of operating systems through

APIs has dramatically increased. Nonetheless, O’Sullivan (2001b) gathered information on

localisation and internationalisation practice including tools and encountered issues. The

description of the software localisation process, its interplay with different stages of the

software development process, the dependencies among the various stakeholders of

those stages, and the overall impact on localisation bugs presents a comprehensive view

into the complexity of software localisation.

Abufardeh and Magel (2009, 2010) and Abufardeh (2008) examined the impact of cultural

concerns on software development and engineering.

2.7.1 Interdisciplinary Issues in International Software Development

What makes software localisation an interdisciplinary effort? Or asked differently, what

exactly are the interdisciplinary aspects of the development of international software?

Localisation combines the efforts of a multitude of disciplines (Zouncourides-Lull, 2011;

33 Part of this research has been published in O’Sullivan (2001a) and O’Sullivan et al. (2003).

58

Sturm, 2002; O’Sullivan, 2001b), but the user sees the resulting product as one (Collins,

2002).

The development of international software involves professionals from different

disciplines, but this in itself is not uncommon. It is simple to characterise the

interdisciplinary nature of the development of international software merely through the

participation of professionals from different disciplines, here, translators and software

engineers. But what makes development of international software complex is the need

for multidisciplinary knowledge and interdisciplinary communication during localisation

and internationalisation activities.

The need of cultural knowledge for the development of international software is rarely

stated as openly as by Abufardeh and Magel (2008b) and Ryan et al. (2009). More often,

it is implied, e.g. through the need of software engineers to identify and understand

culture-related requirements (Abufardeh and Magel, 2010; Mahemoff and Johnston,

1998). Lack of cultural knowledge leads to what Vatrapu (2011) calls ethnocentric

assumptions, i.e. the assumption that despite cultural differences, members of different

cultures nonetheless come to the same conclusions judging presentation and

functionality of software. Localisation and internationalisation also require technical

knowledge, i.e. about concepts such as locale (Sikes, 2011) and usability (Russo and Boor,

1993), and about each other’s discipline.

The need for multidisciplinary knowledge further implies the need to be able to transfer

this knowledge across disciplines through communication (Bauer and Rodrigo, 2004). As

Zhou (2011) points out, the need to communicate and coordinate between translators

and engineers becomes more important the more complex localisation becomes,

particularly if localisation is to accommodate a user’s cultural characteristics and will

produce different look and feel, functionality and usability, as discussed in section 2.4.

Concluding her examination of use of localised products in target locales compared to the

original locale, Sun (2004b, p.9) writes:

We need to have an expanded vision of localisation process [...] The
scope of localisation should go beyond a single stage in the software
design and engineering cycle (for example, translation and interface
design) and enter the site of local use and consumption.

59

This touches on another aspect – whether localisation is separate from software

development, as described by some authors (e.g. Wahle, 2000), or part of it, as described

by others (e.g. Collins, 2001; Hogan et al., 2004). While Immonen and Sajaniemi (2003a)

found that software developers consider software localisation separate of software

development, against intuition they also found that software developers considered

localisation a software developer's assignment and were likely not to outsource

localisation unless they lacked time or language skill:

L10N seems to be considered purely as a [software developer’s]
assignment, and [LSPs] are used only if [software developers] cannot
localise all the components themselves. (Immonen and Sajaniemi,
2003a, p.161)

The authors concluded that this might be one of the reasons why LSPs are only contacted

towards the end of the development lifecycle, i.e. when time become short, and further

concluded that this might be the reason why LSPs are under time pressure.

2.7.2 Cultural Knowledge for Software Developers

The importance of cultural knowledge, or cultural awareness, has been acknowledged

both implicitly and explicitly by various authors. Implicit acknowledgement comes in the

form of calls to support developer access to cultural knowledge, often in the form of a

document or database. Smith et al. (2007) call for the development of databases of local

knowledge to help the developer. Carey (1998) suggests to have a so-called international

functional requirement document and an international guide for programmers and

writers. Mahemoff and Johnston (1998) propose a classification of cultural factors

relevant for software, which they propose as base for a repository of cultural information,

to be accessed by developers in order to identify and address culture-specific

requirements. However, Collins (2001) warns that rules could lead to stereotypical views

misrepresenting cultural richness and variation.

Alternatively, there are calls specifically of cultural education for developers. Hogan et al.

(2004) calls for internationalisation and localisation aware developers, and Carey (1998)

categorically states that all team members need to know about internationalisation

issues.

60

The strongest argument, however, comes from authors who find that developers are

required to have cultural knowledge as a direct consequence of the requirement to

internationalise software (e.g. Liem et al., 2011; Ryan et al., 2009; Abufardeh and Magel,

2010). Particular emphasis is placed on the statement by Carey (1998, p.449):

Both internationalization and localization require that the programmers
be aware of their own culture, language, social values and expectations.
Localization requires more rigor than does internationalization. This is
because localization teams tend to discover problems left by the
internationalization team, but localized products move straight to the
market upon completion so there is no downstream channel member to
detect problems.

2.7.3 Contrasting Engineers and Translators

It is conceivable that issues in software localisation can be attributed to the collaboration

of professionals working in different disciplines, i.e. translation and engineering. In

software development, the impact of distinctness of people has already been identified as

a potential cause of issues. For example, Quintas (1993) observed differences between

developers and users, who “tend to inhabit different physical spaces, have different

career paths and reward systems, organize work differently, and employ different

specialized vocabularies” (Quintas, 1993, p.5). The same criteria apply for developers and

translators.

Existing literature and research has examined and characterised both software engineers

and translators. Software engineers possess a trial-by-error mentality (Green, 1994) and

have been attributed with a unique personality profile (Beecham et al., 2008; Capretz,

2003) motivated by job aspects, e.g. technical success and challenging problems, rather

than conventional motivating factors such as rewards and recognition (Beecham et al.,

2008). Cooper (2004, pp.93, 106) speculated that software engineers prefer control to

simplicity, accept to pay with failure for understanding, overemphasize theory over

practice, and offend easily.

On the other side, translators have been characterised as craftsmen with a vocation

rather than a job (Sikes, 2011), a partner conducting cognitive work to aid in the creation

of a product (Stoeller, 2011), or “nurturers, helpers, assistants, self-sacrificing mediators”

(Pym, 2008, p.323) to their clients. As a consequence, translators are in a subservient

61

position. Bauer and Rodrigo (2004) attest translators an awareness of cultural differences

and communication requirements, yet also technological literacy and resourcefulness.

They are excellent communicators, but also risk-averse due to a lack of certainty in their

work (Pym, 2008). Their role is generally understood to require domain-specific

knowledge in the area of their source text documents (Hubscher-Davidson, 2009), they

also need assistance by domain-specific natives (Sikes, 2011). Szuki (1988) found that

translators are patient, with a primary interested in art and intercultural contact.

There have been efforts to understand particular characteristics of software engineers

and translators through psychometric measurements such as the Myers-Briggs Type

Indicator (MBTI), developed in the 1940s based on Carl Jung’s theory of psychological

types (Briggs Myers, 1962). The MBTI is based on the premise that individuals can be

characterised through the dimensions extroversion (E) versus introversion (I), sensing (S)

versus intuition (N), thinking (T) versus feeling (F), and judgement (J) versus perception

(P). MBTI types are coded with letters according to their dimensional preferences, i.e. ISTJ

would indicate an individual preferring introversion over extroversion, sensing over

intuition, thinking over feeling, and judgement over perception. However, the MBTI types

describe an individual’s preferences and predispositions, not aptitudes.

Based on earlier research that suggested that introversion, thinking and judging are

predominant characteristics among software engineers, Capretz (2003) conducted MBTI

tests among software engineers and postgraduate software engineering university

students (n = 100). The study found a clear relationship between psychological types and

software engineers, with NT and ST types being overrepresented and ISTJ being the most

common type among their participants, described as being technically oriented,

preferring to work with facts and reason rather than people. It was concluded that

 [T]he software field is dominated by introverts who typically have
difficulty in communication with the user. […] [Software engineers] tend
to be poor at verbalizing how the task affects the people involved. In
fact, the greatest difference between software engineers and the
general population is the percentage that takes action based on what
they think rather than on what somebody else feels34. (Capretz, 2003,
p.214)

34 Gladwell (2015) relates this characteristic as joke about engineers: While playing golf, a priest, a doctor
and an engineer are frustrated by a group of firefighters ahead of them progressing very slowly. After

62

The MBTI was also used by Hubscher-Davidson (2009) to analyse translator's personality

traits. The study reported a correlation between intuitive personality types and high

translation quality, showing a skew towards introvert, feeling and judging types.

Hubscher-Davidson (2009) did not aim to generate a personality profile of a professional

population and did not contrast translator personality types with those of the general

population. The most prominent difference between personality types of software

engineers and translators is on the thinking-vs-feeling scale, where software engineers

tend to be thinking types and translators tend to be feeling types. Tsvetkov and Tsvetkov

(2011) have speculated on how to improve communication in localization project

management on the basis of the MBTI and associates a thinking-vs-feeling divergence

with a clash of factual versus emotional arguments during problem solving and conflict

resolution.

It must be mentioned that Tsvetkov and Tsvetkov (2011) did not provide any empirical

findings supporting their conclusions. In fact, although the MBTI has become one of the

most widely used personality assessment tools and despite its use in research, it has been

seriously criticised for a number of methodological shortcomings. Among others, it has a

low re-test reliability, meaning test scores are not time-invariant and there is a high

probability of obtaining different results from two tests of the same individual. Further,

distributions along the dimensions are not bi-modal, meaning that distinctions between

the two extremes of each dimension are statistically not warranted (Pittenger, 1993).

2.8 Summary

In this chapter, the need to adapt international software for locales, including scope and

complexity, was demonstrated through results of empirical research. The activities

localisation and internationalisation were introduced, and their interdisciplinary and

multidisciplinary aspects were elaborated. Further, localisation issues were characterised

and the interdisciplinary character of the development of international software was

examined.

learning that all of the firefighters have lost their sight while saving the golf clubhouse from a fire, the priest
states, “I will say a prayer for them tonight.” The doctor states, “Let me ask my ophthalmologist colleagues
if anything can be done for them.” The engineer asks, “Why can’t they play at night?”

63

The activities of internationalisation and localisation can impact an international software

product along the dimensions of cost, quality and time. Localisation can be incomplete or

inappropriate, and both internationalisation and localisation activities can incur

significant cost as well as delay product releases. These issues have been shown to be

non-trivial and are conflated in the term localisation issues.

The particular interdisciplinary character of the development of international software

has been evidenced in the interdisciplinary character of localisation issues: First,

knowledge of disciplines, e.g. engineering and translation, is required to create

international software. Second, the roles are intertwined, e.g. software engineers need to

identify and understand information about locales, i.e. cultures, and translators need to

identify and understand aspects of software development. And third, localisation issues

create differing concerns for each involved discipline, just like the two disciplines differ

from each other.

This chapter also gave an overview over research and engineering efforts undertaken

with the aim of improving software localisation. Among others, the Unicode standard has

provided widespread availability of the most common scripts. Equally widespread

Unicode and locale support on the operating system level, the provision of

internationalisation UI APIs, and the availability of internationalisation frameworks and

standard architectures have greatly simplified the engineering effort for internationalised

applications. Translation editors supporting both binary and source files, terminology

databases, translation memories and other software tools have simplified the translation

activity while allowing multiple translators to work on one project and helping to avoid

redundancy in translation and to increase linguistic consistency. Finally, translation

outsourcing has made localisation into multiple locales affordable even for small software

companies.

These are only the most prominent developments and approaches, and some are ongoing

efforts, e.g. encoding of the world’s scripts in Unicode, improving MT, or the

development of standards. Through such efforts, creating international software has

certainly become easier. However, at the same time existing research is profoundly

limited: The majority of existing research either revolves around a locally contained

context of localisation and internationalisation, or proposes an approach to improve

64

localisation outcomes based on an architecture model. There is little research on

internationalisation and localisation practice and general causes of localisation issues.

To be clear, the development of technical standards, tools and architecture models for

localisation has certainly improved the state of development of international software

immensely. Equally, research on what earlier was termed locally contained context of

software localisation, e.g. tool use and further automation, is useful and constructive.

My argument is rather that notwithstanding these achievements, there is current practice

and the underlying presupposition of a separation of software engineering and

localisation which needs to be examined, but is really under-researched. I find this view

supported in publications of a number of researchers in the area of localisation: Lenker et

al. (2011) noted a focus in localisation literature on tools, technology and individual

activities, rather than general workflow across the activities, manifesting itself in a lack of

standard workflows for translation and localisation. Sasikumar (2004) suggested to

conduct comparative studies of different types of localisation efforts, and the integration

of localisation into the software development process is frequently discussed (e.g.

O’Sullivan, 1989; Russo and Boor, 1993; Rafii and Perkins, 1995; Collins, 2001; Forssell,

2001; Hogan et al., 2004; Abufardeh, 2008).

65

Chapter 3 Research Methodology and Method

The previous chapter reviewed existing related research and literature, leading to the

formulation of research aims and objectives as discussed in sections 1.4 and 1.5. The

research questions were as follows:

1. How is localisation conducted individually and collaboratively by developers and

localisers, and how does this shape each discipline’s activities?

2. How are issues caused during localisation and internationalisation?

3. In what regards are developers and localisers distinct?

4. What dependencies exist between localisation effort and properties of

development projects?

The research methods must fit to the subject area and research questions (Robson, 2011).

In this chapter, the choice of research methods is reviewed and documented. Section 3.1

discusses qualitative and quantitative research. Because both paradigms are applied,

mixed methods and their applicability are discussed in section 3.2. Sections 3.3 and 3.4

discuss and justify the chosen qualitative and quantitative data collection and analysis

methods. Section 3.5 reviews sample and population used in this research, and section

3.6 notes applicable ethical considerations.

3.1 Qualitative and Quantitative Research

Qualitative research methods aim to integrate complexity. They are often used in the

study of social relations and human behaviour (Flick, 2002; Seaman, 1999). Use of

qualitative research methods acknowledges the complexity of situations that cannot be

stripped down to trivial and unambiguous cause-effect relationships. Subjectivity of

participants and perspectives, construction of reality and reconstruction of data, and a

reflection on the research process as well as the researcher himself feature heavily in

qualitative research (Flick, 2002). Qualitative analysis relies on finding context- and

subject-specific descriptive and exploratory schemes in data through interpretative

discovery of relationships and concepts, referred to by Strauss and Corbin (1998) as

conceptualising, reducing, relating and elaborating. The data is reduced and visualised,

and concluded in the form of regularities, patterns, explanations and propositions (Miles

and Huberman, 1994).

66

Reduction forms a central part in qualitative data analysis and is often done through

coding. Coding is a largely creative process during which the researcher tries to express

the conceptual meaning of a section of data, for example a single event or a series of

events during observation or a section of text in an interview transcription, as objectively

as possible through a designator consisting of a few key words, a so-called code. Codes

can be pre-formed, i.e. decided on before coding if the objectives of the study are known

beforehand, or post-formed, i.e. derived from data in the case of open and unfocused

studies (Seaman, 1999).

Quantitative research methods aim to examine a subject as objectively as possible by

reducing complexity and eliminating subjectivity, e.g. observer and selection biases.

Subsequently, while the research results should be reproducible, their practical value is

limited because objectivity requirements impact practical applicability of results (Flick,

2002). For example, in a laboratory experiment any potentially influencing factors have to

be carefully controlled in order to ensure that any differences between treatment and

control group can be ascribed to the intervention, i.e. a change in an independent

variable. But many phenomena with interest for practice occur only in complex situations

which cannot be replicated under laboratory conditions or comprehensively recorded

through quantitative means.

Quantitative research often aims to test associative and causal relationships through

calculation of a so-called significance level, also referred to as p-value (Field, 2005). The p-

value is often interpreted as the probability that a research result has been arrived at by

chance, although this is only correct under specific circumstances. It is better interpreted

as an arbitrarily chosen value to differentiate research results based on their

mathematical strength (Nuzzo, 2014; de Groot, 2014).

Accordingly, qualitative and quantitative methods follow different agendas. Qualitative

methods are mostly used in exploratory research, to examine social relationships and

phenomena within a specific context about which not much is known, or when an

interpretivist or constructivist paradigm applies and what is considered reality is

constructed by individuals or dependent on their interpretations. Quantitative methods

are mostly used in explanatory research, to confirm already existing theories about a

67

subject, or when a positivist paradigm applies and reality is considered to be objective

and measurable (Flick, 2002; Leedy and Ormrod, 2013).

3.1.1 Mixed Methods

The combination of qualitative and quantitative research methods in a single study is

called mixed methods. It is considered to be more effective than relying on only one

method (Seaman, 1999; Runeson and Höst, 2009).

A number of empirical software engineering studies employ mixed methods. For example,

Linberg (1999) explored how software developers define success and failure of a project,

how failure affects job satisfaction, and how failure was related to individual developers’

temperament. Linberg combined qualitative analysis of interviews and project

documentation, and statistical survey analysis. Espinosa et al. (2002) used a sequential

approach, i.e. quantitative examination of phenomena via survey from previous

qualitative interview and archival research, to show how shared mental models, work

familiarity and geographic dispersion benefit coordination in software teams and shorten

development time.

Strictly speaking, it is not application of both qualitative and quantitative methods or

gathering of both qualitative and quantitative data that makes mixed methods research.

What really is required is that the data works in conjunction, e.g. as sequential approach

deriving a framework qualitatively and then testing it quantitatively, or as methods

triangulation by using both qualitative and quantitative methods to answer similar

research questions and increase result validity (Creswell and Clark, 2007).

In this research, qualitative and quantitative methods are applied in isolation to answer

separate research questions. Hence, although both methods’ results might be combined,

e.g. by comparing descriptive qualitative results with descriptive statistics, the mixed

methods moniker is not appropriate.

3.2 Using Grounded Theory to Explore Software Localisation

The literature review suggested that software localisation is conducted in a social context

of software development and is affected by human factors. For such phenomena which

are difficult to study in isolation, qualitative research is the appropriate approach

(Runeson and Höst, 2009). Hence, RQ1 and RQ2 are best addressed by qualitative

68

research methods. The part of research that can be examined through testable

hypotheses is separated out. The question of generalising qualitative research results is

mitigated by the common view that software development projects are so diverse that

generalisation is difficult anyway; a notion confirmed by the views of software developers

themselves (e.g. Umarji and Seaman, 2005).

To examine how localisation is conducted, how this shapes the activities of localisation

and internationalisation, and how it causes localisation issues, Straussian Grounded

Theory is used. The next subsection will illustrate common research methods in empirical

studies of software development, justify the choice of GT, and discuss its application.

3.2.1 Selecting Qualitative Methods

This subsection reviews the choice of data collection and analysis method. The collection

method must yield data that can answer the research questions and must fit to the

remaining research method, i.e. analysis. The analysis method must fit format and subject

of collected data, the research questions, and the intended outcome.

Some methods were dismissed outright. For example, action research, where the

researcher joins a team in trying to solve a problem while taking notes for later analysis

(Christiansen, 2010) was deemed to be unsuitable because it is presumably difficult to

find software companies allowing this kind of access, and further iterations in iterative

analysis methods take too long.

Empirical studies of software engineering often use archival data, observations and

interviews for data collection, and template analysis, framework analysis or GT. For each,

advantages, disadvantages and fit to this research are discussed.

3.2.1.1 Archival Data

In archival data studies, archival evidence is studied, i.e. existing artefacts created by the

organisation one wishes to examine, possibly created during or for the activity one wishes

to study. These artefacts usually come in the form of some kind of documentation.

Empirical studies of software development seem like a good fit for archival data studies

because software development by necessity involves the creation of artefacts with

additional documentation that often is comprehensive and well maintained. For example,

69

it is best practice to store source code in repositories in order to record who conducted

what changes at what time. Similarly, bug tracking databases keep track of program

errors and how they were handled. Further information might come from test protocols,

email exchanges between developers and with customers, and requirements documents.

Such documentation is regularly used for studies. For example, one of the data sources

for the research of Grinter (1995, 1996a) on the use of configuration management tools

were documents and logs of discussions among developers conducted via electronic

media. Likewise, Espinosa et al. (2002) supplemented the study on the effect of shared

mental models with archival sources. In the area of localisation, Moorkens (2011, 2012a,

2012b) used TM databases for his research on consistency.

Archival data is a tertiary data source, meaning that it has not been collected for research

purposes (Runeson and Höst, 2009). It allows a view on what happened, but is usually

restricted in the information it can deliver because it only contains information related to

the purpose it has been collected for. The effort to extract research-usable information

from archival data can be considerable.

In the case of this research, the main archival data sources I expected to find about usual

localisation work were source code repositories including change logs, bug tracking

databases, TMs, software design documentation, and maybe communication protocols

between engineers and translators. There are two reasons why the first four sources are

unpromising, though. First, they likely contain information on what has been done, but

not how and why. Second, each likely only contains input from either engineers, or

translators, but not both. As for communication protocols, their very existence is

somewhat speculative as a number of literature items in chapter 2 suggest that

communication between engineers and localisers was lacking. For these reasons, archival

data was dismissed as data source for this research.

3.2.1.2 Observation

In observation methods, the researcher directly observes the object of study. A variant of

observation is so-called participant observation, where in addition to the observation

sessions data is collected during interactions between the observer and participants

(Seaman, 1999).

70

The advantage of the observation method lies in the directness of data acquisition.

Interviews and surveys require participants to reflect on their activities after the fact,

which brings the danger of them rationalising their actions upon reflection. For example,

an amethodical progression of activities might be reported as a methodical process (Truex

et al., 2000). In fact, e.g. Winter and Rönkkö (2010) noted that many activities in software

development are not planned and conducted as rationally and sequentially as reported.

Because observation comes with the advantage of giving the researcher direct and

unfiltered access to the phenomena under study, it is a strong method for studying

people’s behaviour and interactions, especially when there is a reason that an unbiased

account of actual events could not be obtained from participants (Kvale, 2007; Runeson

and Höst, 2009). Subsequently, observation and participant observation seem to be very

popular methods in empirical studies of software development. For example, Grinter

(1995) examined the use of a configuration management tool in organisations, specifically

how the tool integrated into collaborative interactions between developers through

analysis of observations, interviews and archival data. Plonka et al. (2011) examined the

switch between active and passive developer during pair programming through screen

capture and video recording of developers. Ferreira (2011) examined the combination of

agile software development methods and UX design through observation and interviews.

Participant observation in particular seems to be popular in GT studies because they allow

method triangulation for theory verification, and has been used to that effect by Hoda

(2011), Martin (2009) and Abdelnour-Nocera (2007).

Observational studies come with a number of disadvantages and limitations, though.

Observation works best if at least two researchers can compare their observation to

ensure completeness and objectivity (Seaman, 1999). It requires considerable amounts of

time (Hoda et al., 2011) and produces large amounts of data (Runeson and Höst, 2009),

reducing the number of cases that can be studied and analysed. Further, not everybody is

comfortable being observed, so it might be more difficult to find participants for

observation studies. This limitation should be considered particularly for GT studies, as

the method triangulation afforded by participant observation might come at the price of

decreased data triangulation.

71

Another difficulty is that opportunities for meaningful observation in software

development are limited, e.g. to meetings and exchanges (Seaman, 1999). A major part of

software development is individual cognitive work, often conducted in relative silence in

front of a computer. Remedial devices such as think-aloud protocols are a considerably

disruptive cognitive effort in this context.

The act of observation itself must also be considered as an influence on the participants

and activities (Seaman, 1999). The most famous example of this might be the Hawthorne

effect, also known as the observer effect: In an industrial study examining the relationship

between lighting levels and worker productivity, it was found that productivity increased

regardless of the direction of change in lighting, but decreased back to normal after the

study had ended. The productivity increase was attributed to motivational effects

stemming from attention of researchers (Landsberger, 1958). The Hawthorne effect and

its interpretation has since been examined critically (e.g. Adair, 1984), but there is a

general agreement that observation can affect participant behaviour. Hirschheim and

Klein (1989, p.1204) phrases it more aggressively:

People have free will and observation is not neutral. […] [P]eople as
objects of study always 'observe back'. They can perceive the observer's
plan of study and counteract it.

Nonetheless, it was initially considered to conduct observation or even participant

observation due to these methods’ strength to collect unfiltered data on social

interactions. Contact with a few software companies had already been established, but

negotiations over the level of access highlighted a particular difficulty with observation

studies on software localisation.

The work of engineers and translators in front of a computer does not lend itself to

observation because most of the work is cognitive and will not leave visual clues, as

discussed above. This leaves interactions of engineers and translators to be observed.

Those are likely to be unplanned and unscheduled35.

35 The point can be illustrated by examining the use of the observation method in Plonka et al. (2011): Pair
programming is a continuous activity. The study is mostly interested in the switch of mouse and keyboard
control, events that are likely to happen several times in a session. So, each observed session adds useful
data. In software localisation, this is different. My experience, not disputed by the literature review,
suggests that it is difficult to know beforehand if any meeting will discuss localisation or a translator’s or
engineer’s work day will involve communication with the other discipline, if it takes place at all.

72

Hence, pure observation must be supplemented by additional data. Since archival sources

would require more access negotiation while likely yielding only limited improvement as

discussed in the previous subsection, the next obvious alternative would have been a

combination of observation and interviews, or participant observation.

This led to a critical view on participant observation based on studies and methodology

literature. The idea behind participant observation is to use interviews to gain additional

insight into observed events. However, it appeared to me that in a number of participant

observation studies, the observation cues the interview. Or to put it bluntly, the

observation serves as a social situation for the researcher to arrange a chat later. I say

chat because often, the following interviews are informal and short. Additionally, most of

them seem to be only weakly motivated by any observation, but nonetheless lack an

overarching interview strategy. In other words, participant observation requires extreme

discipline when conducting the interviews because by the nature of participant

observation, preparation for and conduct of the interviews is limited. Similar criticism of

participant observation is discussed by Hammersley (1992) and Haralambos et al. (2013).

To that effect, participant observation can easily lead to unwarranted notions of

informality in both researcher and participants. Since observation alone is unlikely to yield

relevant data and participant observation seriously limits interviews, it is preferable to

conduct interviews separately and drop observations and the disadvantages that come

with it.

3.2.1.3 Interviews

In interviews, data is gathered through direct conversation between researcher and

participant. Interviews can provide an almost arbitrary depth, provided the interview is

not structured, as it is easy to engage with and react to responses from participants.

Interviews also present an opportunity to obtain data which is not accessible through

observation, e.g. attitudes and dispositions of participants. In face-to-face interviews,

non-verbal cues can help to gain an understanding that not all other data gathering

methods offer. Further, multiple interviews can help to obtain a wide range of

phenomena while maintaining replicability and generalisability (Salo and Abrahamsson,

2004).

73

Interviewing means having to consider unreliability of retrospective accounts on past

events. Generally speaking, there is a difference between what people do, and how they

describe it later (Paetsch et al., 2003; Truex et al., 2000). In particular, Perry et al. (1996)

found that the accuracy of reporting the short and unplanned events and details is

overestimated. Interviewing can be a very personal affair for both interviewer and

participant, and due to the time it requires of the latter, recruiting can be difficult. For the

interviewer, it can be time-consuming compared to some research methods, e.g. surveys,

but time-saving compared to others, e.g. observation.

For this research, interviewing was chosen because it enabled the collection of both

accounts of practice and of insights into participants’ thoughts and opinions. Interviews

have the potential to reveal what archival accounts cannot: what has been done, how it

has been done, and why it was done the way it was done. Compared to observation, the

data limited in interviews is moderate and analysis affordable. Regarding the validity of

accounts, I chose the discrepancy between participants’ accounts and what really

happened over the discrepancy of observed behaviour modified by researcher presence.

3.2.1.4 Template Analysis

In template analysis, prior to coding, a coding template is created with pre-formed codes

that the researcher expects to be important in the data. The pre-formed codes are then

identified during initial coding of a part of cases. Should new themes become apparent, or

if pre-formed codes turn out to be unimportant, the coding template can be modified

accordingly before continuing with further cases. This way, the template is developed

during coding until, after coding is completed, the final template can be used to write up

findings and interpretations.

One of the advantages of template analysis is that pre-formed codes can speed up coding,

and that the researcher has some level of control over the codes, for example if specific

themes in the topic are already known, or are the subject of the examination, e.g. in the

context of an evaluation. On the other hand, the more pre-formed codes have been

defined in the initial template, the more likely is missing important themes for which no

pre-formed code exists.

74

Template analysis is often used for interview data and is considered a suitable analysis

method for software engineering case studies (Runeson and Höst, 2009). For example,

Zhang (2012) used template analysis for the analysis of interview records in order to

review tools and practice in prototype design and potential use of virtual worlds for the

early building construction process.

For this research, template analysis was discounted due to its focus on pre-formed codes.

Because the choice had already been made to examine differences between developers

and localisers, role of cultural competence, and influence of project properties on

localisation through a quantitative survey, it was considered preferable not to guide the

qualitative research through preconceptions expressed in pre-formed codes.

3.2.1.5 Framework Analysis

In framework analysis, familiarisation with the topic is followed by the choice of a

thematic framework, which is then systematically applied to the data during coding. The

framework is further used during a subsequent stage called charting to abstract, order

and synthesise the data so that concepts leading to an interpretation can be created.

Despite being a deductive method, some authors have suggested that framework analysis

is quite similar to the eventually chosen GT, but more suited to answering specific

questions and examining already identified issues (Srivastava and Thomson, 2009). It is a

common method in computing, for example Abdelnour-Nocera and Sharp (2008) used

framework analysis of technological frames of Bijker (1997) to confirm the importance of

pan-organisational consultation and specific work-step explication during the adoption of

agile software development processes in large organisations, and further to examine the

cultural dependence of the usefulness in the context of enterprise resource planning

systems (Abdelnour-Nocera et al., 2007; Abdelnour-Nocera, 2007).

Framework analysis was initially considered as analysis method, but eventually the lack of

a convincingly suitable framework as well as the research restrictions of any framework,

similar to those of the template method, suggested that a method requiring no

underlying existing theory is preferable for this research.

75

3.2.2 Grounded Theory

GT aims to identify and categorise elements and explore their connections (Miles and

Huberman, 1994). It is based on the premise that interpretation of data is more important

than the way in which it is gathered. GT is used for exploratory and descriptive research

and aims to generate theory, i.e. “systematically interrelated categories with explanatory

power” (Strauss and Corbin, 1998, p.20) and descriptions, the latter of which can lead to

conceptual order, i.e. organisation of data based on properties or dimensions. The

research process in GT is iterative, i.e. findings are used at all stages in the process and

eventually lead to a refinement and narrowing of ongoing research.

GT is particularly useful in research areas in which previous research has been limited

(Hoda et al., 2011), as is the case with collaboration in localisation. As a qualitative

method, GT has the advantage of examining phenomena in context and does not require

a reduction in complexity to work. Due to its iterative nature and the feeding back of

findings into the research process, it is a good method for examining vaguely known areas

(Hoda et al., 2010).

The drawbacks of GT are a susceptibility to researcher bias, i.e. a researcher’s

preconceptions and assumptions can easily influence the outcome. Further, GT is a

relatively cumbersome process as it affects almost all areas of research, including

participant sampling and writing up (Hoda et al., 2011). The literature review should be

light to aid in the avoidance of biases. It has also been noted that GT aims for two

contradicting goals: the examination of situations in context, and the generation of

abstract theories with the aim of eventually applying them outside of their original

context (Haralambos et al., 2004; Hammersley, 1992).

GT is most often applied in sociology and nursing (Adolph et al., 2011). In recent years, it

has become more popular in computing-related studies examining social aspects of

computing and software development. Coleman and O’Connor (2008) examined the

formation of software development processes as a function of best practice models and

cost in 21 Irish software companies. Dagenais et al. (2010) examined the experience of 18

newcomers when joining already existing projects, and concluded that successful

integration depends on the newcomer’s experimentation with, and acceptance of,

existing project structures and cultures, and feedback on integration progress by the

76

existing project team. Crabtree et al. (2009) conducted GT in a treatment setup to explore

the dependence of software process description on perspective and context of four

participants. Hall et al. (2009) examined the non-adoption of localised software in Nepal,

attributing the lack of success of Nepali-localised software to issues with the actual

software interface and a socio-economic environment which promotes the use of English

software.

GT has also been used in a number of PhD theses in computing. For example, Grinter

(1996b) applied GT for examining how software development organisations manage

dependencies in the production of software systems and their technical and social

aspects. The researcher examined the concept and nature of dependencies, why they

occur, and how developers and organisations cope with them. Martin (2009) used GT to

examine customer role, experience, and its role in the requirements elicitation process in

extreme programming (XP) projects. Hoda (2011)36 created a descriptive grounded theory

of self-organising agile teams, consisting of roles, practices and factors.

GT was originally developed by Glaser and Strauss when studying the sociology of dying

(Glaser and Strauss, 2009). Although initially developed in collaboration, interpretations

of GT soon forked into two major camps37: That of Glaser, and that of Strauss and Corbin.

Glaser (1978) continued to develop the concepts of theoretical coding, sampling and

memos, while Strauss and Corbin (1998) adapted GT to make it easier to use. Accordingly,

when applying GT, a decision has to be made what particular approach to follow. This is

important because while the two approaches are generally similar (Adolph et al., 2011),

care must be taken not to mix aspects that are not compatible, particularly when using

auxiliary literature that either does not specify which approach it used, or that used the

other approach. The major differences between Glaser and Strauss are philosophical,

particularly regarding theory and theory generation and the part of induction, deduction

and verification. For example, according to Glaser, in the initial coding phase the only

coding technique to be applied is what he calls substantive coding. Strauss and Corbin on

the other hand describe two techniques, open coding and axial coding, during the initial

36 Partly published in Hoda et al. (2012).
37 Further variations to GT are listed for example in Heath and Cowley (2004).

77

coding phase. Both Glaser and Strauss recommend so-called in-vivo coding, where the

name of the code is derived from a term occurring in the data.

Heath and Cowley (2004) recommend to choose GT flavour based on the best fit to a

researcher’s cognitive style. I follow the GT approach of Strauss and Corbin for two

reasons: Glaser’s writing is arguably more difficult to understand. This might be a matter

of taste, but some of the instructions border on the mystical. Intentions and meaning are

often not as clear as in Strauss’ and Corbin’s instructions. Further, Strauss’ and Corbin’s

approach seems more technical while at the same time being more tolerant towards the

realities of research. Adolph et al. (2011) report that in software engineering research

Strauss and Corbin seems to be the favoured approach.

3.2.2.1 The Research Process in Grounded Theory

As a research method, GT deviates in several ways from classic quantitative research

approaches (Flick, 2002). GT is not a linear research process where each phase, i.e. theory

formation, data collection or data analysis, is executed in isolation and finished before

moving on to the next. Instead, GT is an iterative process in which the phases of data

collection, data analysis and theory formation are repeated until the theory is not

progressed by additional data any more. While quantitative research starts with a theory,

then collects and analyses data, GT starts with data collection and analysis, which then

leads to the derivation of theory. It is conducted as follows:

A case, for example a participant for an interview, is selected based on availability. Ideally,

cases are selected to broadly cover the research subject. Data is gathered, e.g. by

interviewing a participant, and then coded using open coding38 and axial coding. During

open coding, all the data is scrutinised for concepts through line-by-line coding. In axial

coding, the concepts gathered in open coding are examined for dimensions which relate

to their occurrence, e.g. causal and intervening conditions, context and consequences. All

the concepts appearing in the data are coded. The codes are post-formed, i.e. they are

derived from the data (Seaman, 1999). The aim is to find a structure relating concepts.

An important part of coding is the so-called theoretical sensitivity, i.e. a researcher’s

ability to understand subtleties of the data. Theoretical sensitivity can be attained from

38 An interview sample including open coding can be found in Appendix C.

78

experience in the field, e.g. through repeated exposure to, reading about or working in

the field. Theoretical sensitivity refers to conceptual knowledge about a research topic in

order to help understand the data. It must be distinguished from concrete assumptions

that might guide coding and influence the emerging theory and must be avoided in the

GT process (Glaser, 1978).

Once coding of a case finishes, the next case is selected, data is gathered and analysed,

and so on. Any theory derived from a new case is retroactively applied to all previous

cases. This is referred to as constant comparison, meaning that information from

incoming data is constantly compared to previously analysed data. New codes, derived

from the latest case during open coding and thus post-formed, are applied to previous

cases, and thus become preformed.

The researcher notes any theoretical insights gained during data analysis in so-called

memos.39 This process of selecting and analysing a case, constantly comparing new and

previous cases and writing memos is repeated until a single core category emerges.

The core category refers to the central aspect of what is being researched. Once the core

has emerged, the research process changes fundamentally: Open and axial coding are

replaced by selective coding. Selective coding means that only those concepts are coded

that relate to the core. The codes are still pre-formed, but must be guided by the core

category. Constant comparison and writing of memos continues. Sampling should ideally

switch from exploratory all-you-can-get sampling to theoretical sampling. Theoretical

sampling means that selection of cases is guided by the analysis of previous interviews.

Ideally, new cases are selected based on what the researcher assumes will expand the

theory and aid representativeness (Seaman, 1999).

This continues until saturation is reached. Saturation is the moment at which new

interviews merely fit into the existing theory without generating new knowledge. This is

another deviation from classic tenets in research, which generally assumes that more

data equates better scientific results. This is not true in GT. On the contrary, it has been

pointed out that too much data might impede GT for practical reasons, e.g. because it

makes a thorough analysis more difficult and eventually impossible (Kvale, 2007).

39 An example of a memo is shown in Appendix D.

79

Once saturation is reached, codes, categories and memos derived from the data need to

be connected and integrated into a theory. In GT, this activity is called sorting. During

sorting, new ideas can still emerge which in turn have to be written into memos and

integrated in the sorting process. Once sorting is finished, a rich and grounded theory

should have emerged.

Figure 3-1 The research process in Grounded Theory

80

An interview excerpt is shown in Appendix C, a memo example is shown in Appendix D.

The GT research process is shown in Figure 3-1. Strauss and Corbin (1998) concede that

deviations from this process might be necessary. For example, research might have to

progress to the final stages, i.e. theoretical sampling and eventually write-up, through

lack of funding or time rather than the clear emergence of a core category. The authors

also concede that theoretical sampling might not always be possible due to lack of access,

in which case a take-what-you-can-get approach to sampling might have to continue.

3.2.2.2 Grounding Research – Validity and Reliability in Grounded Theory

Science needs to be linked to empirical verification and must be falsifiable in order to be

able to claim finding new knowledge (Ellis and Silk, 2014). In classic research, this includes

qualifying items such as validity and reliability of research results, but this is difficult for

qualitative research and a topic of ongoing discussion. Flick (2002) suggests to supersede

validity and reliability in qualitative research with alternative criteria: trustworthiness,

dependability, credibility, transferability and confirmability,

Reliability indicates the absence of selection bias and the potential to reproduce results.

This can, according to Flick (2002), be partially replaced by demonstrating adherence to

standards, by training and practicing the methods to be applied, and by reflection and

exchange about methods and interpretations. Further reliability can be achieved by

comparing interpretations from one part of the text against other parts, or other texts.

Finally, Flick (2002) recommends the documentation of procedures and data sources by

specific separation of raw data and researcher interpretations.

Validity indicates the absence of interpretation bias. In GT, ensuring validity is called

grounding research. Flick recommends to scrutinise interviews for strategic interests by

interviewer and participant and for systematic influences shaping interviews and

interpretations. Another technique is to ask participants for a review of the interview

interpretations. However, this is problematic insofar as a dismissal of the interpretations

by the participant does not necessarily mean that the interpretations were illegitimate.

Some researchers apply quantitative interrater reliability tests to validate their concepts

and categories (e.g. Gizaw, 2014). This was not done for this research as it requires

recruitment of additional coders.

81

3.2.2.3 Previous Knowledge and Pre-Formed Theories in Grounded Theory

Strauss and Corbin (1998) explain that in GT, a researcher must be free to enter a subject

area without prejudices and preformed concepts. So, the researcher must not know too

much about the subject area he is conducting GT in. They do not define a particular

amount of knowledge or a threshold excluding a researcher from applying GT to specific

research, but point out that researchers should not have a theory. Instead, the researcher

should be open to be guided by the data. The authors also recommend not to conduct

too much literature review prior to data gathering and analysis.

A concern when choosing GT as research method was whether due to my previous

occupation I already knew too much about software localisation to apply it effectively. I

will address this concern below.

It is unrealistic to assume that a researcher has no knowledge about the area under

research. Although Flick (2002) assume that a researcher looking into social relations is

likely to be unfamiliar with the particular situations, that author also acknowledges that

research questions are often related to a researcher’s biography, as in my case. It is

further recommended to define key concepts of research right at the start. Strauss and

Corbin (1998) acknowledge that researchers have previous knowledge about their subject

areas (see also Miles and Huberman, 1994). In fact, one would expect that a researcher

has conducted a minimum of a subject area knowledge gathering before even being able

to conclude that GT is a good choice for a particular research problem. Instead, I put

forward that Strauss and Corbin (1998) mean to emphasize the exploratory nature of GT

as opposed to explanatory research.

Research can be classified into four different types: Exploratory research, descriptive

research, explanatory research, and improving research (Runeson and Höst, 2009).

Exploratory research aims to generate new ideas and general understandings of new

phenomena which have not yet been thoroughly understood. Descriptive research aims

to describe and classify the state of things, e.g. characteristics or properties of

phenomena. Explanatory research aims to find causal relationships, that is, mechanics

explaining the occurrence of phenomena. Improving research aims to evaluate the often

practical occurrence of phenomena in everyday situations.

82

As discussed earlier, Strauss and Corbin (1998) state that GT aims for exploratory and

descriptive research. It has the objective of generating theory, e.g. in the form of

hypotheses. It provides a data-based method for theory generation and liberates the

researcher from generating for example classification schemes or hypotheses through a

creative process ex nihilo. However, as GT is exploratory research, generated hypotheses

are not verified. This is in contrast to classic explanatory research where an existing

theory or hypothesis is confirmed or rejected based on comparing theoretical predictions

to results of analyses of actual observations (Perry et al., 2000). In de Groot’s empirical

cycle of observation, induction, deduction, testing, evaluation, da capo, theory generation

corresponds to the first three phases (de Groot, 1969).

In other words, GT can generate theories, but not confirm them. This is because despite

being data-based or methodological, it is not intended to be inter-researcher-reliable and

does not follow classical notions of validity, reliability, and generalisability in research,

which are anyway not considered to be appropriate for social research. Confirming or

rejecting theories, generated through GT or otherwise, requires explanatory research.

Thus, the concern should not be how much knowledge a researcher already has in a

subject field, but whether a researcher already has a theory about a problem. If there is a

proposition what mechanics might be at play, what influences what, what moderates

what, or similar, then there is no point in applying GT because it would either lead to the

creation of an alternative, different theory, or the researcher again arrives at the original

theory. Arriving at an alternative theory would merely create a new theory qualitatively

different from the original insofar it was methodologically derived from data. Arriving at

the original theory however would not confirm it, as GT is not a theory confirmation

method. The original theory is still not validated and thus in no way, shape or form better,

more substantial or more confirmed than it was before.

In other words: If a researcher already has a theory, there is no point in applying GT

because it is redundant: it can only deliver what the researcher already has, an

unconfirmed theory. Applying GT nonetheless might lead to a misguided notion that the

original theory is confirmed or rejected through the result of GT, when it can actually not

do any such thing.

83

The existence of a theory also stands in the way of theory generation. Such a theory or

framework might lead a researcher to make assumptions about what is happening and

what data would be most meaningful to collect (Miles and Huberman, 1994). In fact,

there is research showing that cognitive processes, i.e. perception, attention, data

interpretation, data production and memory, as well as scientific communication are

theory-laden, i.e. influenced by theory. A review of existing studies was conducted by

Brewer and Lambert (2001), showing among others that comprehension and

memorisation is greatly improved when a theory or framework for information is

available. In other words, a researcher is more likely to understand and remember data

when it fits to an already existing body of knowledge. Incongruous data is ignored or

forgotten, and thus data is superseded by theory. Uncannily, the effect increases the

more ambiguous, complex, or degraded the data is. In other words, a pre-formed theory

will inevitably influence a researcher’s data interpretation, particularly when objective

criteria are sparse, as in qualitative analysis.

In the light of the above, I argue that I am applying GT correctly despite any knowledge I

already have. Previous knowledge itself does not matter. What matters is that I have no

theory of what is going on in software localisation.

Now, one could say that I happen to have a theory: I am after all testing whether

developers have a higher self-efficacy, but lower attitude and lower cultural competence

in software localisation than localisers. This is true: yes, I have a theory, and I am testing it

as best as I can. But this is independent of the interviews and my application of GT.

3.2.3 Application of Grounded Theory

I was conducting an exploratory, interpretive, flexible design, blocked subject-project case

study using GT. I tried to understand phenomena occurring during the development of

international software through interviewees’ interpretations, adding to existing

knowledge by building theory. The case is a process of developing international software,

unit of analysis is the individual participant, with potentially multiple units of analysis per

case. The method of data collection is direct. The selection strategy is both typical due to

the request for participation, and revelatory due to theoretical sampling. Details of how I

conducted GT are given in subsection 3.2.2.1.

84

3.2.3.1 Selecting Interviewees

For open coding, sampling of cases was determined by some a priori decisions:

interviewees were selected when they had participated in the development of global

software in a relevant role, i.e. translators, software engineers and project managers.

While other roles, e.g. terminologist, reviser, DTP specialist, software tester and QA

manager are mentioned in the literature (e.g. Hartley, 2009; Moorkens, 2012a), these

were considered less relevant because they assumedly have less influence on

internationalisation and localisation.

For the selection of initial interviewees, a convenience sample was deemed sufficient,

following the recommendation “take what you can get” (Strauss and Corbin, 1998, p.208),

explicitly allowing convenience samples for open coding. Because GT does not aim for

initial generalisability of its results, it is of no concern if participant selection is not

representative of the general population: open coding aims to find codes in context and

generalisation of the codes is not intended. Once the core category has been found,

further samples are ideally selected by theoretical sampling, ensuring appropriateness of

the sample.

3.2.3.2 Conducting Interviews

The aim of interviewing was to understand the experience of professionals in the field,

including meaning, feelings, value judgements, and of course accounts of fact.

Three types of interviews can be distinguished (Seaman, 1999). Structured interviews

have pre-formulated and specific questions to be answered by the interviewee. In

unstructured interviews, the interviewee is the source of both answers and questions,

which are open and open-ended. In extreme cases, unstructured interviews resemble

more a conversation than an exchange of questions and answers. For semi-structured

interviews, a mix of specific and open-ended questions is used, the latter accounting for

both foreseen and unexpected information emerging during the interview.

Strauss and Corbin (1998) recommend open questions during the use of GT. Their

argument is that the more structure there is in interviews, the more likely participants are

to answer the questions and nothing else. Less structure and open questions on the other

hand increase the chance of participants soliciting experience and share what they think

85

is important beyond what is in the question. Further, commonality in interviews, i.e.

structure across interviews, increases comparability and is considered more economic

(Flick, 2002). Eventually, semi-structured interviews were chosen for two reasons:

unstructured elements allowed to explore new areas and findings as interviews

progressed. I believe this is an essential part of interviewing when conducting GT.

Especially during theoretical sampling, interviews are strongly determined by previous

findings. However, a certain amount of structure accounted for a minimum of relation of

accounts from two comparatively different disciplines, software engineering and

translation.

While there are few rules and standards for qualitative interviews (Kvale, 2007), Flick

(2002) discusses five methods of semi-structured interviews, to be selected according to

appropriateness for research topic and fit to research process: focused interviews, semi-

standardised interviews, expert interviews, ethnographic interviews, and problem-

centred interviews.

Focused interviews aim to analyse participants’ perceptions of a common, specific

stimulus, e.g. a known event such as a movie, and potentially to compare it with an

objective analysis of the stimulus. This method was discarded since this would have

severely restricted participant selection, e.g. having worked on the same project and

experienced the same bug. No stimulus universal to the population of participants is

known. Further, even if enough participants named one it was not actually desired to

limit the research to a specific event or similar.

Semi-standardised interviews aim to understand participants’ subjective theories about a

topic through a series of at least two interviews separated by several days or weeks,

including visualisation. This method was discarded because, since localisation is a

comparatively small aspect of their work, developer-generated theories might not be

comparable to translator-generated theories. I also felt that participant-formed theories,

while interesting and informative, are less conclusive than a theory formed by data.

Practical reasons for not choosing this method included an expected difficulty to find

participants willing to conduct successive interviews, especially as use of a visual tool

complicates remote interviews, e.g. by phone.

86

Expert interviews aim to obtain views representative for a whole group. I did not use this

approach as this implies there is a generalisability of accounts for said whole group, and

further a restriction on specific topics. Insofar, there was a concern that this interview

style was not open enough. Finally, the research interest was not on expert perspectives,

but rather general views.

Ethnographic interviews aim to supplement data from ethnographic observational studies

by interviewing participants in an observational study as repeated informal conversations.

As I did not conduct an observational study, this interview type was not applicable.

Problem-centred interviews aim to collect biographical data towards a certain problem.

This method was ultimately chosen because it focuses on problems and supports interest

in subjective viewpoints, facts, social processes, and the aim of developing theory.

Problem-centred interviews are characterised by problem centring, object orientation,

and process orientation. It is recommended to start the interviews with a short survey for

biographical data so that these do not need to be established during the interview.

Problem-centred interviews follow a time-glass model (Runeson and Höst, 2009), where

an interview opens with general questions, continues with a phase of specific questions,

and concludes with open questions. Problem-centred interviews are recommended to

open with a warm-up phase, followed by a phase for general prompting, then specific

prompting, and finally ad-hoc questions (Flick, 2002). The latter enabled me to engage

dynamically with a participant’s account and their role, i.e. project manager, software

engineer or translator. Overall, the problem-centred interview method combines well

with GT, particularly with theoretical sampling and coding (Flick, 2002).

While generally following recommendations, no biographical data survey was conducted

prior to the interviews since this was likely to introduce redundancy for the interviewees,

who were assumed to have taken part in the online survey. Further, relevant biographical

data such as the participant’s role or company etc. had already been obtained during

interview arrangement and preparation. Unlike the recommendation by Flick (2002), no

specific, given problem, was focussed on. Instead, any problem as chosen by the

interviewees was discussed. It was also noted that the dynamics of the interview did not

always follow the chosen time-glass model, but sometimes had more semblance to the

funnel model, with open questions first which then narrowed to more specific questions.

87

Data collection was first degree, i.e. interviews were conducted by the author. Interviews

were recorded provided that interviewees consented. Only minimal notes were taken in

order to focus on interview content. The aimed-for interview length was 45 minutes.

During the interviews, recommendations and best practices for semi-structured research

interviews from Seaman (1999) and Kvale (2007) were followed. Instructions were kept to

a minimum. Interviewees were reminded that participation was voluntary and that they

could choose to skip any question for any reason, without giving a reason. It was stressed

that there are no right or wrong answers.

It was attempted to steer interviews towards a specific subject initially, but interviewees

were allowed to steer the interviews to whatever they found relevant. It was aimed to

leave the thematic part of the interview to the interviewees so that I would only

participate in the dynamic part, i.e. progressing the interaction. It was attempted to keep

questions short, to avoid direct questions inviting speculation, and to only ask for

clarification when needed. Instead, interviews were aimed to be self-reported stories

with spontaneous information, but little explanation.

Analysis was conducted in parallel with the interviews as described in the GT research

process. During the interviews, interviewees were asked to relate their experience in

software localisation, their general role, how they are professionally related to software

localisation, and what their day-to-day work activities are. Interviewees were encouraged

to share anecdotes related to software localisation, e.g. issues they had encountered or

witnessed themselves. This included the setup of the localisation process, e.g. whether

localisation is done in-house or through an LSP, what the relationship is between

members of the development and localisation discipline, and similar, as far as this was

known by the interviewees. The overarching interests lay on two complexes: localisation

issues and procedural motivations:

The first complex dealt with details of localisation issues encountered by interviewees, i.e.

what exactly the problem was, the underlying mechanics leading to the creation or

manifestation of the issue, how issues were detected and handled, and what

consequences, if any, they had on development and localisation going forward.

88

The second complex dealt with underlying assumptions and thought processes, if any,

having led to the organisational structure, processes, tool usage etc. as encountered in

the interviewees’ localisation setup.

3.2.3.3 Tools Used During Analysis

After the interview, recordings were transcribed using a simple media player and text

editor40. Non-English interviews were coded in the original language, only quotations

appearing in the write-up having been translated.

The necessity to use tools other than writing utilities during the application of GT was

noted already by its original creators. For example, Strauss and Corbin (1998) suggest to

conduct sorting with self-sticking notes on a whiteboard or wall. There are a number of

software tools available to help with the analysis of qualitative data. I originally started

analysis by coding in Weft QDA, an open-source tool for coding text data. After coding a

few interviews, a number of technical limitations of Weft QDA such as the inability to edit

interview transcripts, led to a switch to NVivo, which I used for most open coding. NVivo

is a commercial software package for qualitative data analysis. It serves as a data

repository and processing tool and enables researchers to code data and organise, sort,

link and arrange information and data. The created data structures can later easily be

modified. NVivo further offers search and query facilities to browse and examine existing

data, calculate simple coding statistics such as code density, graphically represent links

and structures, and supports coding and analysis through multiple users. It supports most

computer media, i.e. text, images, movies and sound recordings. However, for this

research, imported in NVivo were only interview transcripts and notes.

Towards the end of open coding, I ceased using NVivo because I found that its use had

influenced how I understand and process the original data. Specifically, I found my

thinking about the data to be shaped not by my ideas of the data itself, but by its

presentation, hierarchical organisation and abstraction in NVivo. A similar observation has

been made by Hoda et al. (2012), who noted a limiting effect on interaction with the data

through the use of NVivo. My main worry was that I might begin to rely too much on the

suggested ways of handling data inherent in NVivo. Incidentally, I had noticed occasional,

40 Details of tools are listed in Appendix F.

89

slight shifts in my codes from the meaning when creating the code, to the meaning

associated with it when assigning later items, and I attributed that to the way how

existing codes are presented and selected in NVivo.

I eventually switched to using text files for selective coding and sorting. While handling

codes, concepts and memos in text files is much more cumbersome, it forced me to re-

read and engage more with existing data, for example when adding new codes or

reassigning text selections. Having all data in what effectively is a one-dimensional order

of which you can only see a limited selection at the same time also made me know my

data much better. I would have liked to try sorting with self-sticking notes on a

whiteboard as suggested by Strauss and Corbin (1998), but none was available.

3.3 Quantitative Research

RQ3 and RQ4 will be answered through quantitative research. For each research

question, appropriate hypotheses were formulated. Table 3-1 lists hypotheses and their

relationships to the research questions. Further modifications and additions are discussed

during the construction of the survey and choice of statistical tests.

Table 3-1 List of hypotheses

RQ ID Hypothesis

3

H1 Developers score lower than localisers on CQ

H2 Developers assume a different localisation scope than localisers

H3 Developers score lower on ATL than localisers

H4 Developers assume less responsibility for localisation than localisers

H5 Developers have a higher SEL than localisers

H6 Cost, quality and time priorities differ between developers and localisers

H7 Software success factor priorities differ between developers and localisers

H8 Localisation training is correlated with CQ

H9 Native English speakers score higher than non-native English speakers on CQ

4 H10 LE is affected by software type

H11 LE is affected by user type

H12 LE is affected by customer-user identity

H13 LE is affected by number of target languages

H14 LE is affected by development model

H15 LE is affected by project commerciality

H16 ATL is correlated with CQ

H17 SEL is correlated with CQ

H18 SEL is correlated with ATL

90

3.3.1 Selecting Quantitative Methods

Next, relevant quantitative methods and the method selection to examine the

hypotheses about software localisation practice is discussed.

3.3.1.1 Experiments and Quasi-Experiments

Experiments are studies testing causal relationships by applying a treatment to one of

two identical situations and observing the effect. It is important that the situation

receiving the treatment is chosen randomly; otherwise, the study is referred to as quasi-

experiment. Usually, experiments are used to test hypotheses and are repeated many

times to be able to make inferences through statistical analysis. It must also be assured

that the two situations only differ in the independent variable, i.e. treatment. Therefore,

experiments are generally conducted in laboratories.

Experiments have been used in software development research. For example,

Shneiderman et al. (1977) showed through various experiments that flowcharts are of no

help whatsoever to software engineers, neither for debugging nor programming nor

maintenance. Tichy (1982) tested the performance of a revision control system through

experimentation. Solheim and Rowland (1993) measured effectiveness and efficiency of

several integration tools and strategies. The results suggested top-down and big-bang

integration strategies.

A properly set-up experiment is considered the ultimate test of a theory, but requires a

testable hypothesis. Experiments as such are not necessarily difficult to set up, but most

experiments end up having physical requirements that makes experimenting a huge

effort. Further, the more complex the context of the situation under examination is, the

more difficult it will be to set up an experiment where all influences are controlled.

Experiments can be difficult to recruit participants for as it must be sure that all

participants are comparable. Further, it is often argued that the relevance of

experimental results is limited due to their laboratory context.

For this research, experimental methods were discarded due to the expected complexity

and because no option was apparent how to test the hypotheses within manageable

experiments. In principle, software development and localisation could be recreated

within a laboratory environment, but the effort to do so seems extreme. In the case of

91

experiments, it would also require assigning independent variables to the units of

analysis. This means randomly educating neutral participants to be either developers or

localisers, and simulating software development projects that only differ in user type,

number of target languages, etc. Such experiments would have to be repeated many

times in order to satisfy the requirements of statistical analysis. Some of these issues

could be addressed by conducting quasi-experiments, but this would create new

problems, e.g. recruitment of software development professionals willing to spend

considerable time for no reward.

3.3.1.2 Survey

Surveys are a way to identify trends or test hypotheses by inference through statistical

analysis of samples taken from a population. Survey data can be gathered for example via

interview, questionnaire or observation. In computing, surveys have for example been

used by Isa et al. (2010) to confirm the theory of website information architecture as a

five-factored multidimensional product. Blackburn et al. (1996) studied software

management practices in Western Europe via survey in order to determine management

practices supporting higher productivity, and to provide supporting evidence of factors

reducing cycle time.

The survey method is comparatively simple to apply. It shares with experiments the

difficulty of recruiting participants conforming to the requirements of statistical analysis.

In this research, the survey method was chosen because it was deemed the easiest way

to confirm the hypothesis questions while avoiding the construction of experiments.

However, survey construction is a complex field with a number of guidelines to consider.

Similar to experiments, surveys require a comparatively large number of data points to

deliver statistically representative results, which disqualified observation. It was deemed

best to avoid redundancy in data collection methods in order to avoid single points of

failure. Because interviews were conducted for the GT study, a questionnaire was

constructed to realise the survey.

3.3.2 Questionnaire Construction

The survey was designed as a cross-sectional study. The research questions motivating

the survey revolve around two units of analysis: for RQ3, it is professionals, and for RQ4,

92

it is software projects. Because it was considered likely that most respondents have

worked on more than one localised project, they were instructed to answer project-

related questions for the most recent localised project they had worked on.

To enable statistical analysis, quantifiable data was needed. Accordingly, the survey used

multiple choice questions. Text entry fields were only provided as alternatives for

questions where it was considered conceivable that the given options would not cover all

possible answers.

The hypotheses require measurements of five constructs. These are Attitude Towards

Localisation (ATL), Self-Efficacy in Localisation (SEL), Self-Efficacy in Usability (SEU),

Cultural Competence (CQ), and Localisation Effort (LE). Further, biographical and opinion

data of the participants needed to be collected. Details on the constructs measured and

data gathered in the survey are given in the following subsections. The relationship

between each question and constructs is shown in Table 3-2. The complete questionnaire

can be found in Appendix A.

Table 3-2 Relationship between survey questions and constructs

Q. # Construct

1 - 5 Biographical data

6 - 24 Attitude Towards Localisation (ATL)

25 - 29 Self-Efficacy in Localisation

30 - 34 Self-Efficacy in Usability

35 - 54 Cultural Competence (CQ)

35 - 38 Metacognitive CQ

39 - 44 Cognitive CQ

45 - 49 Motivational CQ

50 - 54 Behavioural CQ

55 - 60 Project properties

61 - 68 Localisation Effort

69 - 71 Biographical data

72 - 75 Opinions on localisation

3.3.2.1 Biographical Data

The survey collected biographical data on age (Q.1), gender (Q.2), nationality (Q.4), level

of education (Q.5), usual role in software development (Q.69), years of experience in

software localisation (Q.70), and received training in software localisation (Q.71). These

93

items were used to characterise the sample. An additional item asked the participant to

confirm involvement with the development of international software (Q.3) in order to

filter out ineligible participants. Usual role in software development was further used to

sort participants into developer or localiser groups. Training in localisation and nationality

was used for correlation testing with CQ.

3.3.2.2 Opinions on Localisation

The survey further queried participants’ opinions as part of the examination of

differences in perceptions and attitudes of developers and localisers regarding

localisation scope and project management. Specifically, participants were asked to

define their preferred localisation scope from a list of items, to order a number of

software quality items and project management items according to their personal

perception of priority, and to state whether they feel responsible for localisation. The

available options for items to be localised in software (Q.72) was compiled from similar

lists in the literature (Anastasiou and Schäler, 2010; Ryan et al., 2009; Collins, 2002; Carey,

1998). The options of priorities in software (Q.73) were inspired by an article of Cook

(2011) about different software priorities for scientists and engineers. The project

management options of Q.74 were derived from the project management triangle

(Dunne, 2011). The question of the participant’s personal responsibility of localisation

(Q.75) is a straightforward yes/no question.

Because no statistical test could be identified to test for differences in list sorting, it was

decided to test the selection chance of each item (H2a to H2g) and the difference of

selected item count (H2h) depending on participant role. Because there were only three

options with six possible permutations for the project management triangle items, the

cost, quality and time priorities could be tested using a Chi-squared test. However, eight

software success criteria allow 40320 possible permutations compared to a relatively

small number of participants (n = 120), meaning that a different testing method had to be

found. Hence, the software success criteria were tested individually with additional

hypotheses (H7a to H7h).

94

3.3.2.3 Attitude Towards Localisation (ATL)

Table 3-3 General changes to ACT

Q. # Change

11, 13, 17 Replacement of terms, e.g. computer technology with software localisation

6, 8, 9, 10, 15,

16, 19, 23, 24

Slightly rephrased to account for the differences of the tool computer

technology versus the concept or process software localization

7, 12, 14, 18,

21, 22

Adaptation of a stated use of computer technologies to a purpose for software

localization

20 Adaptation of an explicit motivation for an emotional response

Table 3-4 Semantic changes to ACT

Q. # Class ACT ATL Source

7

u
se

 o
f

co
m

p
u

te
r

te
ch

n
o

lo
gy

/l
o

ca
lis

at
io

n

Communicate with others

in order to be more

effective on the job

Applying knowledge in

software localization to

create more effective

software for international

users

Dohler (1997)

12 Create materials to

enhance the performance

on the job

Increasing the user base of

the software projects one is

working on

Kumhyr et al.

(1994), McKethan

and White (2005)

14 Use word-processing

software to be more

productive

Increase the usability for

software one is working on

for international users

Aryana and Liem

(2011)

18 Access many types of

information sources for

one’s work

Necessity for software

projects to adhere to local

laws and customs

Ryan et al. (2009)

21 Assist in work organization Avoid misunderstandings

and offenses for the

software one is working on

Anastasiou and

Schäler (2010)

22 Learn new skills Improve software for

international users

-

20

em
o

ti
o

n
al

 r
es

p
o

n
se

 t
o

te
ch

n
o

lo
gy

/l
o

ca
lis

at
io

n
 Anxiety towards missing

knowledge how to handle

errors

Anxiety towards loss of

control

-

95

Table 3-5 Examples of semantic changes to ACT

Q. # ACT ATL

9 Using computer technologies in my job

will only mean more work for me.

If the software project I am working on is

localized, this will only mean more work for

me.

20 I am anxious about computers because

I don’t know what to do if something

goes wrong.

I am anxious about software localization in my

projects because it might interfere with my

efforts or ideas.

21 Computer technologies can be used to

assist me in organizing my work.

Software localization helps avoid

misunderstandings and offenses for

international users of the software I am

working on.

The instrument measuring attitude towards software localisation consisted of 19 items,

Q.6 to Q.24, which were adapted from an instrument to measure Attitude towards

Computer Technology (ACT) that had originally been developed to measure attitudes

towards computer technologies of students and education professionals, but had later

been adapted for general use (Kinzie et al., 1994). Its 19 items contain both positive and

negative phrasings and measured the constructs usefulness and comfort/anxiety with

regards to computer technologies. Usage of this questionnaire as a template for our own

quantitative research seemed appropriate because of the approach to understand

attitude towards computer technology as being made up of the subscales of usefulness as

reported by the participant and comfort/anxiety. Both are subjective perceptions and

seem appropriate measures of the instrumental nature of software localisation. It was

also considered to be suitable since software localisation is considered a particular facet

of the broader term computer technology.

Computer technology in the sense in which it was used by the authors of the original

questionnaire refers to a concrete use towards an end, e.g. to communicate with others

(item 1 in the original ACT), or to learn new skills (item 17 in the original ACT). In that way,

it was deemed very similar to software localisation, just with different ends. However, in

the original ACT, computer technology is treated as a tool that can be applied directly by

the participants. In contrast to that, the adapted questionnaire looks at software

localisation as a concept that is part of the participant’s work, and at its most concrete

might be a process the participant is integrated in. Hence it was not possible to simply

96

replace each occurrence of computer technology with software localisation in all items.

Instead, four different kinds of changes were made as described in Table 3-3. Some were

superficial, others affected the semantics of items. The latter changes are described in

detail in Table 3-4 and Table 3-5. The original ACT item ordering was retained in the ATL.

3.3.2.4 Self-Efficacy in Localisation (SEL) and Self-Efficacy in Usability (SEU)

Ten items measured the two constructs Self-Efficacy for Localisation (SEL) (Q.25 to Q.29)

and Self-Efficacy for Usability (SEU) (Q.30 to Q.34). In general terms, self-efficacy is a

person’s perception or confidence in how far it can exert influence in what happens

around said person, or towards a specific subject or task (Agarwal and Karahanna, 2000;

Bandura, 1977). The measurement of SEU was created as a control measurement to

control that a specific score for SEL is not part of a general self-efficacy trend. Usability

was considered to be a good subject for this because, similar to software localisation, it is

a concept without immediate application. In comparison, user-centred design is a well-

defined method, and usability testing is a specific process. Both are related to the concept

of usability and are procedural manifestations of the concept, without explaining the

concept in full. Two additional hypotheses were created: H5a states that localisers score

lower on SEL than developers, and H5b states that SEL is correlated with SEU.

New items measuring self-efficacy for software localisation and self-efficacy for usability

were created based on the self-efficacy for computer technologies test by Kinzie et al.

(1994). For each construct, five common work steps associated with software localisation

and usability were identified and the confidence of developers to do these was queried.

For software localisation, these were applying localisation functionalities of UI

frameworks (Q.25), gathering context information for translators (Q.26), identifying

software elements to be internationalised (Q.27), handling translated or localised content

(Q.28), and using Unicode (Q.29). For usability, these were creating a clear UI (Q.30),

conducting usability tests (Q.31), formulating error messages (Q.32), analysing usability

test results (Q.33), and implementing changes suggested by UI experts (Q.34).

3.3.2.5 Cultural Intelligence (CQ)

An existing validated instrument was chosen to obtain Cultural Competence in Q.35 to

Q.54. What was needed was a measurement of cultural competence relevance to

97

software localisation, i.e. what aspects in software need to be adapted for various locales.

The principal appropriateness of cultural assessment in the context of software

engineering to improve product localisation was noted by Linna and Jaakkola (2010).

A wide range of cultural assessment tools for selection and development purposes are

available41, and a number of tools were reviewed for use in this research. Matsumoto et

al. (2001) developed the Intercultural Adjustment Potential Scale (ICAPS), a tool

predicting cultural adjustment, but this was specifically aimed at Japanese sojourners to

predict their working success in foreign locales and thus not applicable. Albir and Alves

(2009) and Malmkjaer (2008) discuss the concept of Translation Competence, but the

competence to translate or localise something goes beyond what is expected of

developers – that’s why the roles of localisers and developers exist in the first place. For a

time, it was considered to use the test of Thomas et al. (2012) to measure cultural

intelligence as a construct consisting of knowledge, skills and metacognition, i.e. a self-

reflective aspect. Ultimately, the Cultural Intelligence Scale (CQS) by Ang et al. (2007) was

adopted because it fits with the research purpose, is easy to apply, and is readily

available. Further, the inclusion of motivational aspects were considered to be an

advantage, and not a distraction, as suggested by Thomas et al. (2012). Ang et al.’s

interpretation of the concept of cultural competence seems close to the understanding

relevant for software localisation, particularly because it is further broken down into four

sub-constructs and is designed to handle “an individual’s ability to grasp and reason

correctly in situations characterized by cultural diversity” (Ang and Van Dyne, 2008, p.4).

With the CQS, Ang et al. (2007) aimed to create an instrument to measure a construct

they called Cultural Intelligence (CQ), described as the “capability to function effectively

in culturally diverse settings […] arising from differences in race, ethnicity and nationality”

(Ang et al., 2007, p.335). CQ is supposed to predict cultural judgment and decision making

as a cognitive process, cultural adaptation in terms of sociocultural adaptation and well-

being, and task performance as the conduct of prescribed activities. Although the test is

aimed to predict functioning within cultural context foreign to the subject, Ang et al.

understand this as a cognitive process, requiring conscious understanding, perception and

processing of cultural differences. Hence, it was considered that Ang et al.’s definition of

41 A comprehensive list is given in Linna and Jaakkola (2010).

98

CQ would also be relevant in the context of cultural competence for internationalisation

and localisation.

Ang et al. measure CQ through four sub-constructs: Metacognitive CQ refers to mental

processes to acquire and understand cultural knowledge, describing the ability to

understand one’s own cultural preferences and the cultural preferences of others.

Cognitive CQ refers to knowledge of other cultures’ preferences such as conventions and

customs. Motivational CQ means intrinsic interest in learning about other cultures.

Behavioural CQ is the ability to exhibit appropriate cross-cultural behaviour, respectively

control one’s own behaviour accordingly.

Ang et al. developed the CQS to be unaffected by the cultural background of individuals

taking the test, and to be reliable, valid, and stable over time. For this research, the

instrument was adopted without changes so that validity and reliability are retained. It is

expected that behavioural CQ and motivational CQ are not as relevant to software

localisation, whereas cognitive CQ and metacognitive CQ, i.e. the actual knowledge of

other cultures and the ability to think about other, unknown cultures in an abstract way,

for example in order to anticipate reactions, are obviously relevant for successful

internationalisation and localisation.

In order to test the sub-constructs metacognitive CQ, cognitive CQ, motivational CQ and

behavioural CQ as well, hypotheses were added to applicable tests on CQ, e.g. H1

“Developers score lower on CQ than localisers” was followed by H1a “Developers score

lower on metacognitive CQ than localisers”, H1b “Developers score lower on cognitive CQ

than localisers”, and so on. It was further decided to test the correlation of cultural

competence, attitude towards localisation and self-efficacy in localisation, creating

additional hypotheses (H16 to H18).

3.3.2.6 Project Properties

Project properties were surveyed in order to answer RQ4. The respective hypotheses test

whether there is a correlation between given project properties and localisation effort.

The project properties are software type, user type, whether users and customers are

identical, number of target locales, development methodology, and project

commerciality.

99

The options for software type (Q.55), user type (Q.56) and development models (Q.60)

were generated from my own understanding of what would be clear and unambiguous

options covering the subject area as wide as possible, but influenced by respective

discussions in Ryan et al. (2009). Options for customer-user identity (Q.57) and project

commerciality (Q.58) were straightforward confirmations or rejections, where customer-

user identity also allowed a mixed option.

Rather than asking for target locales, the survey question asked for target languages

(Q.59) to avoid confusing participants unfamiliar with the term locale. It was assumed

that in this context, number of locales and number of languages would be identical

anyway. Participants were asked to choose from a range of options rather than input an

integer into a text field because not all participants were assumed to actually know the

exact number of target languages. In order to minimise guessing errors, the answer

options were designed broadly and the number of options was limited to four. The upper

distinction limit originated from a general impression based on the literature that few

software projects localise into more than 30 languages. The rationale behind the

thresholds, 5 and 15 languages respectively, was the assumption that participants are

more likely to know the number of target languages when this number is small, i.e. the

fewer target languages there are, the more likely participants are to take note of or

remember.

As applicable, options to specify unknown or other values were added. For example, as

answer options for number of languages covered everything from 1 to infinity, no other

option was applicable, and software type had no unknown option as participants should

have a general idea what they are working on.

3.3.2.7 Localisation Effort (LE)

The construct LE was operationalised based on efforts, i.e. activities, processes or tools,

identified in the literature to lower localisation cost, increase localisation time, and

shorten localisation duration. Origins and support for each item (Q.61 – Q.68) are

identified in Table 3-6. The items were further selected to have a reasonable chance to be

known by participants from both the developer and localiser group.

100

Table 3-6 Origins of LE items

Q. # Localisation Effort (LE) item Source

61 Clear localisation requirements Law (2003)

61 Best practice guidelines Giammarresi (2011)

61 Glossary Giammarresi (2011)

61 Translation storage and re-use Freigang and Reinke (2005), Bowker (2005)

61 Dedicated localisation engineers Giammarresi (2011)

61 Possibility for all developers to

compile localised versions

author’s experience

61 Simshipping Ryan et al. (2009), Hartley (2009), Kahler (2000)

62 Emphasis of localisation quality Law (2003)

63 Localisation scope Cyr and Trevor-Smith (2004), Ryan et al. (2009)

64 Translation source Morado Vázquez and Mooney (2010)

65 Localiser communication Law (2003), Collins (2001), Russo and Boor (1993)

66 Localisation file format Law (2003), Sachse (2005), author’s experience

67 Context information DePalma (2006), Honkela et al. (1997)

68 Quality assurance efforts author’s experience

Q.61 queried a number of nominal scale items, with each selected item contributing to

overall LE. Q.62 to Q.68 offered options that were considered on an ordinal Guttman

scale (Guttman, 1974) so that the more laborious an option is, the higher a score it

contributes to overall LE. For example, Q.64 asked where the translations for the project

originated, with MT assumed to indicate low LE and hence counting least, and full-time

employees assumed to indicate high localisation effort and hence counting most. Each

individual LE item was tested separately (see H10a to H10f and H11a to H11f).

3.3.3 Survey Presentation and Pilot

The survey was implemented as website using the questionnaire software LimeSurvey42.

It was structured in seven web pages:

1. Introduction, informed consent and instructions

2. Part 1: Biographical data

3. Part 2: ATL, SEL, SEU

4. Part 3: CQ

5. Part 4: Project properties

42 Details of tools are listed in Appendix F.

101

6. Part 5: Additional biographical data, opinions on localisation

7. Opportunity for feedback and registering for results

The questionnaire was piloted with ten individuals considered to be typical study

participants, i.e. software engineers, project managers and translators. The pilot study

was conducted in order to check for ambiguity in wording, unexpectedly high response of

the default option, and any other potential problems. In addition, pilot participants were

asked to time how long it took them to complete the questionnaire so that a good

estimate for potential participants could be provided.

The pilot participants did not report any significant issues with the questionnaire so that

the only changes were corrections of typos and odd wording. The average completion

time was ca. 15 minutes.

3.3.4 Survey Analysis

The constructs and scales used for the analysis are listed in Table 3-7. Statistical analysis

was conducted using the Statistical Package for the Social Sciences (SPSS)43. SPSS is a

statistical analysis software allowing researchers to calculate descriptive, analytical and

predictive statistics. SPSS handles data in the form of tables, with rows representing cases

and columns representing variables. Common statistical measures have been

implemented and can be applied to the data. SPSS further features extensive data

management features for variable naming and scaling, outlier handling and data filtering,

and offers a number of options to output descriptive and analytical results as tables,

charts or graphs.

There are no interventions and the survey is not a longitudinal study. The statistical

analysis therefore has three different objectives:

The first objective is to test whether averages, nominal variables and ordinal variables

between two groups, e.g. developers and localisers, differ. To test differences of

averages, an independent-samples t-test or a Pearson correlation test is used. To test

differences of ordinal and nominal variables, the Phi coefficient correlation test is used.

To test differences of groups of variables, the Chi-square test is used. The second

43 Details of tools are listed in Appendix F.

102

objective is to test whether averages between multiple groups, e.g. software users, differ.

To test this, an analysis of variance test (ANOVA) is used. The third objective is to test

whether two variables are correlated. To test correlation of two ordinal variables, the

Spearman rank correlation test is used. For all tests, the SPSS standard implementation is

used. All used tests fall under Fukuda and Ohashi (1997) standard tests.

Table 3-7 Scales of constructs

Construct Scale

Cultural Competence ordinal

Attitude Towards Localisation ordinal

Self-Efficacy in Localisation ordinal

Self-Efficacy in Usability ordinal

Nationality nominal

Role in Software Development nominal

User Type nominal

Software Type nominal

Customer-User Identity nominal

Project Commerciality nominal

Number of Target Languages ordinal

Development Methodology nominal

Localisation Effort ordinal

The survey unit and the analysis unit for parts 1, 2, 3 and 5 of the questionnaire was the

participant. For part 4 of the questionnaire, the analysis unit was most recent project the

participant had worked on. Participants were categorised into two groups: software

engineers, UI designers, project managers working on engineering projects, and other

participants with a focus on work in and around software engineering or in software

companies were categorised as developers. Translators, technical writers, or other

personnel working on localisation or in translation companies were categorised as

localisers.

3.4 Population and Sample

Considering what kind of sampling method is used is an important aspect for quantitative

research because it has a strong influence on generalisability. A sample is either a

probability sample, where each element of the population under examination has a

known probability to be selected, or a nonprobability sample, where at least some

103

elements of the population have an unknown or no probability to be selected. The

advantage of a probability sample is that the sampling error is known, which ultimately

allows for inductive inferences about the entire population. Nonprobability samples, on

the other hand, must be considered non-random samples without information about the

sampling error. Hence the representativeness of the sample for the entire population is

limited or dependent on assumptions made during sampling.

Target participants for the study were professionals with experience in contributing to

international software. Respondents were expected to have actively contributed to such a

software project, for example in the role of software engineer, translator, UI designer or

project manager, in line with localisation contributors described in the literature (e.g.

Hartley, 2009). By leaving the target group relatively unrestricted, it was hoped that as

many points of view as possible could be examined. For example, it is conceivable that a

project manager has different views on the importance of a localisation project than a

software engineer, or a UI designer might have more knowledge about cultural

differences than a system analyst. However, only professionals were recruited, i.e. people

who in principle contribute to software for a living. For example, a marketing staff

member is not assumed to directly contribute to the development of a software product.

Requests for participation were published on different media related to software

development and localisation:

 13 mailing lists

 Internal communications (e.g. newsletters) of six topical organisations

 17 Facebook groups

 16 newsgroups and internet forums

 16 twitter targets (accounts and hash tags)

 Two print magazines (one non-topical)

Additionally, study participation was further promoted in person at three industry fairs,

four research conferences, and five workshops. More than 200 individuals were mailed

individually, mostly as follow-up to responses from the listed recruitment activities.

The applied sampling method has to be considered convenience sampling. Convenience

sampling, also referred to as accidental sampling or opportunity sampling, usually refers

104

to a sample chosen for relatively easy access. However, it is a non-probabilistic sample.

Therefore, the sample might contain unknown biases and care must be taken before

generalisation. For example, it is conceivable that developers with a positive attitude

towards localisation or with an increased cultural competence were more likely to

participate in the survey than those with a negative attitude towards localisation. In that

case, the test for correlation between localisation role and attitude towards localisation

or cultural competence might have been foiled by the bias.

Despite the disadvantages of convenience sampling over other sampling methods,

especially with regards to generalisability of survey results, it was nonetheless considered

useful. Convenience sampling is suitable for qualitative data, in particular when

comments are sought on rich and meaningful topical statements. With the previously

discussed restraints on data gathering, it provided a realistic and adequate sampling

method.

No attempt was made at avoiding multiple sampling because I could not conceive of a

way to do so reliably and without in some way involving the identity of the participant.

Early on it was considered to introduce some kind of unique identifier constructed by

participants themselves from their date of birth, name and company name. This would

have added the possibility of noticing when two survey participations referred to the

same company. However, eventually neither accidental nor intentional contamination of

survey data through repeated participation seemed probable or plausible. Subsequently

ensuring participants’ anonymity was preferred to involving their identity and to risk

affecting answers or discouraging participation.

Obviously these considerations apply only to the survey. In the interviews, multiple

sampling would have been apparent. Further, the sampling considerations in this section

applied to the interviews only during the initial phase of the GT research process, i.e.

during open coding and axial coding. In the later phase, theoretical sampling was applied,

which means that some participants were actively sought out.

3.5 Ethics

The research was conducted based on the ethics codes of the UWL Faculty of Professional

Studies (UWL, 2008), the code of ethics of the Association for Computer Machinery (ACM)

105

(Anderson et al., 1992), and the ethics code of the British Sociological Association (BSA)

(BSA, 2002).

All participants were formally briefed about research purpose and methods, their right to

anonymity and the possibility to discontinue participation at any time. Participants were

informed of any data gathered. In particular, interview recordings were only made with

the participant’s expressed consent44. Participants were treated fairly, honestly and with

respect. If desired by the participants, they receive a report on the research findings.

Care was taken to handle specifically cultural aspects sensitively and to avoid open,

hidden or unintended racism, offenses and cultural discrimination against. Any data

gathered during this research was treated confidentially. This includes data gathered

through case studies or other research methods in and from companies, including those

acquired from its employees.

3.6 Summary

In this chapter, two research approaches for the research objectives were developed: a

GT approach fed from interviews will empirically examine the practice of software

localisation in order to understand how developers and localisers collaborate and

influence each other, and how localisation issues are caused in this collaboration. An

online survey is conducted to determine differences between developers and localisers,

the role of cultural competence, and connections between product properties and

localisation. The next chapter will introduce the results.

44 The consent sheet is shown in Appendix B.

106

Chapter 4 Qualitative Results

To examine how localisation is conducted in practice, what shapes this practice, and how

issues are caused during this practice, interviews with developers and localisers were

conducted and analysed using GT. This chapter discusses the results of this analysis. First,

the interview population is reviewed. Then, it is described how the GT process played out

during this research, including an overview of the evolution and emergence of the core

and the resulting theory. Finally, the chapter presents a grounded theory of

interdisciplinary collaboration in software localisation which describes collaboration

strategies and conflicts as a reaction to external constraints, which in turn influence each

other. Following recommendations by Wisker (2008), excerpts of the interview data on

which this theory is founded are presented and discussed in the light of both existing

literature and theories, and ramifications for this research. In following with GT practice,

(Strauss and Corbin, 1998; Hoda et al., 2011), this includes theories of a wider scope such

as software development, collaboration, sociology and organisational psychology which

were not previously discussed in the literature review.

4.1 The Research Process

Section 3.2 described GT and the rationale to choose it as research method for this

research, i.e. to understand software localisation as a socio-technical situation for which

no suitable theory or framework is known yet. In this section, the participants and the

process of interviewing is elaborated upon. Further, the progress of coding and

emergence of the core is illustrated and deviations from the formal GT process are

identified.

4.1.1 Participants and Interviewing

28 interviews averaging 58 minutes were conducted in total, with the shortest interview

being 31 minutes, and the longest 2 hours 17 minutes. Table 4-1 gives an overview.

Interviewee nationalities were well mixed. 6 Interviewees were female and 22 were male.

The interviews focused on work activities both conducted and observed by interviewees,

the scope of localisation within their projects, their knowledge and educational

background, and most prominently their experiences and encountered issues.

107

Table 4-1 Interviewees

N
o

te
s

 n
o

 r
e

co
rd

in
g

 vi
a

p
h

o
n

e

vi
a

p
h

o
n

e

 vi
a

p
h

o
n

e

n
o

 r
e

co
rd

in
g

vi
a

p
h

o
n

e

n
o

 r
e

co
rd

in
g

vi
a

p
h

o
n

e

vi
a

p
h

o
n

e

v.
 p

h
.,

 p
ar

t.
 r

ec
.

vi
a

p
h

o
n

e

vi
a

p
h

o
n

e

n
o

 r
e

co
rd

in
g

vi
a

p
h

o
n

e

La
n

g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

En
g.

G
er

.

G
er

.

G
er

.

En
g.

G
er

.

G
er

.

En
g.

G
er

.

G
er

.

En
g.

G
er

.

Le
n

gt
h

0
0

:5
3

0
2

:1
7

n
/a

0
0

:4
5

0
0

:3
7

0
0

:4
9

0
0

:4
7

0
0

:4
6

0
0

:4
4

0
0

:4
9

0
0

:3
8

0
0

:3
4

0
0

:3
8

0
0

:3
1

0
0

:5
2

0
0

:4
5

0
1

:0
1

n
/a

0
2

:1
7

n
/a

0
0

:4
2

0
1

:1
5

0
1

:0
0

0
1

:1
0

0
0

:4
8

n
/a

0
1

:1
0

D
at

e

9
 M

ar
ch

 2
0

1
1

1
1

 A
p

ri
l 2

0
1

1

1
7

 S
ep

te
m

b
er

 2
0

1
1

1
4

 M
ay

 2
0

1
2

1
5

 M
ay

 2
0

1
2

2
7

 A
p

ri
l 2

0
1

2

2
2

 M
ay

 2
0

1
2

2
1

 M
ay

 2
0

1
2

1
 J

u
n

e
 2

0
1

2

7
 J

u
n

e
 2

0
1

2

1
2

 J
u

n
e

 2
0

1
2

1
6

 M
ay

 2
0

1
1

6
 J

u
ly

 2
0

1
1

1
2

 D
ec

em
b

er
 2

0
1

1

9
 J

an
u

ar
y

2
0

1
2

1
0

 M
ay

 2
0

1
2

1
4

 N
o

ve
m

b
er

 2
0

1
1

2
2

 N
o

ve
m

b
er

 2
0

1
2

1
 M

ar
ch

 2
0

1
2

2
0

 F
eb

ru
ar

y
2

0
1

4

1
6

 N
o

ve
m

b
er

 2
0

1
1

1
7

 N
o

ve
m

b
er

 2
0

1
1

2
 A

p
ri

l 2
0

1
2

1
4

 O
ct

o
b

er
 2

0
1

2

1
1

 O
ct

o
b

er
 2

0
1

2

3
 D

ec
em

b
er

 2
0

1
3

3
0

 M
ar

ch
 2

0
1

2

R
o

le

D
ev

el
o

p
m

en
t

te
am

 le
ad

er
, c

o
m

m
u

n
ic

at
io

n

co
m

p
an

y
So

ft
w

ar
e

en
gi

n
ee

r,
 s

o
ft

w
ar

e
co

m
p

an
y

So
ft

w
ar

e
en

gi
n

ee
r,

 w
e

b
 s

er
vi

ce
 p

ro
vi

d
er

So
ft

w
ar

e
en

gi
n

ee
r,

 b
u

si
n

es
s

so
ft

w
ar

e
co

m
p

an
y

U
I d

es
ig

n
er

, b
u

si
n

es
s

so
ft

w
ar

e
co

m
p

an
y

In
te

ra
ct

io
n

 d
es

ig
n

er
, b

u
si

n
es

s
so

ft
w

ar
e

co
m

p
an

y

U
X

 d
es

ig
n

er
, s

o
ft

w
ar

e
co

m
p

an
y

U
X

 c
o

n
su

lt
an

t,
 s

o
ft

w
ar

e
co

m
p

an
y

So
ft

w
ar

e
en

gi
n

ee
r,

 s
o

ft
w

ar
e

co
m

p
an

y

U
sa

b
ili

ty
 a

rc
h

it
e

ct
, s

o
ft

w
ar

e
co

m
p

an
y

So
ft

w
ar

e
en

gi
n

ee
r,

 b
u

si
n

e
ss

 s
o

ft
w

ar
e

co
m

p
an

y

P
ro

je
ct

 m
an

ag
er

, b
u

si
n

es
s

so
ft

w
ar

e
co

m
p

an
y

P
ro

je
ct

 m
an

ag
er

, f
in

an
ci

al
 in

st
it

u
ti

o
n

P
ro

je
ct

 m
an

ag
er

, s
o

ft
w

ar
e

co
m

p
an

y

P
ro

je
ct

 m
an

ag
er

, s
o

ft
w

ar
e

co
m

p
an

y

P
ro

je
ct

 m
an

ag
er

, b
u

si
n

es
s

so
ft

w
ar

e
co

m
p

an
y

So
ft

w
ar

e
en

gi
n

ee
r,

 s
o

ft
w

ar
e

co
m

p
an

y

Lo
ca

lis
at

io
n

 e
n

gi
n

ee
r,

 s
o

ft
w

ar
e

co
m

p
an

y

Fr
ee

la
n

ce
 t

ra
n

sl
at

o
r

Fr
ee

la
n

ce
 t

ra
n

sl
at

o
r

P
ro

je
ct

 m
an

ag
er

, L
SP

Lo
ca

lis
at

io
n

 p
ro

je
ct

 m
an

ag
er

, s
o

ft
w

ar
e

co
m

p
an

y

Fr
ee

la
n

ce
 lo

ca
lis

at
io

n
 c

o
n

su
lt

an
t

B
u

si
n

es
s

m
an

ag
er

, L
SP

Fr
ee

la
n

ce
 lo

ca
lis

at
io

n
 c

o
n

su
lt

an
t

P
ro

je
ct

 m
an

ag
er

, L
SP

Lo
ca

lis
at

io
n

 p
ro

je
ct

 m
an

ag
er

, s
o

ft
w

ar
e

co
m

p
an

y

C
la

ss
if

ic
at

io
n

D
ev

el
o

p
er

 1

D
ev

el
o

p
er

 2

D
ev

el
o

p
er

 3

D
ev

el
o

p
er

 4

D
ev

el
o

p
er

 5

D
ev

el
o

p
er

 6

D
ev

el
o

p
er

 7

D
ev

el
o

p
er

 8

D
ev

el
o

p
er

 9

D
ev

el
o

p
er

 1
0

D
ev

el
o

p
er

 1
1

D
ev

el
o

p
m

en
t

M
an

ag
er

 1

D
ev

el
o

p
m

en
t

M
an

ag
er

 2

D
ev

el
o

p
m

en
t

M
an

ag
er

 3

D
ev

el
o

p
m

en
t

M
an

ag
er

 4

D
ev

el
o

p
m

en
t

M
an

ag
er

 5

D
ev

el
o

p
m

en
t

M
an

ag
er

 6

D
ev

el
o

p
m

en
t

M
an

ag
er

 7

Lo
ca

lis
er

 1

Lo
ca

lis
er

 2

Lo
ca

lis
at

io
n

 M
an

ag
er

 1

Lo
ca

lis
at

io
n

 M
an

ag
er

 2

Lo
ca

lis
at

io
n

 M
an

ag
er

 3

Lo
ca

lis
at

io
n

 M
an

ag
er

 4

Lo
ca

lis
at

io
n

 M
an

ag
er

 5

Lo
ca

lis
at

io
n

 M
an

ag
er

 6

Lo
ca

lis
at

io
n

 M
an

ag
er

 7

Id

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
M

1

D
M

2

D
M

3

D
M

4

D
M

5

D
M

6

D
M

7

L1

L2

LM
1

LM
2

LM
3

LM
4

LM
5

LM
6

LM
7

108

In order to contrast accounts from different disciplines and roles, interviewees were

grouped as developers and localisers. Within each group, it was further distinguished

between management and non-management roles. The eventual possible permutations

were developers, development managers, localisers, and localisation managers.

Developers are mostly conducting hands-on software engineering activities, e.g. writing

program code, designing software architecture, creating user interface layouts, etc.

Localisers are primarily translating content, or creating content in foreign locales.

Development managers and localisation managers differ insofar as they have to conduct

management, i.e. forecasting, planning, organising, commanding, coordinating and

controlling (e.g. Bocij et al., 2008), of activities of other developers and localisers.

The groups were assigned after the interviews, based on the job description given by the

interviewees and a description of their tasks, but for consistency without their direct

input or confirmation.

In all cases, the management role seems to have been inclusive, i.e. managers also

engage in development and translation in addition to their management activities. It

appears that no members of the development group had any professional or educational

linguistic background. On the other hand, some members of the localisation group had a

professional programming background.

Unless otherwise noted, the interviews were conducted face to face and recorded with a

dedicated recording device45. Phone interviews were conducted with voice-over-IP (VoIP)

software and recorded with a recording plug-in. With two exceptions, all interviewees

agreed to be recorded. In one instance, the dedicated recording device failed from the

start. In one instance, the recording plug-in failed halfway through the interview.

Sampling was limited by the volunteers who answered the call for participation, but

covered the subject of software localisation sufficiently to assume saturation once the

interviews ceded to provide new insights.

Noticeably, the majority of interviewees in the localisation group chose to be interviewed

at work and via phone, whereas many interviewees in the development group chose their

45 Details of all tools used are listed in Appendix F.

109

spare time to meet in person. I suspect this is because the latter were often recruited at

face-to-face events, which already indicates geographical proximity. The former, on the

other hand, were recruited via the internet or other indirect means.

It would have been interesting to interview more members of the localisation group face-

to-face to see if the opportunity to e.g. sketch on a piece of paper would have made a

difference. Further, it would have been interesting to speak to more translators, but

although the effort was made to recruit more, either I did not find the right channels, or

translators are more reluctant to participate in such research.

4.1.2 Core Emergence and Implementation of the GT Process

Most interviews were conducted during 20 months from early 2011 until late 2012, with

two interviews for clarification of individual points late in 2013 and early in 2014.

Interviews were conducted following the GT process described in subsection 3.2.2.1.

Although incoming survey data was reviewed irregularly to estimate data collection

process and survey acceptance, it is not considered an additional data source since no

statistical analysis took place until mid-2013, when most interviews had been completed.

It can be argued that I might have had too much experience with and knowledge of

software localisation to actually apply GT as intended and could not possibly have come

to the research process without preconceptions. During data collection and

interpretation, I reflected regularly on the influence my experience might have. Hence,

my professional experience should be categorised as theoretical sensitivity as discussed in

subsection 3.2.2.1, rather than existing theory as discussed in subsection 3.2.2.3.

Sampling and coding followed the GT research process described in subsection 3.2.2. An

interview excerpt with a sample of high-level codes derived from open coding is given in

Appendix C. In the excerpt, a participant in the role of project manager describes how he

obtains translations for his software product from the customer, and describes the

rationale behind the process and how it might be applied, e.g. if translations for new

features were necessary. Among others, the sample of high-level codes in the excerpt

code training as the source of knowledge about localisation processes and infrastructure,

and further code the explication of a localisation process, specifically localisation by

customers. Also, the deferral of responsibility to the customer is coded. All these codes

110

apply to only short sections of text, i.e. between one or more words and a few lines.

Another code not explicit in the excerpt relates to the entire excerpt: the replacement of

localisation quality with customer involvement. As these codes were derived from open

coding, they are more or less exclusive to this interview. Yet another code not explicit

relates to the entire interview: the reported localisation scope. This last one is a code

shared with virtually all other interviews, as localisation scope is an almost universal

metric in this context.

In GT, a theory is derived by developing and evolving the codes across interviews. For a

better understanding, a hierarchy or generalisation of codes can be developed, as

happened here with the coding of localisation process and localisation through the client,

which is a specification of the localisation process. Further, new codes can be

retroactively applied to old interviews. In this instance, the code for responsibility deferral

prompted a review of older occurrences where responsibility had been deferred by a

developer to the customer or other entities. This eventually developed into the task focus

strategy featured in the final model. Likewise, the code for reported localisation scope

originated from earlier interviews. It allowed to code for variability by comparing across

different interviews, here by comparing the localisation scope reported in the excerpt in

Appendix C to that of other interviews, for example the excerpt in Appendix D. This

prompted the insight that a wider localisation scope, i.e. a more general

internationalisation, requires more coding work during localisation.

Figure 4-1 shows the hierarchical node structure that developed during initial open

coding, in which of course all the previously mentioned codes or their generalisations can

be found, e.g. localisation scope, localisation process, and responsibility assignment.

Following a number of interviews, the core, i.e. the central concern in the interviews,

appeared to be emerging as issues, more specifically an aggregate of bugs, delays and

procedural problems. While the initial node structure had organised localisation issues

according to type, the interviewees seemed to be more concerned about the apparent

causes. A comparison of issue causes led to the categories internal transgressions,

external constraints, institutional bottlenecks and developer-localiser gap. Figure 4-2

visualises these descriptive categories. Further interviews and selective coding and, as far

111

as possible, theoretical sampling did not contribute any new insights to the descriptive

categories, suggesting that saturation had set in.

Figure 4-1 Initial coding node structure

Figure 4-2 Descriptive categories of software localisation issues

Strauss and Corbin (1998) defined a number of criteria for grounded theories. A theory is

empirically grounded if it includes systematically related, well developed concepts leading

to conceptually dense categories with many dimensional properties. The theory should

allow for explained variation and lead to findings potentially significant outside of the

original context.

Inter-role relationship

Developer-localiser
collaboration

Assigning responsibility

Pushing technical
solution

Localisation-informed
development decision

Developer project
ownership

Technical knowledge of
localisers

Cultural knowledge of
developers

Localisation issues

Effort issues

Quality issues

Process issues

Time Issues

Localisation state

Localisation
implementation

Localisation process

Localisation scope

Localisation testing

Localisation
requirements

Localisation tools

Lacking dev. tool support

Lacking loc. tool support

External
con-

strains

Active transgressions

Passive transgressions

Internal
trans-

gressions

Trans-discipl. semantics

Communication failure

Loc.-dev.
gap

Manual work

Localisation by proxy

Linguistic proc. neglect

Instit.
bottle-
necks

112

Based on these criteria, the descriptive categories of software localisation issues were not

satisfactory in three regards. First, the core, i.e. the aggregate of issues, confounds a

number of different topics into a vague and undefined central theme. Second, the

relationships between the concepts and categories were considered thin and the entire

result primarily descriptive. And third, the concepts and categories are very specific to

software localisation and thus less significant in other contexts.

This realisation prompted a revisit of the data. Re-reading the interview transcripts, it

became apparent that the core of many accounts were not actually localisation issues.

Instead, the interviewees’ main concern was how they facilitated and perceived their

interdisciplinary collaboration regarding software localisation. Because this insight came

from the existing data, it was decided to sort and categorise it again without conducting

more interviews.

The importance of external influences and strategies was already part of three of the four

descriptive categories. In order to avoid another descriptive categorisation, existing codes

were examined for variability and properties. Further categorisation based on similarities

were avoided, and instead sequential activities or implied causalities were considered.

Directness of contact was identified as dimension. Eventually, the reordered and new

categories led to a grounded theory of interdisciplinary collaboration in software

localisation described in the next section.

4.2 A Theory of Interdisciplinary Collaboration in Software Localisation

In this research, it was found that for the interviewees of this research, their work in

software localisation centres around the facilitation of interdisciplinary collaboration, that

is, the main concern identified in our research is the interviewees’ focus on conducting

their work while directly or indirectly collaborating with members of another discipline.

The work is critically directed by external influences on software localisation, i.e. those

conditions, limitations and parts of the environment which the interviewees cannot

affect. These influences also affect the choice of strategies to facilitate interdisciplinary

collaboration employed by interviewees. Finally, interviewees experienced conflicts of

interdisciplinary collaboration, which have their origins in part in the chosen strategies

and the external influences.

113

Fi
g

u
re

 4
-3

 E
m

er
ge

n
ce

 o
f

in
te

rd
is

ci
p

lin
a

ry
 c

o
lla

b
o

ra
ti

o
n

d
u

ri
n

g
 s

o
ft

w
a

re
 lo

ca
lis

a
ti

on

114

During the research, the grounded theory emerged bottom-up, that is, from interview

data which was processed, reduced and organised. The theory is presented here top-

down as a chain of evidence. Figure 4-3 gives an overview of the grounded theory of

interdisciplinary collaboration, with circles signifying categories, boxes signifying high-

level concepts, lines indicating relationships, and arrows indicating influences. Following,

each of the categories, external influences, conflicts and strategies is described in detail,

including concepts and narratives from which they emerged.

4.2.1 External Influences

The work of software developers and localisers is influenced by factors outside of their

control. These are referred to here as external influences, which does not necessarily

mean that they are external to the organisation or business unit developers and localisers

work in. Figure 4-4 gives an overview of the specific concepts in this category.

Figure 4-4 Emergence of the category External Influences

The importance of external influences lies in their impact on strategies and potential to

create conflicts. For example, cost can control processes in interdisciplinary collaboration:

LM7: Between the first version and following [versions], new texts are
developed and written all the time. For these, new translations would be
needed continuously. So, you need to point out to the software
development department, “You cannot just send two or three texts to
the translation agency. You might be able to do it once, and because
they try to please you, they translate it, in 17, 18, 19 languages. But you
cannot do it continuously.” […] A translation agency has overhead

General Success Criteria

•Efficiency

•Quality

Discipline-Specific Success Criteria

•Time and Cost

•Context-Sensitivity and Consistency

•Localisation Scope

Discipline-Specific Tool Usage

•Tool-Originating Restrictions

•Usage of Inappropriate Tools

•Lack of Tools

Discipline-Specific Processes

•Terminology Management

•Changing Requirements

115

handling work as well, so you have minimax prices [n.b.: minimum
charges]. And when I tell the [development department], “Sure, I can
have two texts translated, but that’s 400 €”, they ask, “Well, why?”
That’s always a problem, you need to collect new texts and wait until
there are 20, 30, 40 texts, until it is effective to send it to translation. Of
course you have to communicate that internally, and of course there are
difficulties with that.

Author: Was that a problem, to communicate that? Or was the problem
solved eventually? […]

LM7: This happened regularly, yes, of course. So, specifically things like,
“Ok, now, we need to put in this new function, we need five texts for it.”
And that was no problem. But [the translation agencies] eventually sat
us down and said, “Sure, we can translate that for you, that’s 400 €.”
And the [development] project leader had to decide: Is it worth it, or is it
not? So that was a clear judgment call. In the beginning it is difficult, but
after you do it a few times, it catches on with the project leader. So they
need to judge it based on their budget and say, “Ok, that’s worth it, we
want this functionality in as fast as possible, it must be in tomorrow,
please have these five texts translated for that price”, or they said,
“Never mind, it is not that urgent, next week more [texts] will be added,
and then we will do it.” […] Afterwards, the awareness was there that
this is simply a process with costs that takes time.

Another example how the influences described here impact strategies is illustrated by the

relationship between context inquiries and remuneration for translators.

Some accounts suggest that lack of tools or inappropriate tools can lead to conflicts and

eventually affect strategies by forcing manual work or transgressions. Likewise, discipline-

specific processes have been shown to lead to activity conflicts.

The impact of external influences, such as standards, practices, and even the eventual

user, on translation is well known. It is not restricted to translation as a product, but

extends to translators’ activities. The initiator as well as processes preceding translation

play a vital role here (Moorkens, 2012a), and this fits well to the category of external

influences. Schubert (2009, p.17) has discussed the “controlling influence” from outside

on the work of technical translators, and lists many of the influencing factors found in this

research, included document management processes, job specifications, initiators and

consumers, source quality, standards, and even best practices of collaborating disciplines.

Combe (2011) implies influence categorises processes, and tools including programing

languages and authoring tools.

116

In software development, conditions set outside of the development organisation

similarly determine activities of developers and outcome of development (Quintas, 1993;

Grinter, 1996a, pp.115, 188). Ferreira (2011, p.200) noted that collaboration or

separation of developers and designers in the context of HCI “depend on the values

endorsed by the organisations in which the developers and designers are embedded.”

Maybe the increased dependency between interdisciplinary collaboration and the

environment, respectively the conditions, is that the latter do not only affect a discipline’s

work in itself, but also mediate the influence of the collaborating discipline. Within the

sociology of work and work psychology, the influence of the environment and external

conditions is of course acknowledged. Work, conditions of work, activities and results

continuously affect each other. Thus, changes in any single item, e.g. in the conditions,

immediately affect activities and work results, and particularly the subjective experience

of any conditions, changes etc. by the worker. Insofar, attempts to control work by setting

conditions are conditional to the workers’ subjective experience of them (Baron, 1995;

Hacker, 1986). This seems to be true particularly for interdisciplinary work.

Analysis of the interviews led to four categories of external influences: General and

discipline-specific success criteria, tools and processes. These are illustrated and

discussed next.

4.2.1.1 General Success Criteria

The interpretation of general success criteria by each discipline shapes their

professionals’ activities. Success criteria for a software product are an important factor in

shaping the work of both software developers and localisers. They are general insofar as

they can be observed in both disciplines, but each though each discipline might interpret

and prioritise it differently, or try to achieve it in different ways. In any way, general

success criteria drive activities within a discipline and thus affect both localisation process

and outcome.

4.2.1.1.1 Efficiency

Efficiency refers to achieving the most possible benefit at the least possible cost or effort.

The pressure to minimise cost is felt throughout all aspects of software development.

117

Cost minimisation influences recruitment choices, processes and activities. And cost in

particular can apparently serve as powerful corrective.

For an LSP, on the other hand, efficiency includes planning translation processes for

multiple projects and keep the pipelines for translators and revisers full:

The most important of all is planning the translation/revision process in
a way that there is no way to miss a deadline, both translator and
reviser have enough time to do their best but also not to engage them
too long so as they will be ready for new assignments as soon as they
are finished. (LM6)

LM6 goes on to emphasize that it is vital for translation agencies to build a good

relationship with its freelancers, that is, to always provide them with enough work so that

they will be constantly available. This drive for efficiency is also noted among translators,

who are very conscious of the relationship between the time they spent on a particular

piece of translation and their hourly rate.

4.2.1.1.2 Quality

In localisation projects, there are different perceptions of quality, and accordingly, quality

as criterion guides software localisation in different ways.

Among software developers, quality is predominantly understood as a part of usability. As

DM3 puts it: “You screw localisation, you screw usability. As simple as that.” DM5 had

also equated localisation with usability and accordingly felt that it was appropriate to

apply usability principles, e.g. consistency across locales. Similarly, DM5 named

Hofstede’s cultural model for guidance on locale differences. Clearly, localisation and

usability are related. However, there might be a danger that this view limits the

understanding of localisation, which should be a bit more comprehensive, e.g.

considering the question of acceptability. It might be that developers prefer considering

localisation quality in terms of usability due to a lack of metric for acceptability. LM5

noted the vagueness of localisation requirement definitions:

They say, [localisation] has to be adequate, and that’s it. But there is
nothing about what criteria exactly to apply. (LM5)

There seems to be little in the way of concrete quality criteria. As LM5 added later, unlike

localisation quality, time and particularly cost requirements are well defined. Further, in

118

his experience, if localisation is considered a technical software aspect without specific

requirements, it just will not be made properly. DM3 made a similar observation:

Developers couldn't care less about financial regime or financial
processes that goes in a given country. […] [Localisers] have to be able to
translate it into functional requirements that are understood by the
developers. (DM3)

Localisers’ idea of localisation quality is different, aiming more for linguistic quality and

cultural appropriateness. For example, LM 4 states:

[I]f I localise a product, the ideal case is that you do not notice that it has
been localised. That’s the ideal case, right? […] It does not come across
as translated. (LM4)

LM1 elaborated that some of his customers obtain localisations not out of direct concern

for their international customers, but instead aim to satisfy legal requirements of

providing translated content for each locale. He experienced the customer’s attitude

towards linguistic quality accordingly:

It can be said that certain companies place more emphasis on having
high quality translations made. And other companies […] say, “Well, […]
will not be read anyway”; there is that opinion, and [they] put less
emphasis on it. That is very, very variable. (LM1)

A similar lack of customer engagement with quality aspects of localisation were noticed

by L1. As LM1 further puts it, not all customers obtain localisations for their products out

of concern for their customers. Instead, they need to oblige legal requirements of

providing translated content for each locale.

Notably, software quality criteria are debatable. For example, Glass (2002) lists reliability,

human engineering, efficiency, testability, portability, understandability and modifiability

as ultimate software quality criteria. Localisation quality could contribute only minimally,

and maybe developers do not assign much attention to it for that reason.

The effect different quality criteria can have on localisation quality might be best

illustrated by the worry several localisers and localisation managers had regarding the

linguistic quality of the source texts they were translating. It was noted that the link

between quality of source and translation is not apparent to their developer colleagues. A

119

translation cannot be better than the source, and if the source is unclear, translation will

not be able to fix this for the target language.

4.2.1.2 Discipline-Specific Success Criteria

Interdisciplinary collaboration is also shaped by each discipline’s specific success criteria,

here cost, time, context-sensitivity, consistency, and localisation scope, which they bring

into the overall product and process. There is a chance that other disciplines need to

share these success criteria, or are involved in them in some other way. Sharing, or at

least clear definition and communication of success criteria, is important as it is essential

to a clear understanding of the expectations in one’s work. However, Green (1994) points

out that it is counterproductive for collaboration to impose one discipline’s success

criteria on another discipline.

4.2.1.2.1 Time and Cost

The efficiency pressure in software development has already been brought up earlier. In

fact, software developers emphasise cost minimisation as a major success criterion.

Accordingly, L2 experienced software projects where developers deliberately chose the

cheapest translation source because otherwise they “would make less of a profit.”

However, localisation seems to be even more affected by time constraints: For example,

despite his company having in-country specialists for each target culture they develop

software products for, D1 related how actually consulting these specialists to determine

localisation requirements would take too much time for the development process:

Author: You do not contact the [translators] for that, either?

D1: Well, no. No. We might have questions for [the translators], but in
principle, I've, I've never had that happening. […] It takes forever. It
takes way too long.

 Author: Are they so slow?

D1: Well, there's twenty of them.

D1 admits that there is a case to communicate with translators, in this instance to ask

questions about localisation requirements. But it is not done because contacting all the

translators separately takes too much time for a developer.

120

D3 related an experience where a complex subtitling function had to be built into a

multimedia web portal because there was not enough time to translate and dub the

video files directly.

LM1 related his experience of the general expectation the customers of translation

agencies seem to have. In addition to translation, LM1’s LSP offers proofreading services.

[The customers rarely book proofreading services] not because of the
costs, but rather […] because they do not have time for that, or they
need the translations so soon, that […] there is no time for that. That’s
more often the difficulty for us, because we often have to do things
under time pressure. (LM1)

Similar prioritisations of cost and time over quality were observed by developers, e.g.

D10. The priority of speed and low cost in software development is widely known and its

impact on quality discussed in the literature of both localisation (Papaioannou, 2005;

Kahler, 2000) and software development (Boehm, 2006).

4.2.1.2.2 Context-Sensitivity and Consistency

In translation, a part of quality is determined by context and consistency. Context

information, i.e. information clarifying otherwise ambiguous terms and statements, might

be the single most important factor for translation quality. Its importance was discussed

already in the literature review. Practically all interviews in the localiser group stressed

the importance of context information for translation and at the same time had

experienced difficulty in obtaining said information from the developers or customers.

Some localisers trace the lack of context information to a lack of awareness of its

importance by developers. This is supported by the observation that few developers

brought it up. In a rare instance, DM6 pointed out the destruction of context information

by alphabetically sorted strings in Excel files. On the other hand, there is a certain

implication that a business-motivated reluctance for localisers exists not to educate

developers about context information.

Similarly, the importance of consistency seems to be mostly exclusive to the localiser side.

LM7 elaborates:

Not only must this term be consistent throughout the company, it also
has to work with the customer. I must be certain that when the

121

company talks about a ‘fax switch’, then everybody within the company
must know that a ‘fax switch’ is the thing that separates a telephone call
from a telefax. But I need to communicate this to the customer as well.
And I have to call it ‘fax switch’ consistently. I cannot use the term ‘fax
separation’ in one instance, and whatnot in another. (LM7)

Lack of context has been one of the most prominent issues in software localisation for

quality (Aryana and Liem, 2011; Reineke, 2005; Forssell, 2001). Although there have been

numerous technical attempts to address this lack through technology context storage in

translation file formats (Bikmatov et al., 2013), lack of context is still an issue. In part, this

might be explained by the progress, or lack of progress, in adapting respective localisation

tools. Alternatively, a lack of knowledge may be involved.

4.2.1.2.3 Localisation Scope

L1 related that in his experience, localisation scope in software projects was always

constrained to language translation and related items, specifically adapting formats and

units of measurement. The account suggests that in the minds of most customers,

localisation is practically superimposable to translation. If pointed out, customers will

understand that the scope is actually larger and expands text translation to include text-

related aspects such as formats and units. However, in practice as experienced by L1,

localisation scope never includes completely language-unrelated items such as colours or

symbols.

This is supported by LM1 and LM4, who also never encountered instances where symbols,

colours or anything decidedly beyond language had to be localised. Both expressed the

belief that localisation of, for example, colours and symbols are part of comprehensive

localisation, but they never encountered the need in practice. LM4 further believed that

compared to his domestic customers, international customers might be more interested

in comprehensive localisation beyond text. However, he explicitly pointed out that this is

an assumption on his part.

On the other hand, a tendency was observed among developers to classify the

localisation scope as translation only, including necessary adaptations to layout, e.g. to

account for text expansion during translation, or additional voice recording for e-Learning

or implementation of subtitle functionality for multimedia applications. D1 faced issues of

making a software project time-zone aware, specifically having to address the fact that

122

some countries spread over more than one time zone. One could argue that time zones

are not obviously cultural and instead can be understood as a technical property.

4.2.1.3 Tools

Interdisciplinary collaboration is shaped by the use, or non-use, of each discipline’s special

tools which they bring into the localisation process. Adoption of specialised tools and

standards was not a topic in the interviews and were only touched upon in the context of

problem causes, e.g. use of Excel or insufficiencies of existing tools. In software

development, tools have been recognised as source of improvement as well as

constraints (Grinter, 1995) and an influence with consequences for interdisciplinary

conflicts and strategies, previously discussed in the context of increased efficiency and

lowered effort (Schubert, 2009; DePalma, 2006; Law, 2003), although for some tools, a

reduction in localisation quality has been suggested (Bowker, 2005).

4.2.1.3.1 Tool-Originating Restrictions

A number of tools and utilities are used in software development with the aim of making

software engineering simpler, faster, more efficient, and more effective, and so on.

Similarly, localisation tools with the same aim exist. However, both classes of tools come

with requirements and ramifications and can have an impact on the work and activities of

both developers and localisers. DM6 noted instances of this in various development tools,

for example Microsoft’s programming framework .Net, a collection of APIs to facilitate

software development:

That happens comparatively often for us, yes? The dependency, we have
a prime candidate here, that is .Net, because, because when using .Net
we require an incredible amount of information from the code. That
means this classical concept, separation of resources from code and
caring only about the resources [n.b.: internationalisation], is reduced to
absurdity. (DM6)

Similarly, DM6 criticised some aspects of Java programming language API, i.e. that

java.text.ChoiceFormat package allows developers to increase the complexity of

placeholders by turning strings into state machines, i.e. interpreted code where the

behaviour is determined by a number of states it can be in, as defined by the

programmer:

123

A part of it is […] realised as state machine, the rest is free text. And all
the way down at the bottom [of its documentation] it says do not use
because […] translators cannot handle it. (DM6)

On the other hand, LM6 criticised the opposite development in the Windows

Presentation Foundation (WPF) from Microsoft, where developers are tempted to over-

separate content into code, layout, and localisable content: an Extensible Application

Markup Language (XAML) layout file for designers containing references to a XAML string

table for localisers, all held together by a code written by developers. Such over-

separation leads to even less context available for translation and repeated referencing of

one and the same string in many occurrences for which more than one translation might

be necessary.

Similarly, the usage of localisation tools can affect the work of developers. For example,

many translation systems now offer an integrated visual translation environment,

implementing a what-you-see-is-what-you-get philosophy where the translator can see a

string within the UI while it is being translated. Often, for it to work, this technology

comes with specific requirements in the way the application is programmed, i.e. following

a generic standard. If a project strays from these requirements, for example by using an

unsupported third-party UI framework, the visual technology can fail.

A similar issue was noticed by LM4, who related an occurrence where developers

apparently expected localisers to adopt technical work and build a version control for

resource IDs in addition to providing translations. Resource IDs are internal identifiers

used within programs for reference and distinction of different strings. LM4 was

particularly baffled because controlling resource IDs seemed to be exactly the opposite of

separation from code and content, which is one of the basic principles of localisation and

translation work:

They asked us to […] access [resource] IDs and to know what ID referred
to what content. From release to release. Whereas actually we can only
[…] work based on text, meaning that we intentionally mask all IDs, all
code, meaning that translators have only text. […] Those end up in our
database, a translation memory. So, of course we have all old resources
saved and archived. (LM4)

124

While arguably translators working with resource IDs might be wrong to begin with,

LM4’s work process was prescribed by the string database tool, which would not allow

certain operations, i.e. storing of string IDs.

The requirements accompanying some tools are often underestimated. LM6 noted that

some of his customers, i.e. software development teams, set up their own translation

memory system, but fail to maintain it. They also do not place it at the disposal of their

translators, who subsequently cannot fall back on it when providing translations.

A number of accounts discussed the rectification of manual work processes, either

through straightforward automation, or through a change in processes or systems that

made manual steps obsolete. Interestingly, the resolutions usually address concerns of

developers, e.g. inefficiencies they would have to deal with. For example, D3 describes

how automation was introduced in order to avoid having to touch program code for

changes to localisation. Usually what happens is that developers implement what is called

a content pipeline, i.e. a series of automated work steps that brings received content in

proper format to its correct location. Few accounts relate the rectification of unnecessary

manual workload for localisers, including efficiency and quality issues. Many localisation

processes and tools tend to evolve over time to address developer concerns because they

are the ones to modify them according to their understanding and their agenda.

As was shown in the literature review, there is an almost a fanatical obsession with

improving localisation and translation through the use of technology. While the successes

of tools, and specifically of CAT tools, are many, there are critical views. Stoeller (2011)

acknowledges that use of technology in localisation, specifically technology simplifying

collaboration in translation, has enabled smaller LSPs to compete with their larger

brethren. On the other hand, Stoeller also warns that technology is seen as a replacement

for proper communication and other human-related issues.

4.2.1.3.2 Usage of Inappropriate Tool

Some interviewees reported usage of tools that might be considered inappropriate or

insufficient for the task at hand. This was often in the context of obtaining culture-specific

information. For example, D3 reported his usage of Google’s MT service Google Translate

125

for fixing translations, and D5 reported basing locale-dependent UI design decisions on

information found in an online encyclopaedia.

A recurring theme was the use of generic tools and file formats to handle translations and

Unicode texts, particularly spreadsheet software to handle translations (e.g. LM7, DM6,

D9). And apparently many software companies are unaware that such file formats are

unsuitable for localisation (LM4). In short, spreadsheets are difficult to maintain and their

use encourages inefficient and error prone manual labour such as copy-and-paste. They

also discourage provision of localisation context and even lead to its removal when

sorted; as DM6 puts it, “to really remove any context relation”. Spreadsheets further

complicate string management, too:

And for us it can happen by all means, those 10 Text-IDs that are
completely different for developers because they appear in different
places in the code, in a completely different hierarchy, for example
“Auflösung”, “resolution”. […] [T]he Excel-sheets from predecessor
projects were continued, taken over, meaning that there was just one
Excel-sheet, that was stupendously huge, and the developers did not go
to the trouble of looking, somehow, “I need a new Text ID now, that has
text behind it, does the text maybe somehow exist already and I can
simply copy the line and link in a new Text ID”, instead if in doubt they
just created their new text ID and wrote in “Auflösung” [German for
“resolution”] for the one-hundred-and-tenth time. Right, because text ID
centric work […] is easier for him, rather than somehow looking if the
text already exists. With the result that obviously the Excel sheet was
sent to us for the tenth time with the request to have “Auflösung”
translated into all languages. […] This is to say that we really had to do
it, that we simply sent these Excel-sheets to the translator and said, yes,
so we simply have to translate it for the tenth time. And when I translate
a text for the tenth time, there is a great danger that it is translated
diversely, or differently. (LM7)

LM7 elaborates on the difficulty encountered when using Excel files and continues:

What you have to keep in mind, no matter what solution you are using,
regardless whether a database or Excel or whatever [is the] appreciation
[…] source text [vs.] translated text, […] if I change a source text, of
course inevitably I will have to change the translated text. For the
developer, it does not change. The ID stays the same, but the text behind
it is suddenly no longer “resolution”, but is called, whatever, “contrast”.
And the developer changes it in German, and at best in English, because
he sees, “resolution“ is not “contrast“, but in the remaining languages
have already been translated as “resolution” and remain unchanged.
The tester for German-English will not see it. And if he tests Portuguese

126

or Finnish, he will not see it either, [to know whether it should be] called
“contrast” or “resolution” in Finnish, you have to be a specialist. [One
must keep track of source] text changes, so that one marks it to have
changed. (LM7)

Basically, LM7 describes that the choice of spreadsheets as exchange format comes with a

consequence: either a strict procedure to update source text changes and translations

accordingly, or a stringent localisation testing regime. LM7 goes on:

Sometimes, developers […] have taken the derived Excel sheet, derived a
text file from it, then made text changes in those text files, sent the text
file to us, asking us to reintegrate the changes into the Excel file and
translate them. It is an Excel sheet of 15 MB. The developer has it, then
he changes something, he copies that somewhere, and now you have to
run from one developer to another to find out who had it last, where the
latest current version is, well. That’s unsatisfactory for everybody. (LM7)

4.2.1.3.3 Lack of Tools

While many different tools exist to facilitate software localisation and the development of

international software, these are often not used. The need for tool support, e.g. when

handling XML files or Unicode, is not always immediately obvious and has sometimes

been noticed only when a project was well underway, as reported by DM4 and D10.

Lack of tools is often compensated through manual work for comparatively mundane

activities such as copy-and-pasting text from one file to another. Several developers, e.g.

D6 and D9, reported manual copying and pasting of translated strings into an image file in

a graphics editor because the UI had been designed to display image files, not text. In

some cases, this is done so that scripts other than Latin characters can be displayed

without having to adapt code towards Unicode-compliance.

It does not require a lot of imagination to understand how the overhead effort through

copy-and-paste can be immense when, as in the case of D6, one has to create and

maintain hundreds of image files for each of the 14 different locales. Extended copy-and-

paste activities like this are also prone to errors if concentration fails and a string is not

highlighted correctly before copying, or pasted into the wrong file.

Further, as expressed by LM5, many “atrocious translations” are caused by the use of

deprecated and unsuitable tools in the localisation process while failing to utilise state-of-

the-art localisation tools specifically tailored for this purpose.

127

4.2.1.4 Processes

Interdisciplinary collaboration is shaped by each discipline’s activities and processes,

which are brought into the localisation process. Localisation is strongly affected by

preceding production activities (Sikes, 2011). An example how the influence of one

discipline’s process might be perceived by the other discipline is given by LM4:

I believe the customer sometimes complicates his own life unnecessarily.
Maybe due to ignorance, and even if you educate them, their internal
processes are so sluggish and cumbersome that [it is difficult] to push
through new things when know-how is not internal and not utilised
externally. (LM4)

4.2.1.4.1 Terminology Management

Terminology management is a significant aspect of translation, especially when

translating technical documents in a corporate environment. LM7 dives into its intricacies

while relating plans for creating a text and translation database:

[…] Structuring and separating information into modules had just
become second nature for us. And it was a style of work which
absolutely resonated with me personally. I think this is how one should
work in a technical editorship, because it is just not about unconstrained
poetic prose, but it is about structured information, which on top of it
has to be well phrased and to the point. […] It was also obvious to us
that the topic of [UI interface texts] was closely related to terminology
management. If you think about it, it is nothing more than breaking an
operation down to a single term. Not only must this term be consistent
throughout the company, it also has to work with the customer. I must
be certain that when the company talks about a fax switch, then
everybody within the company must know that a fax switch is the thing
that separates a call from a telefax. But I also must communicate this to
the customer. And I have to call it fax switch consistently. I cannot use
the term fax separation in one instance, and whatnot in another. (LM7)

According to LM1, translations for technical terms or otherwise extraordinary or special

vocabulary should be decided by close collaboration with the customer, but few

customers are engaging in this.

4.2.1.4.2 Accommodating Changing Requirements

The need for software development projects to adapt to changing requirements is

noticed during localisation. Both D3 and D11 noted detrimental effects and the challenges

of repeated changes to application requirements and localisation scope, especially when

128

localisation requirements come into a project when the overall software architecture

already is in place. The account of LM3 seems to suggest that this is a consequence of a

trial-by-error approach to software development:

So, you know, it is basically, a lot of companies are like that. They will
not really listen until they have an incident where it really affects them.
And then they understand what the issues are. (LM3)

Similarly, L1 suggested that the trial-and-error approach permeated in software

development: software testing is an integral part of software development, which is

reflected in the development process. Developers follow a trial-and-error paradigm as

“optimistic technologists” (Green, 1994, p.328) that cannot work for localisation as

linguistic testing in most projects does not take place.

4.2.2 Conflicts

When working on international software, all interviewees sooner or later experience a

number of conflicts. These are rarely personal conflicts. Rather, these are conflicts

created by actors in different organisations following different guidelines and using

different tools in order to achieve different goals, although they might share an overall

end. Figure 4-5 gives an overview of the specifics concepts in this category.

Figure 4-5 Emergence of the category Conflicts

Such social conflicts have been characterised by Thomas (1992) as a dynamic

development that can either be constructive, e.g. by initiating changes and clarifying

relationships, or destructive, by escalation and standstill. Unfortunately, existing empirical

studies suggest that overall, conflicts go down the destructive path (De Dreu and

Weingart, 2003).

Cross-Discipline Conflicts

•Knowledge Conflicts

•Tool Conflicts

Human-Factor Conflicts

•Communication Conflicts

•Activity Conflicts

•Confrontation

129

4.2.2.1 Cross-Discipline Conflicts

Both localisers and developers encounter a number of social conflicts in their work

through their knowledge and tool use when these are influenced by their discipline.

Although social conflicts often include some kind of direct interaction, they often appear

to be hidden and participants seem to be unaware of either the conflict itself, or its

source, or its ramifications. LM4 reflected about it in the following way with respect to an

unsuccessful localisation project:

I believe [the project] failed due to certain individuals, who maybe
sometimes were beyond their abilities, or who asked for things we could
not deliver, where you often talked past each other, and eventually
everyone involved was dissatisfied. (LM4)

4.2.2.1.1 Knowledge Conflicts

Some conflicts appear to have their roots in the often unspoken assumption that one’s

own knowledge is shared by all collaborators. But in some cases, it is the outright and

known lack of knowledge awareness cannot remedy that causes problems. For example, a

few developers assume that translators can understand certain aspects of source text

formats, e.g. that they can interpret XML files or recognise and leave alone C-style

placeholders. However, these technical skills should not be assumed.

From the point of view of localisers, the most apparent knowledge gap is that developers

do not know what precisely localisers, translators and technical writers are doing in the

first place, and what happens during the localisation process:

The problem is that developers often do not even know what I am doing,
or what information I need. I sometimes suspect that I know more of the
technical process than they do, and that is bad, because I have no
technical background. (LM2)

DM3 attempts to describe the knowledge difference from a more neutral point of view:

The persons who do the translation, they do not sit well on both sides of
the barricade. They either... they may be fantastic writers, they may be
linguists, extraordinary linguists, but then they do not understand
usually the nature of the application or the system they try to localise.
(DM3)

130

This lack of knowledge regarding localisation as activity and process is probably most

prominent in the ignorance about consequences a lack of context has on translation

quality, which is also discussed as a discipline-specific quality criterion. LM2 illustrates this

relationship between lack of context information and lack of localisation process

knowledge when relating what the biggest problem during localisation is:

No doubt number one: No context. It has improved with those
[developers] I spoke directly to, who were up here and saw how I
translate and how it works. Because in meetings, it is often said that I,
“he up there in software localisation”, am just not good at it. And those
[developers] who learn how I work then say, “he can’t, because he does
not see it [in context].” (LM2)

Similar observations, i.e. developers lacking knowledge and awareness about linguistic

processes and requirements, were made regarding a wide range of localisation issues,

such as a lack of awareness regarding the link between source text quality and translation

quality, the need to manage terminology, or how localisation prices are calculated.

By the end of the literature review, among others, two problems had been identified: a

lack of cultural knowledge by developers, and missing integration of localisation into the

software development process. Participants of the localisation process have expressed a

preference for cultural knowledge for developers in this research as well as other

empirical research (Immonen and Sajaniemi, 2003a, 2003b). In fact, some participants on

the developer side did mention efforts to acquaint themselves with cultural knowledge or

integrate cultural sensitivity into their work products, particularly if the frontend or UI

was part of their responsibility. Repeatedly, the previously discussed model by Hofstede

was mentioned in this context. On the other hand, some interview accounts showed that

existing cultural knowledge was apparently not necessarily recalled when necessary. For

example, DM7 had witnessed a native English-speaking product manager who, without

consulting translators or DM7 himself, planned to substitute names in UI strings

automatically without human review despite conflicts with English grammar46.

Although the interviews gave examples where lack of cultural knowledge of developers

caused localisation issues, it appears now that understanding the activity of translation

46 Specifically, the planned substitution was going to introduce errors where the indefinite article “a” would
have had to be changed to “an” because the new name started with a vowel.

131

plays a larger role. This has been implied before. For example, the dependence between

translation quality and the source quality is underappreciated (Bauer and Rodrigo, 2004;

Russo and Boor, 1993), and Combe (2011) suggests that a lack of understanding of

localisation as a process is responsible for collaboration problems between localisation

and development.

4.2.2.1.2 Tool Conflicts

During the work on their tasks, localisers and developers use various tools, which are

already considered as an influence on the localisation process. At times, tool usage can

also be conflicting.

DM6 noted how API frameworks at times conflict with internationalisation, i.e. the idea of

strictly separating code and content, or other linguistic requirements such as provision of

context information or consistency.

There seems to be an overall push towards using localisation tools that allow the

localisation of compiled binary files directly, thus avoiding the file exchange problem

completely. However, tools for localising binary files directly come with other risks. LM2,

using one such tool, noticed a discrepancy between the representation of UIs in his

localisation tool compared to the developer’s product or the final software.

Even if it looks good in my tool, when the developers have it on their
screen, it might be that it does not look right anymore, and then they
come to me and I have to change pixels. (LM2)

Basically, he has to guess what his adaptations will look like in the final product.

Originally, the idea had been for the translator to see and translate text in the context of

the UI (see e.g. Freigang, 2000; Esselink, 2006). However, what is now the problem is that

the localiser could not reliably edit the context of the string, i.e. the position of the UI

elements. The expectation to have localisers edit the UI indicates that the role shift for

localisers from mere language processor to editor, as described by Yuste (2005), is already

in progress.

On the other side, interviewees experienced difficulties with combining localisation tools

and processes with software development tools. DM7 related his considerations whether

string translations should be stored in a source code repository: On one hand, it is

132

desirable to store all sources and resources centrally so that any changes can be tracked

and any version be rebuilt. On the other hand, DM7 noted that storing translations in a

code repository is incompatible with storing and maintaining them in a translation

memory.

In the literature, it has been noted how localisation and internationalisation APIs have

simplified software localisation (e.g. Immonen and Sajaniemi, 2003a; Kalliomäki et al.,

1997). It is noteworthy that many issues reported in somewhat older publications, e.g.

around string length limits, code page and character encoding (e.g. Law, 2003; Carey,

1998), were not mentioned during the interviews, suggesting that certain standard

developments, e.g. the ongoing improvement and proliferation of localisation APIs and

Unicode, has indeed improved localisation. However, considering the localisation scope in

the literature and the influences of tools, and here specifically APIs, one wonders if

today’s localisation scopes and localisation requirements are determined by the API. On

one hand, when referring to the localisation requirement survey suggested by Kalliomäki

et al. (1997), there can be fewer illustrating examples how much APIs have simplified

localisation in the last 20 years as many aspects of the survey, e.g. regarding encoding,

internal data representation, and locale-independent operating system functions, have

become moot. On the other hand, no participants reported elaborate localisation

requirement elicitation processes as described in the literature, e.g. a translatability and

market suitability analysis described by O’Sullivan (2001a), and one wonders about the

impact following localisation APIs blindly can have for product quality.

4.2.2.2 Human-Factor Conflicts

Whereas cross-discipline conflicts were directly related to the collaboration of two

disciplines, some conflicts appeared to be more related to general human aspects of

collaboration, even though these appeared to be shaped indirectly by the different

disciplines and their relationship between or within organisations.

4.2.2.2.1 Communication Conflicts

Communication between translators and developers is not always smooth. Some

localisers feel that developers do not like to communicate much to begin with.

Communication further appears to be prone to error, especially when it is indirect. L1

133

explicitly contrasts communication through an LSP with direct customer communication:

In the first case, localisation issues forwarded through translation agencies have a “fifty-

fifty chance” (L1) of the LSP bringing it up to the customer. If they do not, there is a curt

reply to translate what’s written and not bother about the rest. Anyhow, L1 describes

communication through intermediaries as “incredibly long and complicated” (L1) and

leading to loss of information along the way.

The failure of communication via LSP is also noticed by developers. The following

misunderstanding was reported by D2 when writing software for the control of 15-

segment LED displays. D2 was acutely aware of the limitations of such displays, in

particular when it came to translations:

D2: With 15 segments you can get letters as well. You cannot get any
accents, […] there's nowhere there for a sort of an accent on a letter.
There's just no possibility at all, […] there's no chance. And the problem
there, one, in the Spanish, was a bit when we got a bit about the date.
Because the Spanish translator sent things back with tilde on, and so on.
And I had to say, no, you know, it is not that we do not want to do that,
it is we can’t. […] And, for example, year is “año”. [Writes año.] That's
how you spell “year” in Spanish. So I was saying, no, not with that you
can’t. On that. [Strikes out the diacritic so that it now says ano.]

Author: And did the translators agree that this is still acceptable?

D2: Well, no. I was going through the agent, and the agent said, [he has]
to check with the translator. And the translator came back and said,
that's totally unacceptable because that spells differently and has a
different meaning.

Author: Does it?

D2: Well it means... [Points into his rear.]

Author: Does it.

D2: Yeah. [laughs] This is why it was totally unusable. […] There was a
communication problem first. Because. You know, I did clearly say, you
know, we cannot do accents. […] And then I get a response that is with
accents! There was a fault in communication there. […] But all that...
obviously I had not got that message all the way down to the person
that needed to hear it. […] I thought I explained it properly to the agent.
But, between me explaining it to the agent and the agent explaining it
to the translator, you know, something got lost. And having two stages,
I never spoke to the translator.

134

Vis-à-vis, LM2 reported:

LM2: We once had Russian, that was completely Unicode, no context
information whatsoever. On top of that with length limit. And as length
limit, the colleague told me, it could be line-wrapped47. And that’s what I
communicated on. And [the translators] really did it one below the
other, the same way I understood it. But what the colleagues had had in
mind was “blablabla-hard hyphen” in one line, and after the hard
hyphen some more text. A complete misunderstanding.

Author: Just that I understand this right: In the mind of the translators, it
was a hyphenated break?

LM2: Exactly. But it was in one line. Now, if somebody says “line-
wrapped” to me, I’d interpret that as one below the other. With a line
break. But I was not told. So I did not communicate it on correctly. And
then the problem duplicated into all languages.

Communication does not always have to break down. At times, it is simply a matter of

what needs to be communicated. LM7 describes this while relating an instance where he

needs to talk to developers about a specific piece of text in software:

LM7: [T]he developer knows his [resource] IDs. [You ask] him: ”Listen,
the ID yadda yadda, XYZ, what did you mean by that?” And then he
would know […] that is in the code at that location, and then he knew
[the answer]. For them, communication via IDs is important. You have to
mention them. […] And then he usually already knows. Or he quickly
looks in the code and finds it.

Author: So, […] that implies […], if you had asked the developer [about] a
button called ‘Select’, then he would not know what you are talking
about? […]

LM7: That happened, yes. [re-enacts conversation]
“You have a text in the web interface, that is called […] ‘search LAN
network’, or something like that?”
“Yes, where is that?”
“That’s in the third mask in the lower left.”
“Well, no idea.”
“It has the resource ID so-and-so.”
“Oh, right, wait, I’ll check quickly.”

D3 notes a similar experience, but from the developer side: text changes are

communicated by giving the original and the changes to developers, but the developers

47 LM2 uses the word “zweizeilig”, i.e. “two-lined” (Scholze-Stubenrecht et al., 2005, p. 850). Here, the
translation “line-wrapped” was deemed more appropriate due to the focus on the hyphen.

135

have to identify the text’s location within the application or source themselves, usually by

searching through an Excel file.

LM5 summarises the communication issues as follows:

It is a fundamental principle that the two disciplines cannot
communicate with each other if they do not acquire a common register.
[…] But it is common that the disciplines do not understand each other,
meaning that translators do not understand anything from the
developer and the other way round, and the project manager does not
understand why the developer reacts in a certain way, and the other
way round, and so on. So there is only one way to resolve this, by
developing a common register. (LM5)

These excerpts illustrate how fraught with misunderstandings and communication

obstacles the communication between developers and localisers can be, and further how

these lead to localisation issues such as incorrect translations and delays.

The so-called standard view of communication understands the communication process

as exchange of a message encoded by the sender and decoded by the receiver. This

primarily technical model explains communication difficulties due to lack of precision of

the message and message degradation during transmission (Thompson, 2003). Such

degradation could occur for example though indirect communication via intermediate

managers as described by some interviewees. Other than that, if the message is precise

and not degraded during transmission, the model does not account for the failure of

communication observed here.

Barnlund (1970) proposed a transactional model, which accounts for reciprocal

communication between two sender-receivers. Barnlund’s model considers that

communication includes the encoding and decoding of so-called cues, some of which are

public yet can be modified by the environment, some of which are private and depend on

each sender-receiver’s understanding of the world, their experiences, education and so

on. If the sender-receivers’ schemata for encoding and decoding are not identical, then

the decoded message does not hold exactly the originally encoded meaning and

communication is compromised. Some of the accounts on communication from the

interviews seem to exhibit this issue, and a common understanding of the cues might be

what LM5 refers to as “register”. Green (1994) examining the interdisciplinary

collaboration of psychologists and software engineers, suggested to form an interface

136

between psychologists and developers by creating a boundary vocabulary specific to this

collaboration.

In software development, communication has been identified as an important and crucial

aspect (Brooks, 1995). Perry et al. (1996) examined more formal aspects of

communication of software developers and found that they spend up to 75 minutes a day

communicating, mostly in frequent, quick, informal and improvised exchanges. The study

also found developers to be shunning email because it is perceived as a broadcast

medium, does not fit with an iterative resolution process required by software

development, and simply is slower than just walking over and talking. Informal

communication seems to be subject-specific to software development. Herbsleb et al.

(2000) found that specific software development aspects, e.g. requirements

documentation and requirements changes, are commonly communicated informally

because of the unsuitability of formal means. Similarly, Herbsleb et al. (2001) found that

in software development, distance decreases communication and increases delays.

Specifically, communication in cross-site projects takes longer compared to same-site

work, and requires more people. Additionally, in cross-site projects participants are less

likely to receive help overall and more likely to experience delays. Partly, this might also

be explained with the lack of informal communication in cross-site projects.

Such a finding implies that software developers communicate more if they can simply

walk over and talk, i.e. that communication distance and communication volume

correlate. In fact, Herbsleb et al. (2001, 2000) and Espinosa et al. (2002) showed the

positive influences of co-location on team coordination and development time. Allen

(1977) reports that with increased distance between engineers, communication

frequency decreases, up to a distance of 30 metres between offices. At increased

distances, even up to miles, communication does not significantly drop any more.

Herbsleb et al. (2001) compared same-site and cross-site projects, i.e. projects where

developers were co-located and projects where developers were spread out over several

sites. The study found that despite constant willingness to help in both kinds of projects,

developers in cross-site projects are less likely to receive help and are more likely to

experience delays getting help. The authors concluded that help over distance is relatively

ineffective. Accordingly, Herbsleb et al. (2000) presents a number of examples from

137

various disciplines showing how co-location improves collaboration, efficiency and quality

of work even when this was not the primary reason to co-locate workers.

The particular importance of communication between different roles in software

development has been emphasized by Brooks (1995). Accordingly, the localisation

literature abounds with the need of and recommendations for constant and direct

communication between developers and localisers (e.g. Giammarresi, 2011; Bauer and

Rodrigo, 2004; O’Sullivan, 1989).

4.2.2.2.2 Activity Conflicts

Sometimes, best practices of one discipline are in conflict with another: In programming,

resource items can be any number of things, often parts of the user interface such as an

image, a dialog, or a link. Each resource item has a unique ID, which is used in the

program code to refer to it. As such, the actual item behind a resource ID is not directly

accessible or visible in the code. This is good practice in software development because

the actual resource items do not have to be finished at the time the code is written. It is

also good practice with regards to localisation as items behind a resource ID can be

replaced at run time in order to display values for different locales as required.

Often, cross-discipline activity conflicts seem to be related to discipline-specific processes.

For example, LM4 noticed final content sent for translation, then being changed and sent

for translation again, incurring unnecessary cost. This might well be a consequence of

iterative development, where it is difficult to find a place for translation (Combe, 2011).

DM7 noted that because his projects’ development process did not freeze strings that

had been sent to translation, it happened regularly that belatedly changed content

remained untranslated in the published version, causing serious customer acceptance

issues in areas where Latin script or English language stands out, e.g. in South-East Asia.

Similarly L1 noted that the trial-and-error approach permeates software development:

software testing is an integral part of software development, which is reflected in the

development process.

The conflict between translation and its need for static documents, and agile

development processes and its aims to eliminate static documentation or products, has

been discusses by Combe (2011), who noted the impact of agile processes specifically

138

with regards to translation accuracy and completeness. To facilitate translation

nonetheless, large content volumes have to be processed late in the development cycle

instead, increasing schedule pressure on localisers.

However, activity processes are more general, as related by LM4, who noted an

occurrence where developers apparently expected localisers to adopt technical work and

build a version control for resource IDs in addition to providing translations. This

particularly baffled LM4 because it seemed to be exactly the opposite of separation from

code and content, which is one of the basic principles of localisation and translation work.

They asked us to […] access [resource] IDs and to know what ID referred
to what content. From release to release. Whereas actually we can only
[…] work based on text, meaning that we intentionally mask all IDs, all
code, meaning that translators have only text. […] Those end up in our
database, a translation memory. So, of course we have all old resources
saved and archived. (LM4)

The project did not end well:

I believe it failed due to certain individuals, who maybe sometimes were
beyond their abilities, or who asked for things we could not deliver,
where you often talked past each other, and eventually everyone
involved was dissatisfied. (LM4)

Similar to communication conflicts, activity conflicts quickly lead to delays, and further to

quality issues such as bad or missing translations.

In fairness, it is misleading to suggest that developers are not interested in improving

localisation quality, e.g. by answering questions or providing additional information. In

some interview accounts of localisers, developers are very forthcoming, answer

questions, provide additional information, or even proactively inquire about the cultural

compatibility of their software. In others, they are not helpful and will not even look up

existing terms before submitting new ones for translations. In yet others, they simply

seem to be clueless. DM7 told of an incident where he had pointed out to a colleague

that placeholders in strings require additional context information so that translators

know how to translate them. Instead of writing any documentation on the placeholders,

the developer in question instead split up the strings a the placeholders and

concatenated them at runtime with variables, believing that he had solved the problem,

when he had made it worse since the context of the partial strings was now also missing.

139

A major aspect seems to be whether developers and localisers work for the same

organisational entity. Unsurprisingly, developers and localisers working for the same

company seem to communicate more, possibly because they share the same business

goals.

This becomes most apparent when developers and localisers do not work for the same

business unit, i.e. when localisation is not conducted in-house, and they may have

differing business goals. A software company, after all, aims to deliver software.

Localisers might be more interested in satisfying their own customer expectations, as

opposed to the expectations of their customers’ customers. LM4 sums up the

expectations of localisers’ customers, i.e. developers, as follows:

My impression is that […] [developers] like to have it the following way:
“Here you have the stuff, work with it, and we want finished language
packs back, and in the best case we have nothing else to do with it.”
(LM4)

LM4 even tried to improve the localisation process by pointing out improvement

opportunities:

Well, when I addressed [causes of recurring localisation problems] with
some customers [i.e. developers], I got excuses or stories that they
cannot do it any other way. Naturally, in the end, we do what the
customer wants. Although I do not quite understand why they want it.
(LM4)

In the end, LM4 concentrates on his bottom line by satisfying his customer’s expectations.

Another example of localisers concentrating on their business interests might be the

proliferation, or lack thereof, of knowledge about the translation process. While

previously it was established that software developers do not know about the importance

of context information for successful translation, in an outsourcing environment, there

seems to be reduced incentive to actually educate them about this problem, as noted by

LM5:

Author: [D]o translators bring up […] that they need to know the
context?

LM5: Less. They look after lines of text and words. That’s what their rate
goes by.

140

L1 supports this by pointing out that inquiring about context and conducting research

eats into his net rate. Since freelance translators and LSPs are usually for words instead of

time, there is little reward for them to educate their customers towards a better quality.

L1 also reported finding context-related errors in existing translations where other

translators had obviously taken a guess when translating. When L1 inquired whether

those translators had ever pointed out the problem with the source text, the LSP claimed

that it had never been informed by other translators about the issues.

It appears that there can be a conflict of interest for localisers, both freelancers and LSPs,

due to their business goals, manifesting itself here as lack of information exchange.

Dunne (2011) refers to this as “temptation - or pressure, as the case may be - to allow

urgency to trump other constraints when developing and managing project schedules and

to move into the realm of post-heroic project management” (Dunne, 2011, p.149).

Although this is not a communication problem per se, applicable theories exist in the area

of communication in work organisations. According to Tubbs and Moss (2003), Dennis

(1975) describe four categories of organisational communication: Downward, upward,

horizontal and informal communication. Horizontal communication refers to

communication between departments for the purpose of task coordination, problem

solving, information sharing and conflict resolution, and should be the communication

mode between developers and localisers. Although horizontal communication itself can

be affected by rivalries between inter-organisational entities, it may be dramatically

affected if hierarchy is perceived and it changes to upward and downward

communication. If for example the localisers should perceive developers as hierarchically

higher, then their upward communication is informed by what is in their own interest.

This would explain the observed communication differences between in-house and

outsourced localisation scenarios.

4.2.2.2.3 Confrontation

During localisation, developers and localisers can experience confrontation. Grinter

(1996b) suggested that for each technical dependency, a social relationship exists that

needs to be managed. This social relationship at times can become personal. LM2 relates

that when localisation issues are discussed “in meetings, it is often said that I […] am just

not good at [localisation]”. DM7 felt that developers are even more likely to resort to

141

blaming when localisation is outsourced. Such attitudes seem to have consequences. LM7

suspected that asking for missing context information might be interpreted as being

clueless.

LM3 felt that developers appear to worry about control over software. In discussions on

cultural awareness he has to convince developers that he’s not the political correctness

“police” and not one of the “suits” (all LM3) either, but a confederate of developers with

a passion for software development. A case study reported by Tuffley (2003) resonates

here, where a technical writer had to create the requirements specifications for a

developer of a non-global software development project. The developer perceived the

technical writer as a threatening influence and was initially unwilling to collaborate.

Some publications suggest that it can be difficult to establish a working relationship to

software engineers (Cooper, 2004, p.106), who at times might be unwilling and

“recalcitrant” (Combe, 2011, p.321). Deal and Kennedy (2000) have identified four

predominant types of organisational cultures, referred to as tough-guy-macho culture in

risky and dangerous settings, work-hard-play-hard culture in financially competitive

companies, bet-your-company culture in businesses with large upfront cost and slow

return, and process culture in bureaucracies or companies with little risk and little return.

The process culture as type of organisational culture model might apply most closely with

the situation of a freelance translator. Translators are relatively remote from the results

of their work and the LSP acts like a bureaucracy. Developers, on the other hand, might

work in various different organisational cultures. Tubbs and Moss (2003) list IBM as

example for an organisational work-hard-play-hard culture, and NASA and Boeing as

examples of organisational bet-your-company cultures. Software development plays a

major role in each of those examples.

Hence, unless a localiser’s client happens to be situated in an organisational process

culture, the developer-localiser collaboration is likely to take place between

organisational cultures. On top of that, as different developers might work within various

organisational cultures, the nature of the cross-organisational-culture collaboration is

prone to change with each client. From a localiser’s point of view, not only is the client’s

organisational culture different, but chance is that the nature of the difference changes

with each client.

142

4.2.3 Strategies

It was established earlier that at the core of interviewees’ experiences and efforts is the

facilitation of interdisciplinary collaboration, either through defining clear interfaces,

processes and deliverables, or by establishing direct interaction. Accordingly, the

strategies employed and reported by interviewees could be distinguished between

integrating localisation into the software development process, and separating the two.

Figure 4-6 gives an overview of the specific concepts in this category.

Figure 4-6 Emergence of the category Strategies

In the context of configuration management, although software engineers tend to view

them as fundamentally technical, “software dependencies are […] relationships among

code, people, and organizations that have technical and social aspects” (Grinter, 1996a,

p.3). In other words, behind each technical dependency, there is a social dependency.

This also holds for localisation. Internationalisation is a way to manage technical

dependencies, but leaves the social dependencies unaffected. There is still the aspect of

collaboration, described in this theory. This view supports the notion that the actual

issues in software localisation are actually “existing gaps in the organizational structure

and competencies” (Giammarresi, 2011, p.22) or manifestations of the so-called “silo

effect” (Sikes, 2011, p.262).

4.2.3.1 Separation Strategies

Many activities and strategies employed by developers or localisers cause or imply

working separately within each discipline. Several interview accounts reveal a lack of

collaboration and communication, particularly for linguistic work such as provision of

style guides or terminology management, supporting claims in the literature, e.g.

DePalma (2006).

Separation Strategies

•Single Point of Contact

•Translation by Proxy

•Task Focus

Integration Strategies

•Transgression

•Direct Contact

•Trans-Disciplinary Knowledge

143

Arguably, separation starts with the practice of internationalisation. Hudson (1997)

derives the separation of localisation and software engineering processes from

internationalisation, what originally should have been an architectural choice to allow

separate maintenance of code and localisable content. O’Sullivan (2001b, p.5)

distinguishes between process model and architecture model of software localisation and

recommends the latter because it would presumably be more difficult to adapt work

activities and processes. So, separation strategies are motivated by a desire to keep

working as if other disciplines were not included. Software architecture becomes a stand-

in for process. This strict separation and no or minimal communication has been called

the mono-directional mode of technical localisation (Schubert, 2009) and tends to reduce

localisation to translation (He et al., 2002).

However, localisers also try to separate their concerns. LM7 at first considered to

integrate the UI designers and software developers into their workflows and give them

access to the database, but soon decided against it:

Originally, it had been considered that software developers can browse
the database whether the text they are looking for already exists. But
we quickly said goodbye to that idea and thought, “No, we rather do it
ourselves, it will not work.” [laughs] […] [They] had not gone to the
trouble of looking for existing strings within the Excel-sheet [n.b.: the
previous way of storing strings and their translations], so looking
through a database or so, they simply did not bother. (LM7)

4.2.3.1.1 Single Point of Contact

Almost always, outsourced localisation has one or two sequential single points of contact

handle all traffic between developers and localisers, including communication and

documents. LM4 describes the translation process from the point of view of an LSP:

In the function as project manager [...] I maintain the relation to specific
customers, and organise all the projects from the beginning. We get the
files from the customer, we make a quote, we select the respective
translators and we hand out the files and work to our freelancers and
also small agencies. (LM4)

This relay communication is retained for any communication:

Our point of contact, we [...] get questions from our translators, I collect
them, send them to our contact person on the customer side, and that
person traverses the company and asks the developers or so, and the

144

customers answer from the side of the developers. [...] Especially with
regards to technical questions, and that is important, and that works
quite well. Most of the time. (LM4)

LM4 anticipates one of the detrimental consequences of such a single-point-of-entry

strategy. It can easily lead to disadvantages, specifically regarding the issue of translation

context and how to obtain it. Nonetheless, LM4 sees the approach working well. This

view is supported by LM1, working at a different LSP. He feels that there is little to no

need for translators and customers to communicate:

As a rule, everything is clear, those are all translators that know their
area of expertise very well, bring technical competence, and very rarely
have any questions. (LM1)

On further inquiry, LM1 subsequently implied that translation errors related to lack of

context are generally caused by faulty source texts, particularly texts not written by

trained technical writers.

Similar setups were reported by other interviewees. L1 describes such communication

through intermediaries as “incredibly long and complicated” and leading to loss of

information along the way. D4 had worked in projects were all localisation questions

were answered by project managers, who were neither translators nor localisation

specialists. The exact workflow might differ from LSP to LSP and apparently even from

customer to customer.

L1 sees the single point of contact as strong contrast to direct customer communication:

With single points of contact, localisation issues forwarded through translation agencies

have a “fifty-fifty chance” (L1) of the LSP bringing it up to the customer. Otherwise, L1

suspects that the LSP does not even approach the customer because the translator

merely receives a curt reply to translate the source material and not bother about the

rest.

In software development, the dangers of indirect communication is known. For example,

in the related discipline of requirements engineering and eliciting respective information

from customers and users, Paetsch et al. (2003) recommend to avoid knowledge transfer

chains and talk to the responsible persons directly. Nonetheless, funnelling

145

communication between developers and localisers through a single point of contact is a

recommended approach (e.g. Sikes, 2011; Combe, 2011).

4.2.3.1.2 Translation by Proxy

The separation of disciplines and the single point of contact is further enhanced by a

strategy where a whole organisation is behind the single point of contact between

developers and localisers. This setup is intentionally and explicitly implemented as

bottleneck:

[T]hat is a bottleneck. And that's how it is supposed to be. That is, it is a
bottleneck on our side, and ideally on the customer side also a
bottleneck, let me say it like that. One person who is responsible, on the
customer side, for communication with us, and who has all the know-
how connected to translation, and virtually is in touch with the
developers on customer side, and marketing, and so on, product leader,
product manager, whatever. And, well ok, the context information [...] is
hard to get by for software. (LM4)

Accordingly, L1 characterises the role of translation agencies from his point of view as

freelance translator as an organisation that takes the software out of their customer’s

hand, extracts the strings, brings them into a translatable format, patches them back into

the code, and sends it back to the customer. In some instances, part of the workflow

might be executed by the customer. In each case, the LSP selects a translator, decides the

relevant technical aspects such as what translation memory tool and exchange format is

used in the communication between translator and LSP, and finally has the translator

translate the text.

There are variations to translation by proxy. For example, instead of translation agencies,

some interviewees (e.g. D3, D11) reported that translations were provided by the

customer organisation that had commissioned the software as well. However, there are

complaints with such a setup, as it does appear to cause delays. Comparing projects with

employed translators, D3 found that proxy translation “takes too long”.

In a proxy setup, the work patterns of developers and localisers likely differ considerably.

The former have a nine-to-five job, whereas translators work task orientation regulated

from the outside (Haralambos et al., 2004). Stoeller likens translations by proxy via

translation agencies to an assembly-line approach to localisation “where team members

146

rapidly switch from project to project to complete individual tasks” (Stoeller, 2011,

p.308), lacking the big picture, i.e. the product, and losing commitment to and

engagement with quality and client in the process.

As the interviews confirmed, localisation outsourcing is quite common. It is usually done

because localisation is neither the core concern nor the core competency of software

companies and developers (Esselink, 2006; Yuste, 2004). Outsourcing often comes with

single points of contact and translation by proxy wrapped in one package. Unfortunately,

such constellations run the danger of focussing on deliveries and neglecting processes

(Stoeller, 2011). In such a business system one wonders whether the collaboration with

the client is informed by a traditional work regime in the Weberian sense: Max Weber

distinguishes between traditional action, motivated by established custom, and rational

action, continually re-examined towards increasing efficiency (Gerth and Mills, 1991;

Haralambos et al., 2013). While there certainly is a continuous efficiency pressure within

a software company or an LSP, it appears that the work organisation with the client is

more traditional.

4.2.3.1.3 Task-Focus

As discussed earlier, internationalisation is often viewed as either separation of locale-

dependent and locale-independent software elements, or as developing a culture-neutral

software core, or finally as designing software to be configurable for various locales.

Some interview accounts suggest that developers seem to turn a blind eye on issues that

they feel are outside of the technical domain.

Most of the developers have a feeling if something goes wrong [in
localisation]. […] At least for crass blunders. I think a basic sense for it
exists. Certainly not in its intricacies […] But I believe that they notice
when something goes badly wrong. But it is also my experience that in
their mind, it is clearly not their task to work on it. (LM7)

At the least, developers simply do not want to be engaged with localisation, as also noted

by LM4. Similarly, L2 mentioned that a collaborating developer straightforwardly stated

his lack of interest in localisation quality. For him, only software quality mattered. This

manifested itself by a focus on the code part of internationalisation, e.g. how to load

different resources into the software. Apparently, the developer felt that he was

147

accountable for code, not for translation quality or required effort, for which he refused

to contribute.

In a variation, some developers prioritised adherence to development processes over

localisation quality despite known quality problems. The conflicts between development

process and localisation quality were noticed, but according to the motto ‘it cannot be

what must not be’, acknowledged correspondingly by remarking that the process had

been signed off by the client.

In all of this, it needs to be considered that developers are usually also the ones who

decide on internationalisation scope and processes. If not individually, then as a group,

they draw the line that they later consider the border of their responsibility.

Losing sight of client and user concerns in software development is not a new

phenomenon. In fact, customer inclusion is what agile methods have been designed to

combat (Winter and Rönkkö, 2010; Vinekar et al., 2006; Larman and Basili, 2003).

4.2.3.2 Integration Strategies

In software localisation, the practice of developers and localisers benefits considerably

from unencumbered communication and direct access. LM2 hinted a number of times at

the difference between association and disassociation, when developers “were up here

and saw how I translate and how it works” and who “learn how I work” as opposed to

when developers “do not even know what I am doing” (all LM2). The benefits were also

clear with regards to communication and scheduling. Several authors have pointed out

the need for direct collaboration between developers and localisers (e.g. Anastasiou and

Schäler, 2010; Law, 2003; O’Sullivan, 1989). For translators, the ability to work with

professionals of other disciplines and be integrated, ideally on-site, is clearly beneficial

(Albir and Alves, 2009; Yuste, 2004).

4.2.3.2.1 Transgressions

A common occurrence during software localisation is a transgression across disciplines,

i.e. that a member of one discipline does work that in principle belongs to the other.

Often, developers decide on the scope of internationalisation and localisation, e.g. D5

basing internationalisation decisions on entries in online encyclopaedias. Other reports

148

have developers set the localisation schedule without feedback from actual localisers

(LM2), and several participants worked on projects where developers had conducted

linguistic testing of translated strings without defined quality criteria or an understanding

of translation testing. D3 conducted translation fixes for languages he did not speak using

online translation tools. Last but not least, a practice so common that it does not raise

any eyebrows is the creation of texts by developers rather than linguists or technical

writers (LM1).

It appears that transgressions can also be indirect, if developers apply software

engineering paradigms on localisation, e.g. by equating translations with resource IDs

(L1). In some processes, though, resource IDs were generated by technical writers and

had to be implemented accordingly by developers (LM2). LM2 pointed out that he feels

he knows more of the technical localisation process than the developers.

In a way, transgressions can be considered a contradiction to internationalisation as the

concept of separating locale-dependent from locale-independent aspects of software

while equally separating development and localisation activities. It is not always clear why

transgressions occur. In the interviews, it often seems like a matter of convenience or

opportunity and not worth the hassle of contacting another discipline about.

Immonen and Sajaniemi (2003a, p.161, 2003b, p.30) have found a preference in

engineers to conduct translation tasks if they know the language. They suggested that this

is in order to save cost; this is arguably unconvincing as a developer’s time should be too

valuable for such tasks. Instead, when developers take over tasks that translators should

or could do, it might be a lack of appreciation of translator skills, or even a drive for

control.

Transgressions can, however, also have serious consequences. For example, an

incorrectly planned internationalisation can pervade the remainder of the entire project

or require expensive re-engineering. It can also obscure the goals and criteria of

successful localisation. In an account of DM5, a usability expert had been tasked with

responsibility for localisation, but conducted these according to usability principles

instead of localisation principles, for example by emphasizing consistency despite cultural

inappropriateness.

149

Transgressions of localisers were also reported, often in the shape of adapting UI layouts

to handle text expansion through translation, left-to-right languages or fond size

increases for Asian languages. Hartley (2009) predicts that engineering-related tasks

would increasingly be handled by translators, and this might be what Yuste (2005)

referred to as translators slowly taking over activities of editors. However, DM7 pointed

out that localisers editing UI interfaces, even in visual editors, is problematic because

sometimes interface layouts are complex and require knowledge of the underlying code

to edit them. UI elements may overlap and be aligned so that only one element at a time

is visible at run time. In interface editors, such aspects are not apparent. Accordingly,

Anastasiou (2009) assigns such tasks to localisation engineers.

4.2.3.2.2 Direct Contact

An apparently very important factor for the shape of the collaboration of developers and

localisers is the possibility of direct contact. Interviewees related different degrees,

ranging from tele-communication via email or phone to face-to-face meetings. Some

accounts suggest that it is particularly effective when developers can observe how

localisers work. The limitations of localisation tools or the need for translation context

then becomes obvious, as this remark by LM2 illustrates:

[The lack of context] has improved with those [developers] I spoke
directly to, who were up here and saw how I translate and how it works.
Because in meetings, it is often said that I […] am just not good at it. And
those who learn how I work then say, “He can’t, because he does not see
it [in context]” (LM2)

Accordingly, interviews who were able to directly contact developers or localisers

respectively noted this as a great boon to their work, and most interviewees working in

the same organisation with collaborators from other disciplines usually treated direct

access as an opportunity for efficient, speedy collaboration. Direct communication does

not only allow localisers and developers to ask and answer questions and avoid

miscommunication, it also simplifies feedback and thus process improvement (Sikes,

2011).

The effects of co-location, direct contact and open communication have been examined

in the context of teamwork and team performance, where a team is a group of

professionals consisting of at least two persons and working in direct interaction on a

150

common task over a longer period of time. Among others, teams have been attributed

with accomplishing tasks beyond the reach of individuals due to increased motivation and

commitment of team members. Research shows that team work becomes more efficient

as a feeling of togetherness forms (Tuckman, 1965). Seeking direct communication

between developers and localisers, e.g. LM2 inviting developers to see how she is

working and what defines her work, might therefore be seen as an attempt to form a

team, or at least to become part of a group.

Regardless of in-house or outsourced localisation, no interviewee described a

collaboration setup where the team definition applied. In the case of translation via LSPs,

developers and localisers are usually physically and organisationally separated, although

sometimes it happens that localisers are sent to work on location at a client’s

organisation. Nonetheless, as discussed previously, developers and localisers do not share

success criteria or responsibilities. Yet, they still form a work system, a social unit on a

project.

4.2.3.2.3 Cross-Disciplinary Knowledge

Developers and localisers attempt to educate their collaborators about those parts of

their own jobs that they feel are relevant. For example, some developers proactively

write comprehensive explanations of placeholders and control characters for localisers on

their own initiative (DM7). Localisers trying to educate developers without a particular

triggering event, e.g. a specific localisation issue, are significantly rarer.

It also appears that knowledge proliferation attempts are often foiled by framing the

subject based on one discipline. For example, despite the explanation on placeholders,

the developer did not provide context information for the translation. One might

presume that localisers understanding placeholder syntax makes more sense for

developers than localisers needing context information for translations.

Professionals with knowledge of both development and localisation appear to be very

valuable for an organisation, yet do not always receive the acknowledgement they

deserve. A number of localisation research papers mention localisation engineers (e.g.

Wasala et al., 2012; Anastasiou, 2009), but not many localisation engineers participated in

the interviews. It appears that LSPs prefer to hire project managers with a translation

151

background, and software companies who have the foresight to assign an engineer to

localisation usually do not blindly follow the agency model, but either employ translators

or manage freelance translators themselves.

Ironically, interviewees which appear to fit the job title of localisation engineer report

that they at times encounter the same incomprehension from their developer colleagues

that otherwise is experienced by localisers. For example, colleagues focused on their

engineering tasks and still failed to provide context information. This provokes the

question whether an interdisciplinary barrier is a barrier between representatives of two

disciplines, i.e. developers and localisers, or between the two subjects itself.

4.3 Discussion

The results of the GT analysis were presented in the shape of a theory of interdisciplinary

collaboration in software localisation, which can be seen as a model to explain the

behaviour reported in the accounts of interviewees. This model explains what happens

during the collaboration of developers and localisers. A number of models have been

proposed to describe the behaviour of individuals and organisations in business settings.

Identifying existing models fitting to the data will conclude the presentation of qualitative

results.

4.3.1 Borrowing of Models and Concepts across Disciplines

A frequent technique of interdisciplinary collaboration is “borrowing for instrumental

purposes” (Klein, 1990, p.86), yet cross-disciplinary borrowing can be problematic:

borrowed material may be misunderstood and distorted, it might be used out of context,

or it might be controversial or abandoned in the source discipline – borrowers accordingly

bear the “burden of comprehension” to obtain a basic understanding of whatever model

is borrowed (Klein et al., 1990, p.88). Failure to do so can lead to considerable problems,

as observed in this research's data.

An immediate reflex might be to look for instances where development borrows models

and concepts from localisation or translation studies, but it appears that this happens

rarely, and there are no applicable models of translation studies for developers to borrow

from. However, it was observed that localisation, and there in particular tools and

processes, borrow models from software engineering and development.

152

4.3.2 Interdisciplinary Work as a Social System

In existing research, the collaboration of workers from different disciplines has been

examined in the context of team work. Colloquially, team work seems to be understood

as any number of people working as a unit, but most publications imply a stricter

definition. People merely working together form a group, whereas a team has a common

goal and has usually been selected specifically to combine certain skills, but also for

strategic purposes such as representing all departments of a company in order to obtain

overall commitment (Maylor, 2010). Further, teams are generally assumed to work in the

same physical space, a central ingredient for forming group commitment and cohesion,

and have the authority to manage their own work.

In project management, this concept has been proliferated as cross-disciplinary team

work. Despite the understanding of team as an organisational unit, they can include

members from outside the organisation such as customers or providers. Social factors of

cohesion, group conformance and group pressure are intended to increase team

efficiency and effectiveness of individuals. Interplay between the social component of

collaboration and cross-functional cooperation outcome forms a feedback loop as goals,

rules, procedures, and accessibility are influenced by the former and determine the latter

(Pinto, 2015). Cross-functional teams often aim to optimise solutions by comparing

different views of multiple disciplines on the same problem. In localisation the disciplines

complement each other, but don’t collaborate on the same specific work steps as such. In

fact, the primary mode observed in this research was not that of developers and localisers

working as organisational unit, but rather the control of the localisation process by

software developers, similar as discussed by Cooper (2004, p.207). This often went hand

in hand with minimal communication, although communication has been identified as a

crucial method to combat the often paradoxical and contradicting nature of

interdisciplinary collaboration (Donnellon, 1993).

Some of the aspects of cross-disciplinary team work apply to the collaboration in software

localisation, e.g. the combination of translation and software engineering skills. On the

other hand, the implied physical access is mostly not realised due to outsourcing. Stoeller

(2011) refers to this as virtual team, although this might be a misnomer as virtual teams

in the scientific literature never account for the sometimes total lack of communication

153

encountered in the interview accounts of localisers and developers. And even in virtual

teams, it seems critical to uphold team cohesion in order to access the cognitive

processes associated with being the member of a group (Ale Ebrahim et al., 2009). Even

more critically, localisers often have no input into the management of their work.

A theory of interdisciplinary collaboration that does not rely on the assumption of a team

structure is that proposed by Sverre Sjölander (in Klein, 1990, p.71), who has proposed

ten stages of interdisciplinary collaboration. Initially, colleagues from different areas stick

to their own discipline (stage 1) and colleagues from other disciplines are seen as having

nothing to contribute to the project (stage 2). First interdisciplinary discussions are

exceedingly abstract, increasing the chance of first agreements on very basic levels such

as an agreement that product quality is important (stage 3). Then, the colleagues start

forming a common vocabulary (stage 4), followed by first successful concrete discussions

(stage 5) and a further construction of interdisciplinary jargon (stage 6), interrupted by

frustration and failure due to the complexity of communication and the task (stage 7).

Only when this stage is overcome can collaborators start seeing beyond their own

discipline (stage 8), engage with different disciplines (stage 9), and finally become true

interdisciplinary collaborators by examining their common task from all possible angles

without blinders (stage 10).

A group of co-workers can get stuck in any of the mentioned phases. Sjölander’s model

emphasises social aspects of interdisciplinarity that were found in the interview accounts

of developers and localisers, such as communication, negotiation and development of a

common jargon. Where this fails, participants instead remain focused on their own

discipline, and what happens is what O’Donnell et al. (1997) call multidisciplinary group

work instead of interdisciplinary collaboration. This, too, was observed during this

research. A particular observation might relate to the hierarchy implied within a

perception that another discipline is not contributing, to be discussed next.

4.3.3 Dominance of Software Engineering

The relationship between software engineering and other disciplines in software

development has been identified as “interdisciplinary challenges of software practice”

(Andelfinger, 2002, p.200). Hirschheim and Klein (1989, p.1212) conclude that

“information systems development approaches are influenced by assumptions from more

154

than one paradigm. However, the influence from one paradigm is typically dominant.”

Software engineers impose their understanding of a different discipline's subject matter

when trying to tackle it in software. In doing this, they are prone to overestimating the

practical use of the deterministic paradigm, mathematics and logic, and conceptual

notions such as users, role and processes, and apply their own paradigm on collaborating

disciplines regardless of fit (Low et al., 1996; Green, 1994; Fetzer, 1988; Leith, 1986). This

leads to a focus on technical aspects at the disadvantage of other aspects. Software

engineers “see the world in terms of a computational model and fail to stand outside that

model” (Leith, 1986, p.552). In fact, there is even a certain internal rivalry between

software development’s three sub-disciplines computer science, software engineering

and information systems (Glass et al., 2004).

Evidence of a dominance of software engineering was found in the interview data,

specifically in statements implying that technological solutions to handle different cultural

expectations are sufficient representations of culture itself, or the notion that translation

is equivalent to a mathematical mapping.

This dominance of engineering in software development has been examined repeatedly

in the context of HCI and UX design. Illmensee and Muff (2009) conducted a study how

agile development methods affected user-centred design (UCD) and UX design. UCD

processes were observed to be too cumbersome and slow to fit to agile processes

(Detweiler, 2007), and it was concluded UCD and UX need to adapt to engineering.

Abdelnour-Nocera et al. (2007) found that the quickly iterating process can make it

difficult for developers to consider user needs.

In a practical case study, Sy (2007) contrasted UCD processes in waterfall and agile

environments. A particular problem was that iterations were too short to prepare a

design, conduct testing, and provide results in time. Sy proposes staggering UCD tasks

across multiple iterations so that through advance planning, testing of a design skips one

iteration. The study is an illustrative example of the influence software development

models have on related non-engineering processes because it illustrates the wide range

of consequences and necessary adaptations following a change from linear to iterative

development.

155

Zhang et al. (2003) examined the role of HCI design in software development and

concluded that HCI aspects are not considered sufficiently in development models

because these are based on organisational needs, not human needs, along with a

misconception that HCI only concerns the visible interface design such as screen and

menu layout, colour choice and icon design.

But accessibility, usability and hedonistic enjoyment of software sit at the boundary

between social aspects of computing and software development and are quite different

from software engineering (Low et al., 1996): software engineers prefer to tackle hard

problems (Robinson et al., 1998), but UX matters are soft problems. Software engineering

is based on finding commonalities by ignoring differences, whereas UX is based on

ignoring commonalities and examining differences towards improvement (Christiansen,

2010).

Accordingly, there have been calls to further integrate UX and HCI development into the

overall development process (e.g. Zhang et al., 2003; Maxwell, 2002), just as other

activities which are used during software development (Kruchten, 2005; Bunting et al.,

2002). These mirror similar calls mentioned in chapter 2 regarding an integration of

localisation into software development, reported integration problems of non-

engineering processes (e.g. Smith et al., 2004), and calls by Andelfinger (2002) to

integrate disciplinary, methodological and procedural practice of other disciplines into

software development. This aligns to the research results of Kim and Kang (2008) who

surveyed 243 managers of cross-functional teams and identified trust, cohesion, and an

alignment of goals, visions and professional culture as success factors. Randall et al.

(1993) have equally suggested an examination of interdisciplinary work during systems

design, but considered the interdisciplinary gap between software engineer and user.

Does that mean that dominance of software engineering extends to the development of

international software, including localisation? Klein (2005, p.44) asserts that in

interdisciplinary collaboration, “status hierarchies and hidden agendas will […] interfere”,

and indeed localiser interviewees certainly report a feeling of little control over the

quality of their work, and Pym (2008) refers to localisers being in a servile position. As

discussed, many accounts imply a tendency to consider translation a technical concept

156

and localisation a larger feature to be implemented through technology. Insofar,

localisation encounters the same problems as UX design.

One of the ways in which the dominance establishes itself is via a locus of power. The

interview accounts show that internationalisation choices, e.g. if and how to

internationalise, is made by developers due to their ownership of the source code.

Organisational decisions are made not necessarily by developers themselves, but

certainly on the developer side. Further, localisers depend on context information and of

course sources from developers in order to localise software.

The results show not only the apparent hierarchy here, they also illustrate different

consequences depending on how developers act, for example when choosing outsourcing

or refusing to provide additional information.

4.3.4 Authority and Hierarchy

French and Raven (1959) define five types of power: legitimate power derived from a

hierarchy, reward power obtained through the ability to reward, coercive power obtained

from the ability to punish or use force, expert power obtained through specialist skills or

knowledge, and referent power obtained through social support.

If one accepts that the customer-provider relationship between developers and localisers

might create a hierarchy, then the power that developers hold over localisers would be

legitimate power. Otherwise, since customers generally reward as similar to that between

a customer and a provider, then this might be a relationship of reward power. However,

assuming that the previously discussed dominance of software engineering is at work, a

coercive power relationship is indicated. In each case, developers drive activities of

localisers that are understood to be less than optimal for localisation.

A dominance of software engineering might explain the underappreciation of linguistic

processes or that requirements of linguistic quality might not receive as much concern as

needed in a larger software development process. However, the interview results also

showed localisers apparently conforming to this hierarchy, e.g. by silently accepting a lack

of context information or engaging in an organisational structure detrimental to the

quality of their work. These cannot be explained by a power advantage on the side of

developers alone.

157

Research exists on the potential effects of hierarchy and authority on behaviour. Arguably

the two most prominent might be the agentic state theory and the authority gradient.

The agentic state theory was developed to explain results of Stanley Milgram’s

experiment on obedience to authority figures (Milgram, 1963), in which participants were

led to act immorally through nothing else than perceived authority. The agentic state

theory says that people may enter an agentic state, i.e. act on another person’s will or as

another person’s agent, if that other person is seen as legitimate authority that will take

responsibility for the action (Milgram, 1974).

Authority gradients have been used to explain observed behaviour in the context of

medical operations and airplane operations (Hagen, 2013; White, 2012; Cosby and

Croskerry, 2004), when operating team members and crew accepted errors of authority

figures or superiors without contradiction despite discerning the error, sometimes with

fatal consequences for others or even themselves. The authority gradient refers to a lack

of communication of hierarchically lower team members in order to avoid being in

contradiction to authority.

Both agentic state theory and authority gradient have been developed in much more

severe and critical contexts than the development of international software generally is,

and with arguably much more stress for the hierarchically lower individual than was

apparent from the interview accounts.

Yet both theories fit interview accounts. Some accounts suggest that in an outsourcing

setup, localisers might perceive a hierarchy gradient in the customer-provider

relationship and thus an authority relationship in the sense of the agentic state theory.

While Milgram’s original experiment bears no resemblance to what happens during

localisation, the agentic state theory merely defines conditions under which an individual

will act unconditionally on another person’s orders, which fits to e.g. a localiser following

unsuitable processes. Further, it is reasonable for localisers to think that since the

unsuitable process is the choice of developers, they will also take responsibility for

consequences such as detrimental quality.

However, there are problems. The agentic state theory seems to have been derived

inductively, and its fit to actual observations is a matter of debate (Nissani, 1990).

158

Further, the agentic state theory explains conformity behaviours merely through

authority.

The authority gradient, on the other hand, is an explanation of obedience in a

professional work relationship and based on behaviour observed in practice. Developers

are still the erring authority and remain undisputed by the specialist in a hierarchically

lower position who wants to save his status. In the interview accounts, the status would

be the business relationship between developer and localiser. While not being a perfect

fit as localisation issues seem to be blamed on the localisers after all, it arguably aligns

with the passivity of a customer-is-king or work-to-rule attitude noted in a number of

accounts.

However, there is yet another theory that might explain the observed social dynamics

while completely doing away with the assumption of authority or dominance.

4.3.5 The Theory of Agency

The theory of agency, also referred to as principal-agent relationship, refers to the

behaviour of agents and principals with different interests and asymmetric knowledge.

Principals employ agents to act on their behalf, but the agent can use his advantage in

knowledge or information to keep the principal in the dark (Jensen and Meckling, 1976).

This theory has been widely applied in many economic contexts. In software

development, it has been applied to explain loss of quality through developers taking

shortcuts in order to alleviate schedule pressure (Austin, 2001) and to develop incentive

schemes to overcome unaligned goals of software companies and its employees (Banker

and Kemerer, 1992).

Primary conditions of a principal-agent relationship are differing incentives for agent and

principal and an information advantage of the agent. The development side is the

principal, who is a customer of a localisation side, i.e. a freelance translator or LSP, in the

role of an agent. The development side is incentivised by paying the localisation side for a

good localisation. In some instances of principal-agent relationship, the agent is

incentivised to keep profit up. Here, localisers are incentivised to keep cost and effort

down and fulfilling the developer’s expectation not to be bothered. This is achieved by

not conducting research and not asking for additional information. The information

159

advantage of localisers towards developers is the developers’ inability to

comprehensively test localisation quality, understand translation complexities or evaluate

localiser activities. The general reduction of individual effort in a group setting is called

social loafing (Latane et al., 1979). The specific dynamic suspected here has been referred

to by Alchian and Demsetz (1972) as shirking in group work enabled by the

disproportionate cost of metering each group member’s performance. And indeed, it has

been established that localisation testing is effortful. It seems to align with Durkheim’s

(1893, in Haralambos et al., 2004) organic solidarity in an industrial society where

specialisation has rendered social solidarity based on similarity ineffective. In such a

society, self-interests of individuals need to be regulated by rules and contracts.

4.3.6 Organisational Control in Software Localisation

Initially, the terms localiser and developer in this research referred to individuals.

However, as this present discussion progresses, they have come to include software

companies and LSPs. It sets a different context for an understanding of the potential

difficulties observed in the agency model. LSPs are not linked to a specific project in the

same way software companies are. They have little attachment, and move from one

project to the next with little guarantee of continuity. And if it is the customer’s

expectation to ‘protect’ developers from interacting with translators, then an LSP will

inadvertently act as a filter, despite better knowledge and with all the conceivable

limitations this brings with it. LSPs and freelancers judge their work as vendors aiming at

customers’ contentedness. In that function, actual localisation quality is a secondary

priority. The strict separation of translation and development leads to localisation issues.

This could be resolved easily by reducing the separation. So why is this insisted upon?

During research of the Tavistock Institute, it was observed that in two groups of miners,

productivity of the social group, where workers knew each other across shifts, was 25%

higher and absence from work 60% lower compared to a group where workers did not

know each other and work had been partly automated. The difference was explained

through a lack of trust which affects the work habits of people who know they work in a

highly risky business and whose wellbeing is dependent on the conscientiousness of their

co-workers (Trist and Murray, 1990). So, once miners did not know their colleagues from

other shifts anymore, they double-checked work done in previous shifts before working

160

themselves in order to ensure their own safety. Bafflingly, it was found that neither

management nor unions were interested in the superior aspects of social, autonomous

groups with less automation, concluding that the partialised system, as it was called,

sacrifices efficiency for control and power.

Similarly, it has been suggested that automation and computer usage at the workplace

leads to the loss of skills, so-called de-skilling, on the side of workers (Smith, 2013; Kling,

1996a, 1996b). Braverman (1999) and Zuboff (1988) have suggested that this is a

deliberate attempt by management to minimise work of skilled workers and strengthen

existing hierarchies in an implementation of scientific management: as much work-

specific knowledge as possible is moved into the organisation, its processes and tools, so

that eventually the workers are dependent on it for work.

There is no quantitative evidence how much a more inclusive approach to translation

would improve efficiency. There are interview statements suggesting that translation

would be faster and more efficient if the separation between translators and engineers

were less strict and there would be less bureaucracy. However, some accounts might also

be interpreted to mean that the disadvantages of the LSP model, i.e. strict separation and

automation, are deliberately ignored. So, the findings of this research fit into the pattern

already discovered in the Tavistock studies, and it can be hypothesized whether their

conclusions, i.e. a drive for management control overriding operational efficiency, holds

in software localisation as well.

In fact, it is not hard to imagine that CAT and MT technologies take over more and more

work aspects in translation and lead to a de-skilling of translators, as argued by Séguinot

(2007) and reported by translators themselves (LeBlanc, 2013). The controlling effect of

mechanisation, automation and in this context also information technology has been

widely discussed (e.g. Orlikowski, 1991; Browne, 2005). Even software engineering has

been suggested to be subject to de-skilling as a consequence of division of labour and

increasing use of programming aids that fragment the work, e.g. structured or object-

oriented programming (Glass, 2005; Friedman, 1993).

161

4.4 Summary

This chapter presented and discussed the findings from the qualitative part of our

research. Based on interview accounts, a grounded theory of interdisciplinary

collaboration in software localisation was created. Interview accounts and the theory

were discussed in the light of literature on software localisation and software

development previously discussed in the literature review, and additional research and

literature on organisational relationships and the sociology of work. Those findings allow

return to those research questions prompting the interviews.

RQ 1 asked how localisation is conducted individually and collaboratively, and what

shapes the activities of developers and localisers. Analysis of the interview accounts show

a broad range of activities and processes employed to localise software. Besides their

main activities, e.g. programming or translating, interviewees’ activities with regards to

localisation were focused on integrating their work, including the required input and the

resulting deliverables, into the overall software development by organising or facilitating

the collaboration with the respective other discipline. In this, the work of developers and

localisers is strongly influenced by the strategic choice of conducting localisation in-house

or out-of-house. Activities are shaped by external influences such as success criteria,

limitations and affordances of tools, and limitations and tasks specified in the processes

prescribed in the overall organisation. Additionally, the activities are modified to avoid or

handle conflicts, i.e. failures and impasses, previously experienced or expected in

localisation.

RQ 2 asked how localisation issues are caused during localisation and internationalisation.

According to the theory generated from the interview accounts, localisation issues can be

results of the hierarchical relationship between developers and localisers and potentially

unaligned goals. Developers, as guardians of the code and possible customers of

localisation in an outsourcing model, enjoy a privileged position compared to localisers,

extending to the developers’ priorities. As a consequence, their relationship with

localisers can easily develop towards a dysfunctional regime in which processes and tools

cater more and more for developers and development, and ever less for localisers and

localisation. The more dysfunctional the relationship is, the less localisers request

necessary information from developers, notify developers of potential issues, or

162

eventually focus on the localisation projects’ goals, and the more they shift their work

and activities towards their unique interests, and vice versa. Eventually, developers and

localisers settle into a relationship in which localisation factors have been superseded by

alternative interests of the collaborating professionals. Those goals of software

localisation which are not among their priorities are compromised and cost, quality or

schedule issues occur.

163

Chapter 5 Quantitative Results

In the introduction, it was found that an examination of the distinctness of developers

and localisers (RQ3) and dependencies between localisation effort and properties of

development projects (RQ4) lends itself to the use of quantitative methods. Chapter 3

discussed a research method to examine these through a survey gathering biographical

data of participants, project-related information, and instruments measuring cultural

competence, attitude towards localisation, self-efficacy in localisation, and localisation

effort. Hypotheses, survey construction and analysis methods were detailed in

subsections 3.3.2 and 3.3.4. This chapter will present the results of the statistical analysis.

5.1 Sample Description

Of 301 respondents who started the survey, 175 did not complete it. As a convenience

sample was used, both non-responses and non-completers are anonymous so it was not

possible to contact them about their reasons for cancelling. Of the 126 survey

completions, 6 were ruled out because the respondents had no experience in the

development of localised software. This left a total of 120 survey submissions for analysis.

The sample is sufficient with regards to the intended statistical tests. The balanced role

distribution allows comparison of information from respondents in technical roles to

those in non-technical roles. Equally, respondents’ native languages are balanced enough

in the sample to allow comparisons between native English and non-native English

respondents. There is no perceivable skew that would invalidate a cross-sectional study of

continuous variables such as cultural competence and attitude towards localisation.

Beyond this, biographical details suggest that the sample is generally not homogeneous.

There is, however, a clear limitation regarding nationality: most respondents are either

German, British, or US-American. Accordingly, the sample exhibits a clear skew towards

the German and English language. Despite major offshoring destinations such as India

virtually not being represented in the survey, the results should still be representative

since Europe and the USA are among the dominant industry players in software

development and IT spending, and house the top 25 software companies (United Nations,

2012), hence it must be considered that the majority of development and design

decisions are made in these nations.

164

5.1.1 Respondents

The average age of respondents was 38.4 years, with the youngest respondent being 17

and the oldest 63 years old. 89 respondents (74%) were male. On average, respondents

had been working on international software for 9.0 years, ranging from 1 year to 35

years. Most respondents were German (27%), followed by British (19%) and US-American

(10%). Three respondents (2.5%) did not identify a specific nationality. The remaining

respondents were from 24 other countries.

Table 5-1 Nationality of respondents

Country Frequency Percent

Argentinian 1 0.8

Austrian 2 1.7

Belgian 2 1.7

Brazilian 3 2.5

British 23 19.2

Canadian 1 0.8

Chinese 3 2.5

Danish 2 1.7

Dutch 2 1.7

English 2 1.7

Finnish 2 1.7

French 3 2.5

German 32 26.7

Hungarian 1 0.8

Indian 4 3.3

Indonesian 1 0.8

Irish 2 1.7

Italian 2 1.7

Malaysian 1 0.8

Nepalese 1 0.8

Palestinian 1 0.8

Polish 4 3.3

Russian 2 1.7

Spanish 5 4.2

Swedish 1 0.8

Tunisian 2 1.7

unknown 3 2.5

US-American 12 10.0

165

The most common highest education level was a master’s degree or equivalent (53%),

followed by a bachelor’s degree or equivalent (30%), a doctoral degree or equivalent

(10%), and a high school degree or equivalent (8%). For the roles, multiple responses

were possible. 37% of the respondents described their usual roles in software

development as software engineer, 24% as user interface designer, 27% as software

architect, 10% as business analyst, 38% as project manager, 32% as translator/localizer,

and 10% as technical editor. Overall, 70 participants were grouped as developers and 50

as localisers.

Table 5-2 Highest level of education of respondents

Degree Frequency Percent

High School, Grammar school or equivalent 9 7.6

Bachelor's degree or equivalent 35 29.7

Master's degree or equivalent 62 52.5

Doctoral degree or equivalent 12 10.2

Table 5-3 Role of respondents

Role N Percent Percent of cases

Software engineer 43 20.8 37.4

User interface designer 28 13.5 24.3

Software architect 31 15.0 27.0

Business analyst 12 5.8 10.4

Project manager 44 21.3 38.3

Translator/localiser 37 17.9 32.2

Technical editor 12 5.8 10.4

Total 207 100.0 180.0

Table 5-4 Localisation training of survey respondents

Knowledge source N Percent Percent of cases

Literature about localization 56 26.4 46.7

Literature partly about localization 49 23.1 40.8

Informal training 62 29.2 51.7

Formal training 22 10.4 18.3

None of the above 23 10.8 19.2

Total 212 100.0 176.7

166

18% of all respondents had received formal training about software localisation,

compared to 19% without any training. This, however, strongly depended on role. When

considering only respondents in a development role, the numbers for formal training

decreased by almost half to 6% and the numbers for respondents with none of the listed

educational measures increased by almost half to 15%, whereas the numbers for the

remaining options stayed within 10% of their value for all respondents. Most of the

formal training was received by translators.

5.1.2 Projects of International Software

Many items asked participants about properties of their most recent localised software

project. 71% of these projects were application software, 33% were websites, 19% were

system software, 16% were mobile applications, 9% were video games, and 7.5% were

firmware. Typical users of these projects, as reported by the respondents, were

companies (56%), followed by private end-users (54%), educational institutions (22%),

government institutions (20%), software developers (15%), and finally scientists (13%).

Table 5-5 Software types of reported projects

Software type N Percent Percent of cases

Application 85 45.5 70.8

Video Game 11 5.9 9.2

Website 40 21.4 33.3

Mobile App 19 10.2 15.8

System Software 23 12.3 19.2

Firmware 9 4.8 7.5

Total 187 100.0 155.8

Table 5-6 User types of reported projects

User type N Percent Percent of cases

Private end-users 65 30.1 54.2

Software developers 18 8.3 15.0

Scientists 16 7.4 13.3

Companies 67 31.0 55.8

Government institutions 24 11.1 20.0

Educational institutions 26 12.0 21.7

Total 216 100.0 180.0

167

Of interest were also the frequencies of what parts of software were localised. In almost

all projects (95%), the user interface text was localised. About two thirds of all projects

also localised data formatting (68%), and units of measurements (63%). Other forms of

localisation are much rarer, with about a quarter of all projects localising functionality

(29%), navigation and layout (26%), followed by colours, images and sounds (19%), and

feature sets (18%).

Table 5-7 Localised software elements of reported projects

Localised software elements N Percent Percent of cases

User interface text 114 29.8 95.0

Formatting, e.g. time and date and sort orders 82 21.5 68.3

Units, e.g. measurements, currency and paper sizes 75 19.6 62.5

Colours, graphics and sound 23 6.0 19.2

Navigation and layout 31 8.1 25.8

Functionality 35 9.2 29.2

Feature sets 21 5.5 17.5

Unknown 1 0.3 0.8

Total 382 100.0 318.3

The vast majority of projects, 94 (80%), were commercial, compared to 21 (18%) non-

commercial projects and 3 (3%) projects of unknown commerciality. 54 projects (45%)

were localised into 1-5 languages, followed by 27 projects (23%) into 6 – 15 languages, 21

projects (18%) projects into 16 – 30 languages, and 17 projects (14%) into more than 30

languages.

Table 5-8 Number of languages of reported projects

of languages Frequency Percent

1 - 5 54 45.0

6 - 15 27 22.5

16 - 30 21 17.5

More than 30 17 14.2

Unknown 1 0.8

Total 120 100.0

44% of the projects followed an agile approach, 15% of the projects followed a waterfall

approach, and 3% followed a spiral model approach. 15% of the projects followed no

development model.

168

Table 5-9 Development model of reported projects

Development model Frequency Percent

Waterfall model 19 15.8

Spiral model 3 2.5

Agile model 53 44.2

No particular model 18 15.0

Unknown 27 22.5

Total 120 100.0

Translations were provided for the projects by customers (9%), machine translation

(13%), crowdsourcing (16%), employees in a non-translation role (24%), employed

translators (34%), freelance translators (41%), and translation agencies (43%). 3% of

respondents did not know how translations for their projects were provided.

For the transmission of translations between translators and developers, projects used

random file formats (4%), XLIFF (15%), self-developed formats (18%), program files (20%),

XML (24%), standard desktop formats including Excel (27%), and online databases, TMs or

CMS (36%). 9% of respondents did not know how translations were transported.

5.2 Variable Distributions and Data Preparation

Prior to analysis, the data was screened for false or inappropriate data such as

monotonous replies indicating a click-through rather than thoughtful participation, and

inexplicable outliers. Data screening showed that one respondent entered a nonsensical

experience length in software localisation, two had not clearly identified their highest

education level, and three had not clearly identified their nationality. Three respondents

had answered all CQ-related items monotonously, two had not specified commerciality of

their project, one did not know what elements were localised, 27 did not know the

development model of their project, and one did not know the number of target locales.

In order to select the correct statistical tests, the distribution of tested variables needs to

be known. Specifically, the normality or non-normality of a variable’s distribution

determines the suitability of different correlation tests. For example, the Pearson test to

test the correlation of two continuous variables requires both variables to follow a normal

distribution. Otherwise, the Spearman rank correlation is to be used (Bryman and Cramer,

169

1995). Because of the sample size of n < 2000, the Shapiro-Wilk test was used to test for

normality (Norušis, 2006). Table 5-10 shows the distributions of the continuous variables.

Table 5-10 Variable distributions

Construct Shapiro-Wilk sig. (p) Distribution

Cultural Competence .01 not normal

Metacognitive Cultural Competence .00 not normal

Cognitive Cultural Competence .08 normal

Motivational Cultural Competence .00 not normal

Behavioural Cultural Competence .00 not normal

Attitude Towards Localisation .00 not normal

Localisation Effort .02 not normal

To see whether non-native English speakers score higher on cultural competence than

native English speakers, the mean score of both groups was compared. English as native

language was inferred from nationality: participating nationals of a country in which

English is the first language, e.g. the UK, USA, Canada, Australia, New Zealand, or South

Africa, were sorted into the group of native English speakers. Participating nationals from

any other country were sorted into the group of non-native English speakers. Three

respondents’ completed surveys were not considered for this test as they had not

disclosed their nationality in the survey.

5.3 Hypothesis Results

An overview of all tested hypotheses and data exclusions is shown in Table 5-11. The

significance threshold for statistical significant was chosen as p < .05.

Table 5-11 Overview of the survey analysis results

ID Hypothesis Test p Result n Exclusion reason

H1 Developers score lower

than localisers on CQ

T-Test .00 116 monotonous CQ

H1a … on metacognitive CQ T-Test .01 116 monotonous CQ

H1b ... on cognitive CQ Pearson .00 116 monotonous CQ

H1c … on motivational CQ T-Test .12 rejected 116 monotonous CQ

H1d … on behavioural CQ T-Test .09 rejected 116 monotonous CQ

H2 Developers & localisers

assume different loc.scope

H2a … for UI text Phi coefficient .43 rejected 119 role not clear

H2b … for formatting Phi coefficient .70 rejected 119 role not clear

170

H2c … for units Phi coefficient .70 rejected 119 role not clear

H2d … for colours, sound etc. Phi coefficient .09 rejected 119 role not clear

H2e … for navigation Phi coefficient .11 rejected 119 role not clear

H2f … for functionality Phi coefficient .36 rejected 119 role not clear

H2g … for feature sets Phi coefficient .39 rejected 119 role not clear

H2h Developers assume a

smaller localisation scope

than localisers

T-Test .27 rejected 119 role not clear

H3 Developers score lower on

ATL than localisers

T-Test .01 119 role not clear

H4 Developers assume less

responsibility for

localisation than localisers

Phi coefficient .63 rejected 119 role not clear

H5 Developers have a higher

SEL than localisers

T-Test .52 rejected 119 role not clear

H5a Developers have a higher

SEU than localisers

T-Test .04 119 role not clear

H5b SEL is correlated with SEU Spearman .00 120

H6 Cost, quality and time

priorities differ between

developers and localisers

Chi-square .43 rejected 119 role not clear

H7 Software success factor

priorities differ between

developers and localisers

H7a … on maintainability T-Test .02 119 role not clear

H7b … on reliability T-Test .12 rejected 119 role not clear

H7c … on correctness T-Test .56 rejected 119 role not clear

H7d … on execution Speed T-Test .09 rejected 119 role not clear

H7e … on usability T-Test .09 rejected 119 role not clear

H7f … on power T-Test .01 119 role not clear

H7g … on popularity T-Test .04 119 role not clear

H7h … on financial success T-Test .29 rejected 119 role not clear

H8 Localisation training is

correlated with CQ

Spearman .00 116 monotonous CQ

H8a … with metacognitive CQ Spearman .00 116 monotonous CQ

H8b ... with cognitive CQ Spearman .01 116 monotonous CQ

H8c … with motivational CQ Spearman .01 116 monotonous CQ

H8d … with behavioural CQ Spearman .00 116 monotonous CQ

H8e For developers, loc.training

is correlated with CQ

Spearman .03 70 developers only

H8f … with metacognitive CQ Spearman .02 70 developers only

H8g ... with cognitive CQ Spearman .17 rejected 70 developers only

H8h … with motivational CQ Spearman .06 rejected 70 developers only

H8i … with behavioural CQ Spearman .00 70 developers only

171

H9 Native English speakers

score lower than non-

native Engl. speakers on CQ

T-Test .70 rejected 113 3 nationality

unclear; 4

monotonous CQ

H9a … on metacognitive CQ T-Test .66 rejected 113 see above

H9b … on cognitive CQ T-Test .60 rejected 113 see above

H9c … on motivational CQ T-Test .92 rejected 113 see above

H9d … on behavioural CQ T-Test .56 rejected 113 see above

H9e Native German speakers

score lower on CQ than

non-German speakers

T-Test .93 rejected 113 see above

H10 LE is affected by s/w type…

H10a … application T-Test .24 rejected 120

H10b … video game T-Test .00 120

H10c … website T-Test .82 rejected 120

H10d … mobile app T-Test .46 rejected 120

H10e … system software T-Test .03 120

H10f … firmware T-Test .23 rejected 120

H11 LE is affected by user type…

H11a … private end users T-Test .18 rejected 120

H11b … software developers T-Test .22 rejected 120

H11c … scientists T-Test .24 rejected 120

H11d … companies T-Test .43 rejected 120

H11e … government institutions T-Test .36 rejected 120

H11f … educational institutions T-Test .26 rejected 120

H12 LE is affected by customer-

user identity

ANOVA .83 rejected 109 customer-user

identity not clear

H13 LE is affected by number of

target languages

ANOVA .04 119 # of languages

unknown

H14 LE is affected by

development model

ANOVA .00 90 3 spiral model;

27 model unkn.

H15 LE is affected by project

commerciality

ANOVA .15 rejected 114 commerciality

not known

H16 ATL is correlated with CQ Spearman .00 116 monotonous CQ

H16a For developers, ATL is

correlated with CQ

Spearman .06 rejected 81 developers only

H17 SEL is correlated with CQ Spearman .06 rejected 116 monotonous CQ

H18 SEL is correlated with ATL Spearman .00 120

For each statistical test used, a separate table shows the tested hypotheses and result

details results. Independent sample t-test results (Table 5-12) include mean (M) and

standard deviation (SD) of each group G1 and G2, t statistic, degree of freedom df, and

significance p. Pearson correlation test results (Table 5-13) include correlation coefficient

172

r and significance p. Chi-squared test results (Table 5-14) include Chi-square value,

degrees of freedom df, and significance p. Phi coefficient test results (Table 5-15) include

Phi value and significance p. Spearman rank correlation test results (Table 5-16) include

correlation coefficient r and significance p. ANOVA results (Table 5-17) include degrees of

freedom df, F value of the relationship between explained and unexplained variance,

significance p, and for significant results effect size f as well as Tukey honest significant

differences (HSD, Table 5-18 and Table 5-19).

Table 5-12 Independent samples t-test results

ID Hypothesis G1 M / SD G2 M / SD t df p

H1 Developers score lower than

localisers on CQ

74.59 / 16.99 85.23 / 16.25 -3.31 114 .00

H1a … on metacognitive CQ 17.01 / 4.30 19.14 / 3.33 -2.78 114 .01

H1c … on motivational CQ 22.36 / 4.73 23.93 / 5.80 -1.59 114 .12

H1d … on behavioural C 20.08 / 5.03 21.81 / 5.81 -1.69 114 .09

H2h Developers assume a smaller

loc. scope than localisers

4.46 / 1.72 4.82 / 1.77 -1.10 117 .27

H3 Developers score lower on

ATL than localisers

42.43 / 7.01 45.80 / 6.50 -2.61 117 .01

H5 Developers have a higher SEL

than localisers

9.59 / 2.51 9.24 / 3.30 .65 117 .52

H5a Developers have a higher

SEU than localisers

10.26 / 2.88 9.18 / 2.54 2.07 117 .04

H7 Software success factor

priorities differ between

developers and localisers

H7a … on maintainability 4.41 / 1.87 5.20 / 1.50 -2.41 117 .02

H7b … on reliability 2.76 / 1.49 2.36 / 1.15 1.55 117 .12

H7c … on correctness 3.05 / 1.63 2.34 / 1.81 -.59 117 .56

H7d … on execution speed 5.22 / 1.63 4.71 / 1.39 1.73 117 .09

H7e ... on usability 2.47 / 1.48 2.00 / 1.40 1.72 117 .09

H7f … on power 6.54 / 1.36 5.80 / 1.77 2.57 117 .01

H7g … on popularity 6.22 / 1.86 6.87 / 1.34 -2.04 117 .04

H7h … on financial success 5.34 / 2.50 5.82 / 2.19 1.08 117 .29

H9 Native English speakers score

lower than non-native

English speakers on CQ

77.56 / 19.15 78.92 / 16.81 -.39 111 .70

H9a … on metacognitive CQ 17.56 / 4.80 17.92 / 3.75 -.44 111 .66

H9b … on cognitive CQ 19.43 / 6.58 20.16 / 7.07 -.53 111 .60

H9c … on motivational CQ 23.03 / 5.75 22.92 / 5.04 .10 111 .92

H9d … on behavioural CQ 21.19 / 5.62 20.55 / 5.37 .59 111 .56

173

H9e Native German speakers

score lower on CQ than non-

German speakers

78.23 / 17.33 78.58 / 17.68 -.09 111 .93

H10 LE is affected by s/w type…

H10a … application 34.29 / 7.56 31.97 / 10.37 1.20 49.55 .24

H10b … video game 40.72 / 6.07 32.90 / 8.40 3.01 118 .00

H10c … website 33.88 / 8.58 33.49 / 8.51 .24 118 .82

H10d … mobile app 34.95 / 8.72 33.37 / 8.48 .74 118 .46

H10e … system software 37.09 / 8.82 32.79 / 8.25 2.21 118 .03

H10f … firmware 36.89 / 4.51 33.35 / 8.70 2.06 13.46 .23

H11 LE is affected by user type…

H11a … private end users 34.57 / 8.42 32.49 / 8.53 1.34 118 .18

H11b … software developers 35.89 / 9.39 33.22 / 8.32 1.23 118 .22

H11c … scientists 35.94 / 8.34 33.26 / 8.51 1.18 118 .24

H11d … companies 34.16 / 8.06 32.92 / 9.05 .79 118 .43

H11e … government institutions 35.04 / 8.71 33.26 / 8.45 .92 118 .36

H11f … educational institutions 35.27 / 9.11 33.16 / 8.31 1.12 118 .26

As can be seen, it was found that developers score significantly lower on CQ and ATL than

localisers, whereas the difference in SEL is not statistically significant. Developers

prioritise maintainability and popularity higher than localisers, but prioritise application

power lower. Developers and localisers reported no statistically significant differences for

localisation responsibility. Prioritisation differences of reliability, correctness, execution

speed, usability, and financial success were not statistically significant. Overall, developers

and localisers should be assumed to prioritise the given software success factors the

same. Similarly, the difference in project management priorities was also statistically not

significant.

Table 5-13 Pearson test results

ID Hypothesis r p

H1b Developers score lower than localisers

on cognitive CQ

-.34 .00

Table 5-14 Chi-square test results

ID Hypothesis Chi-square df p

H6 Project management priorities differ between

developers and localisers

4.87 2 .43

174

Table 5-15 Phi coefficient test results

ID Hypothesis Phi p

H2 Developers assume a different

localisation scope than localisers

H2a … for UI text -.07 .43

H2b … for formatting -.04 .70

H2c … for units -.04 .70

H2d … for colours, graphics, sound -.15 .09

H2e … for navigation -.15 .11

H2f … for functionality .08 .36

H2g … for feature sets -.08 .39

H4 Developers assume less responsibility

for localisation than localisers

.05 .63

Table 5-16 Spearman rank correlation test results

ID Hypothesis r p

H5b SEL is correlated with SEU .44 .00

H8 Localisation training is

correlated with CQ

.29 .00

H8a … with metacognitive CQ .26 .00

H8b … with cognitive CQ .24 .01

H8c … with motivational CQ .23 .01

H8d … with behavioural CQ .31 .00

H8e For developers, localisation

training is correlated with CQ

.27 .03

H8f … with metacognitive CQ .28 .02

H8g … with cognitive CQ .17 .17

H8h … with motivational CQ .22 .06

H8i … with behavioural CQ .36 .00

H16 ATL is correlated with CQ .29 .00

H16b … with metacognitive CQ .32 .00

H16c … with cognitive CQ .27 .01

H16d … with motivational CQ .21 .02

H16e … with behavioural CQ .21 .03

H16a For developers, ATL is

correlated with CQ

.22 .06

H16f … with metacognitive CQ .26 .03

H16g … with cognitive CQ .14 .22

H16h … with motivational CQ .13 .27

H16i … with behavioural CQ .11 .38

H17 SEL is correlated with CQ .18 .06

H28 SEL is correlated with ATL .42 .00

175

Table 5-17 ANOVA test results

ID Hypothesis df F Eta-squared p

H12 LE is affected by customer-user identity 2, 106 .19 - .83

H13 LE is affected by number of target languages 3, 115 2.78 0.07 .04

H14 LE is affected by development model 2, 87 7.03 0.14 .00

H15 LE is affected by project commerciality 1, 112 2.15 - .15

Table 5-18 Post-Hoc Tukey HSD result for H13

languages # languages MD Std. Error p

95% Confidence Interval

Lower Bound Upper Bound

1 - 5 6 - 15 -.72222 1.96603 .983 -5.8477 4.4032

16 - 30 -4.80688 2.14511 .118 -10.3992 .7854

More than 30 -5.09259 2.31971 .131 -11.1401 .9549

6 - 15 1 - 5 .72222 1.96603 .983 -4.4032 5.8477

16 - 30 -4.08466 2.42692 .337 -10.4116 2.2423

More than 30 -4.37037 2.58254 .332 -11.1030 2.3623

16 - 30 1 - 5 4.80688 2.14511 .118 -.7854 10.3992

6 - 15 4.08466 2.42692 .337 -2.2423 10.4116

More than 30 -.28571 2.72135 1.000 -7.3803 6.8088

More than

30

1 - 5 5.09259 2.31971 .131 -.9549 11.1401

6 - 15 4.37037 2.58254 .332 -2.3623 11.1030

16 - 30 .28571 2.72135 1.000 -6.8088 7.3803

Table 5-19 Post-Hoc Tukey HSD result for H14

Development

Model

Development

Model MD Std. Error p

95% Confidence Interval

Lower Bound Upper Bound

Waterfall Agile -.92056 2.19742 .908 -6.1603 4.3191

None 7.39181 2.70302 .020 .9465 13.8371

Agile Waterfall .92056 2.19742 .908 -4.3191 6.1603

None 8.31237 2.24190 .001 2.9666 13.6581

None Waterfall -7.39181 2.70302 .020 -13.8371 -.9465

Agile -8.31237 2.24190 .001 -13.6581 -2.9666

Despite the confirmed difference in CQ, the localisation scope assessment is not

statistically significant. In other words, while the observed difference between developers

and localisers in CQ might affects software localisation, it does not affect both discipline’s

perception what aspects of software should be localised.

176

CQ is weakly correlated with training in localisation, suggesting that the training measures

queried in the survey are somewhat effective. There is no statistically significant

association between being a native English speaker and CQ. The data further shows that

ATL is weakly correlated with CQ, but only for localisers, not for developers. Further, SEL

is moderately correlated with ATL, but not with CQ.

There was no statistically significant difference in LE between commercial and non-

commercial projects, nor was LE affected by type of user or whether the user was also a

customer or not. A statistically significant increase of LE was observed for video games

and system software, but not for the other software types. LE also increases moderately

with number of target languages. Further, there is a large effect of software development

model presence on LE.

5.4 Discussion

RQ 3 asked in what regards software developers and localisers are distinct. The results

show that developers and localisers differ in cultural competence, attitude towards

localisation, and self-efficacy in usability. They do not differ in self-efficacy in localisation,

assumption of responsibility towards localisation, prioritisation of software success

factors, and assessment of localisation scope.

RQ 4 asked what dependencies exist between localisation effort and properties of

development projects. The results show that localisation effort increases for some types

of software, with the number of target languages, and with the presence of a software

development model. It remains unaffected by most software types, relationship to the

user, or commerciality of a project.

The hypotheses confirmed and rejected by the data were suggested by existing literature

on software localisation and are discussed in that context next.

5.4.1 Distinctness of Developers and Localisers

An influence of developer-localiser distinctness on cooperation has been discussed (e.g.

O’Sullivan, 1989; Honkela et al., 1997), particularly cross-disciplinary knowledge (Bauer

and Rodrigo, 2004; Russo and Boor, 1993; Sikes, 2011; Immonen and Sajaniemi, 2003a)

and disposition towards localisation (e.g. Sikes, 2011; Honkela et al., 1997).

177

A number of differences could be confirmed. Developers have a lower cultural

competence than localisers. However, on the other hand localisers do not have a lower

self-efficacy in localisation than developers. The relationship localisers have with the

discipline of software development is just as important as the one developers have with

localisation (Law, 2003; Immonen and Sajaniemi, 2003a), and in this regard the lack of a

difference in self-efficacy in localisation suggest that localisers understand the technical

aspects of localisation just as well as developers. Overall, the results suggest that

localisers seem to have more cross-disciplinary knowledge than developers. Interestingly,

some of the localisers in the interviews seem to have been acutely aware of this

advantage.

It has further been shown in the survey that developers are less positively predisposed

towards localisation than localisers. However, developers and localisers exhibited only

minor differences in assessment of software quality priorities, and no differences in

project management priorities. While this suggests that there are no collaboration issues

caused by success criteria in software development, e.g. cost and schedule over quality

(see Boehm, 2011, 2006; Blackburn et al., 1996), it leaves open the possibility that

software success criteria supersede localisation success criteria, as suggested by Tuffley

(2003) and Dunne (2011).

5.4.2 Cultural Competence and the Scope of Localisation

The research examined cultural competence of developers and localisers based on the

assumption that developers need cultural awareness (e.g. Ryan et al., 2009; Abufardeh

and Magel, 2008a; Immonen and Sajaniemi, 2003a), for example to understand

localisation requirements (Giammarresi, 2011; Kalliomäki et al., 1997; Hoft, 1996). The

survey results suggest that there are indeed differences in cultural competence between

localisers and developers. Despite these, opinions regarding localisation scope were

similar enough that they seem to be unaffected by this cultural competence gradient.

Regarding the sub-constructs of CQ, it is noteworthy that there are developer-localiser

differences between metacognitive and cognitive CQ, but not between motivational and

behavioural CQ. This is surprising as one would assume that localisers have more interest,

and hence a higher intrinsic motivation, in learning about different cultures.

178

Results were not always as expected when examining factors that might influence cultural

competence. While it is suggested that developers’ cultural competence can be increased

with training, this would nonetheless leave their attitude towards localisation unaffected.

However, it is noteworthy that where Immonen and Sajaniemi (2003a, 2003b) found that

few of their participants had read any books on software localisation, in this survey 43%

of participants had reported that they had at least read a book on software localisation,

and only 25% had not received any kind of formal or informal training.

Contrary to what is assumed (e.g. Carey, 1998), no statistically significant difference in the

cultural competence or any of its sub-constructs between native and non-native English

speakers could be found. There is room for error as the survey did not explicitly ask

whether English was a native language. Instead, it asked for nationality, and English as

native language was inferred from that information. It is conceivable that this procedure

lead to incorrect assignments. Barring this confounding factor, it appears that cultural

competence is not a matter of being multilingual. This interpretation is supported by

findings of Khodadady and Shima (2012) who found no correlation between CQ and

proficiency in English as a foreign language. Hence, adding professionals with a non-

native English background would not automatically bring more cultural competence into

a development project, nor would a nationally homogeneous development team be less

cultural competent than an inhomogeneous one.

The survey assumed that CQ is relevant for software localisation and internationalisation.

While not conclusively dismissing the notion, recent results by Mor et al. (2015) found

that metacognitive CQ does not predict performance of Westerners assessing Asian

values.

5.4.3 Software Localisation and Project Properties

In the literature review, it was hypothesised that software development models might

have an influence on localisation (e.g. Abufardeh and Magel, 2010; Fissgus and Seewald-

Heg, 2005), and that some development models are less suited to work with external

processes, specifically the agile development model (e.g. Turk et al., 2002). In the survey,

projects without development methodology exhibited significantly lower localisation

effort. This suggests that there is indeed a difference between those projects claiming

usage of a development model and those that do not, contradicting the notion that

179

adopting a development model is pretence without actual meaning (see e.g. Truex et al.,

2000).

In any way, this difference might merely mean that projects that do not warrant use of

formalised development methodologies, maybe because of project simplicity or a very

small development team, also do not warrant high localisation effort. Alternatively, it

might indicate that a methodology simplifies application of localisation efforts, or that

developers who develop software according to a formalised method are more inclined to

invest effort into localisation. In any way, localisation effort did not differ between

projects using agile and waterfall methodologies.

As suggested in the literature (e.g. Ryan et al., 2009), there was a positive correlation

between localisation effort and number of target languages. The more target languages a

project has, the higher the localisation effort is. This seems like a foregone conclusion

since more target languages require communication with more translators. It is here

important to note that none of the items making up the construct LE are obviously

affected by the number of target languages. In other words, if one accepts that a higher

LE results in a better localisation quality, then more target languages lead to higher

localisation quality as well.

An association between localisation effort and software type was observed for video

games and system software, both exhibiting higher localisation effort than other software

types. For video games, this makes sense as these are often content-heavy applications

requiring text and graphics, but also more culture-related items such as jokes and tropes

to be adapted to its customers’ locales. Results confirms respective statements by Zhou

(2011), Callele et al. (2008) and Thayer and Kolko (2004).

A rationale explaining why system software would exhibit higher localisation effort is not

as straightforward. Arguably, system software might include embedded software for

machines in which localisation quality and correctness are critical, e.g. medical

apparatuses, prompting an increased localisation effort. Other types of software did not

show a different localisation effort score, contrary to what is expected in the literature

(e.g. Giammarresi, 2011).

180

Assumptions that localisation effort might be influenced by type of user (e.g. Liu and

Zhang, 2011), the relationship between developers on one side and customers or users

on the other side (e.g. DePalma, 2006; Honkela et al., 1997), and the commercial or non-

commercial character of a project (e.g. Exton et al., 2010; Wolff, 2006) could not be

confirmed in the survey.

Statements about localisation effort need to be considered in the context of its

operationalisation in this research. There might be activities that are undertaken in

software development projects to improve localisation in terms of cost, quality or

duration that did not find consideration in this operationalisation. While noting that the

construction and measurement of LE was justified due to the lack of suitable translation

and localisation quality measures suitable to questionnaires, it must be noted that the

construct LE itself is speculative since no validity or reliability tests were concluded prior

to the survey. A large part of the literature review in chapter 2 dealt with localisation

tools and standards. It is noteworthy that despite a great effort of improving localisation

tools, the survey data shows only light adoption. While a moderate adoption of machine

translation and specialised translation systems, e.g. TM, was observed, the proliferation

of specialised localisation file formats, specifically XLIFF, is still lacking.

5.4.4 Generalisability of the Sample

As mentioned in section 3.4, the sample is a convenience sample, which simplifies

recruitment and can increase participant numbers. However, convenience samples are

non-probabilistic and as such not representative of the entire population of developers

and localisers. Identified biases in the sample are for example nationalities (see Table

5-1). There is a clear skew towards German, British and US-American nationalities,

probably due to the media in which the call for participation was published. Nationalities

of global localisation professionals are expected to follow a different distribution, in

particular regarding German being less emphasized.

Another potential bias might be a relationship between survey participation/completion

and attitude towards localisation for developers, i.e. that a more positive attitude

increases likelihood of survey participation, which might skew the comparison of

developer and localiser attitudes. However, since the results show a difference in attitude

181

already, presence of an attitude-participation bias would mean that the effect were even

stronger without it.

Some survey items might have been defeated by socially or politically preferred answers.

For example, the test for differences in localisation scope assessment only asks for

knowledge. One could repeat these tests through an instrument where the actual

intention of the question is not obvious.

Almost all incomplete surveys stopped after the biographical data, i.e. in the second

section, where the perceptions and opinions are queried. It is assumed that most non-

completers stopped here because of the monotony of the test and the implied length of

the survey. It is assumed that there is no content-related reason for non-completion, e.g.

non-completers did not mind having their cultural competence measured. It is not

perceivable why respondents would be sensitive about their cultural competence,

particularly because the survey is anonymous.

Some data points were excluded from analysis (see Table 5-11). With one exception

where the role could not be attributed to either the developer or localiser group, all data

exclusions were a consequence of the respondents’ presumable lack of knowledge

regarding the question asked. With one exception, excluded data points were always six

or less and are numerically unlikely to have an influence on the result. Because 27

respondents did not specify their projects’ software development models when testing

for correlation between localisation effort and development method, it is conceivable

that the missing data had an influence on the result. However, no systematic skew is

apparent to explain why development model and not knowing it might be related.

5.5 Summary

This chapter presented and discussed the results of the quantitative part of this research.

It was hypothesized that developers and localisers differ measurably across a number of

items relevant to software localisation. However, a majority of differences could not be

confirmed. Most importantly, there seems to be no difference regarding the

interpretation of success and quality criteria for software. On the other hand, gradients

between developers and localisers in cultural competence and attitude towards

localisation were confirmed. It was also shown that cultural competence can be, and is,

182

trained, but does not affect attitude towards localisation. Further quantitative results

showed that some software types, the use of a development model, and the number of

languages are correlated to the localisation effort expended. On the other hand, the

relationship to the user and a commercial or non-commercial character of the software

did not.

At the end of this chapter, the results were compared to the expectations in localisation

literature. In the next chapter, the qualitative and quantitative findings will be discussed

in conjunction while addressing the original research problem: What makes software

localisation difficult?

183

Chapter 6 Conclusions

In the introduction, the proposition was made to examine what makes software

localisation difficult. This problem was developed into four research questions aimed to

examine the human factor and the project factor in software localisation. The research

questions were answered by conducting and analysing interviews using the GT

methodology, and by statistical analysis of survey data on cultural competence, attitude

and self-efficacy towards localisation of participants, and properties and localisation

effort of the projects they worked on. This concluding chapter will reiterate the findings

and discuss contribution to knowledge, implications for practice, and limitations of this

research, as well as future work.

6.1 Summary of Findings

RQ 1 asked how localisation is conducted individually and collaboratively by developers

and localisers, and how this shapes each discipline’s activities. To answer the question, a

grounded theory of interdisciplinary collaboration in software localisation was generated

in which the work of developers and localisers is shaped in part by factors out of their

control, and by expected and experienced conflicts during software localisation.

RQ 2 asked how issues are caused during localisation and internationalisation. This

research question was also answered by the generated grounded theory of

interdisciplinary collaboration: localisation issues can be caused when, in the hierarchical

relationship of developers and localisers, each discipline follows its interest rather than a

localisation goal.

RQ 3 asked in what regards developers and localisers are distinct. Developers and

localisers score differently on cultural competence, but exhibit no difference in self-

efficacy in localisation, responsibility towards localisation, and assessment of localisation

scope. Developers’ attitude towards localisation is lower than that of localisers, and they

prioritise maintainability higher.

RQ 4 asked what dependencies exist between localisation effort and properties of

development projects. More localisation effort is expended on video games and system

software than on other software types, as well as on projects following a development

model compared to projects without one. Further, the more target locales a project has,

184

the more localisation effort is spent on it. The commercial nature of a project and the

relationship between user, developer and customer do not affect localisation effort.

6.1.1 Conjunction of Qualitative and Quantitative Results

This research used both qualitative and quantitative methods to answer various research

questions. Although the two paradigms were not intended to be combined, some of their

results nonetheless complement and contrast with each other.

In the interviews, a profound lack of appreciation for non-engineering aspects of software

development was observed and linked to conclusions in the literature. The lower attitude

towards localisation of developers found in the survey is in agreement with such an

engineering mind-set and a lack of appreciation for non-engineering aspects of software

development.

There was a difference between localisation scope reported by interviewers and

localisation scope found in the survey. All localisation projects the interviewees had

experienced were limited to text translation and proper presentation of text and textual

data such as number formatting. No interview participant had ever experienced a

localisation project going further, e.g. by adapting colours or icons. Only one participant

reported the adaptation of functionality, but the context suggests that their objectives

were as much unifying previously separate IT systems as they were catering for different

cultures. The survey, on the other hand, reported that more than a quarter of all projects

have layout, navigation and functionality adapted, and about a fifth of all projects had

icons, images, sounds, and feature sets adapted.

There are three plausible explanations for this disparity: It might be that interview and

survey samples differ by chance. Alternatively, the reporting in the interview might be

correct but some survey respondents might have been reporting their opinions and

assumptions rather than their experiences. Thirdly, the survey question might have been

too unspecific. Indeed, in the interviews, a number of participants had reported that text

in image files was translated while keeping the pictorial content untouched. This is then

translation, not adaptation of graphical content. Unfortunately, the respective survey

question Q.63 did not make that distinction.

185

6.2 Contribution to Knowledge

As discussed in the literature review, there have been few studies of empirical

examination of localisation practice and localisation issues. Abufardeh (2008) and

O’Sullivan (2001b) examined the impact of localisation on software quality in terms of

bugs introduced into the software. O’Sullivan (2001b) and Moorkens (2012a, 2012b)

included a description of localisation practice from interviews in their research. Immonen

and Sajaniemi (2003a, 2003b) conducted a descriptive examination of localisation

practice, but limited interviews to management professionals at Finnish companies.

This thesis went beyond their research by applying well-defined research methodologies

for qualitative data collection and analysis, and gathering data from various contributors

to international software. The research findings provide a perspective on how localisation

is handled in practice based on the perception of its stakeholders, and how this practice

affects its product. The evidence of this research consists of self-reported perceptions

from stakeholders through qualitative and quantitative means. A grounded theory of

interdisciplinary collaboration in software localisation emerged which explains how

development and localisation professionals apply strategies of interdisciplinary

collaboration based on existing external influences and interdisciplinary conflicts. This

theory contributes to answering what makes software localisation difficult.

6.2.1 A Grounded Theory of Interdisciplinary Collaboration

The interviews led to a grounded theory of interdisciplinary collaboration in software

localisation in which external influences, strategies of professionals and interdisciplinary

conflicts interact with each other. The main concern of participants is the facilitation of

interdisciplinary collaboration across development and localisation. Strategies of

developers and localisers to that end are shaped by external influences outside of their

control, e.g. success criteria and the workings of development and CAT tools. Those

influences interact with strategies, and lead to conflicts in interdisciplinary collaboration.

Localisation issues are caused when its cost, quality and schedule goals are compromised

through and replaced by developers’ and localisers’ individual interests.

186

6.2.2 Localisation is Difficult Due to its Multidisciplinary Character

Software localisation is difficult. Previous research has mostly seen this difficulty in the

context of the brobdingnagian number of cultural idiosyncrasies, how to represent and

manage them in software, and how to provide translations quickly and efficiently.

This research has examined the difficulty in software localisation in the context of two

disciplines with different practices, epistemologies and work focuses working together. It

becomes apparent when observing software localisation in practice. For developers,

software localisation is a product-centric process to be integrated into existing software

development processes. It involves the creation of a technical infrastructure and the

separation of code and content. For localisers, software localisation is a culture-centric

outcome determined by the product it lives in. It involves the management of translation

and text through the integration and processing of translation-relevant information. Thus,

different views collide in practice, and when there is no even playing field to negotiate

processes and aims, the power of one discipline over the other shapes an entire aspect of

an undertaking that should involve both.

6.2.3 Localisation Issues are Caused by the Separation of Disciplines

Localisation errors can be caused by the strict separation between localisation and

development. In the course of the interviews, it has been shown that the development

side has been virtually always the centre of localisation management: by instruction when

processes or interfaces were defined towards the localisation side, or by omission when

localisation and its management was simply outsourced to an external agency.

6.2.4 Cross-Disciplinary Knowledge Trumps Cultural Competence

Barbour and Yeo (1997) suggested that tackling ethnocentrism, i.e. a preference of

Western culture, is an important step towards developing truly international software. In

this research, that stance found recognition by examining cultural competence. However,

taking into account the interview results, the hierarchical position of software

engineering above other matters in software development as described by e.g. Low et al.

(1996) seems a better explanation for localisation issues.

187

6.2.5 Support for the Notion of a Software Engineering Mind-Set

Although the survey results are not a comprehensive confirmation of the notion that

developers have an attitude problem towards other disciplines, to the best of my

knowledge, this is the first explanatory empirical support for the notion.

6.3 Implications for Practice

While this research did not aim to create and evaluate recommendations and guidelines,

the results provide an understanding of the process of software localisation as source of

cost, quality and schedule issues. The findings of this research have significance for

organisations developing and localising international software, individual developers and

localisers, and those who manage them. Sharp et al. (2005) argue that there is a benefit in

increasing accountability by making software development processes visible and

generally available. A description of how localisation and software development conflict

and how localisation issues are caused is essential for improving software localisation

overall and increasing its efficiency and effectiveness towards currently underemphasized

factors such as quality.

6.3.1 No Complete and Comprehensive List of Cultural Differences

During the research, a common, almost universal, desire of software developers was

what they must perceive as the holy grail of internationalisation: a comprehensive and

complete list of all aspects that must be variable in an application so that it is completely

internationalised. It mirrors the description of Green (1994) that developers expect a self-

contained deliverable which is easy to understand, apply, and integrate into their

processes. To paraphrase Cooper (2004), developers ask for a universal guide for a

problem that needs to be solved on a case-by-case basis. The notion of a list of cultural

difference might also lie at the heart of cultural resource banks or repositories discussed

in the literature (Ryan et al., 2009; Smith and Dunckley, 2007; Mahemoff and Johnston,

1998). Maybe this view is one of the main causes of the phenomenon noted by

Austermühl and Mirwald (2010), that translators’ self-image as intercultural

communication experts is not shared by the localisation industry, who instead see them

as a source of linguistic and technological skill.

188

Of course, such a list does not exist, and cannot exist considering the variation of culture

and the infinite number of potential cultural differences. These are context-dependant,

i.e. depend on what the software is supposed to achieve. In fact, as Ito and Nakakoji

(1996) write, the term cultural difference is insofar misleading. Improvement might

instead be obtained by perceiving differences as manifestations of different social

backgrounds. Ito and Nakakoji hence do not give a list of cultural differences or elements

in software. Instead, they identify the cultural impact on different stages of the human-

computer interaction process. This might be helpful when conducting locale-usability

tests as discussed by del Galdo (1996).

Boehm (2011) writes that postmodern software development de-emphasising the

positivistic notion of certainty has not quite arrived yet. One might argue that a request

for a complete and comprehensive list of cultural differences is a further manifestation of

a modernist paradigm in software development as discussed by Robinson et al. (1998) in

two ways: First, such a list is supposed to give certainty where, according to the

postmodernist view on software localisation by Barbour and Yeo (1997) and confirmed by

the research results of Sun (2004a), no certainty exists because the interpretation of UI in

cultural context has to be left to the user, not software developer or even localiser.

Second, it illustrates the hierarchical supremacy of software engineering within software

development as it marginalises cultural expertise to something that can be separated

cleanly, its implementation then left to software engineers.

6.3.2 Localisation as Process Rather than Deliverable

Instead of seeing localisation as a deliverable, localisation should instead be an activity

exercised during product design, requirements engineering and implementation

(Giammarresi, 2011). Many accounts suggest that, especially in projects where it is

outsourced, localisation is reduced to an activity to separate text from code and use

available localisation APIs. This might be traced back to the basic idea of

internationalisation and the assumption that a separation of locale-dependent and locale-

independent parts of software would also extent itself to processes and social

relationships. This research’s results suggest that O’Sullivan’s (2001b) argument about the

choice between process model and architecture model is incomplete. He suggests the

architecture model, ironically in order to reduce the number of localisation-caused

189

software bugs. But this choice does not make a process model obsolete. Collaboration,

the social dependency, is always conducted in some way, even if the choice is not to

collaborate. The communication researcher Paul Watzlawick has been famously ascribed

the quote that “one cannot not communicate”, meaning that even the total refusal to

interact is an act of communication. Likewise, if there is a technical dependency, one

cannot not collaborate insofar as even the most minimal imaginable contribution from

one discipline still affects the work activities and output of the other.

6.3.3 Counteracting Control, Agency and Dominance in Localisation

If, as was suggested, internationalisation, existing localisation and processes and tools

might follow an attempt to control the workforce in the sense of scientific management,

then it might be worth considering alternatives, e.g. empowering the workforce by giving

them access to training, budget, information and most of all authority to make decisions

for which they are then responsible (Tubbs and Moss, 2003).

When the ultimate decision for the shape of the product lies with the development side,

it also needs to be tasked with resolving and avoiding translation and localisation errors.

This is, in fact, a key recommendation of Dr. International (2003, p.15), yet rarely seems

to be applied in practice. In fact, sharing of responsibility and performance measures have

been identified as strategies to counter selfish behaviour by the agent. Further, an

increased inclusion of the development side in localisation might include an introspective

examination of the motivations for localisation and its respective acknowledgement.

There might be a variety of reasons, from concern to the international user to fulfilment

of a legal requirement of a target market. Hence, the motivation to localise software

should inform not only the budget, but also the overall localisation strategy as well as the

level of commitment applied to localisation from the development side.

6.3.4 Creating Cross-Disciplinary Knowledge

In the light of the dominance that the development side exerts over software localisation,

and the catering for it by the agency model, it is all the more surprising that in this

research, comparatively little insight on the development side was observed that

localisation errors might be systemic, i.e. that certain localisation issues might be an

inherent property of development and localisation processes. This is unfortunate because

190

the survey results in particular can be interpreted to mean that developers and the

development process have an influence on localisation effort: it correlates with software

type and number of languages, which are aspects of development. This suggests that

localisation issues, and in particular quality problems, are not results of random events

and can be avoided.

Cross-disciplinary awareness, i.e. an understanding of each other’s competence and

ability, seems to be a central aspect of interdisciplinary collaboration. Developers do not

need to be localisers and vice versa, but key knowledge can be identified, such as the

importance of context or placeholder syntax. The idea behind this is to break up the

entrenchment where either side does not know what the other side needs or does.

6.4 Limitations

All samples and sample origins were reported along with all data exclusions, all

manipulations and all measures, which were entirely made in good faith towards a

scientific result. A number of factors reduce generalisability and representativeness:

The GT method emphasises contextual fit and theory progression over representativeness

and generalisability to begin with. Both are further reduced due to the extremely wide

range of development, localisation processes and configurations, making a representative

sample of development-localisation configurations difficult.

GT is sometimes described as a method to help finding the problem. In this thesis, what

was found was a problem. The categories and concepts identified in the theory reflect the

interview accounts and were obtained mostly through line-by-line and paragraph coding,

classification and conceptualisation. Coding was conducted with post-formed codes

developed during analysis. No existing theoretical framework was used and to the best of

my knowledge, there were no existing applicable studies. Microanalysis was conducted

during open coding and whenever accounts or details were unclear later.

Although the GT process result was initially descriptive, during a later conceptual analysis,

categories, relationships, and to a degree also properties emerged leading to a narrow

and substantive theory beyond mere description. However, the identified theory is not

the only possible way to organise and interpret the data.

191

Validation occurred during data collection by comparing new data with existing data. To

improve validity further, a number of recommendations by Runeson and Höst (2009)

were followed, i.e. the interview protocol was supervisor-reviewed, and cases were

thoroughly examined, including looking for contradictions to the developing theory. Inter-

rater reliability measures ensuring similar coding were not applied as I was the only coder

for this thesis.

Pure translators without a management role are probably underrepresented. Every effort

was made to increase participation of translators. Since interviewees often chose to be

interviewed during working hours, it can be speculated that translation freelancers are

less motivated to participate because participation comes out of their own time, whereas

many participating developers and LSP project managers are employed and participation

during work time are seen as no personal sacrifice.

The survey used a convenience sample, which is not representative of the entire

population of localisation professionals. However, convenience samples allow easier

recruitment, leading to more participants. Examples for the limitations of the

generalisability of the survey results are a clear nationality skew towards German, British

and US-American.

The survey is limited regarding validity and reliability of some of its instruments, i.e.

whether measurements are repeatable and actually measure the intended constructs.

The CQS is a validated instrument and was used without changes. The instruments

measuring ATL, SEL and SEU were adapted from validated instruments. As a construct, LE

was not validated. During analysis, it was noted that some of the LE questions, specifically

Q.64 to Q.67, need to be rephrased for a better inclusion of translators and localisers.

Respectively, the instruments measuring ATL, SEL and SEU could be re-validated and LE

improved and validated to increase the robustness of results of a repeat survey,

preferably with a probabilistic sample for improved generalisability.

The survey was designed to be applicable and comprehensible for both developers and

localisers. A piloting phase showing no comprehensibility issues for translators. However,

during the actual data collection, repeated feedback was received from localisers who felt

that the survey was not relevant to them.

192

GT is, by definition, a method of exploratory research. Statistical survey analysis, on the

other hand, is by definition a method of explanatory research. However, due to the

limitations of the survey, the ad-hoc character of the tested hypotheses, and the liberal

use of regression and correlation measurements, the survey results should be considered

exploratory following recommendations by Kitchenham et al. (2008).

In order to address the limitations of this research, it is suggested to validate the items in

the survey and verify the GT results. For the latter, in addition to the methods already

employed in this research, Hoda (2011) verified data by presenting research results to

audiences at conferences and industry meetings and gathering feedback, and

triangulating interview data with observations. Similarly, Martin (2009) informally verified

through feedback and triangulated with observations and archival data. In order to avoid

further lengthy qualitative data collection, for this research it is suggested to obtain

feedback on the results from participants in a quantitative survey that is constructed so as

to avoid confirmation bias. This can be done with relatively little effort and later be

expanded into a study with a probabilistic sample of practitioners, including validated

constructs of the original survey in this research.

6.5 Future Work

Parts of the results of this study suggest a hierarchical relationship between development

and localisation. The survey further tested for cultural competence differences of

developers and localisers, but the GT results suggest that developers’ knowledge of how

localisers work is more important. Both hierarchical relationship and cross-discipline

knowledge can be tested, e.g. by measuring the locus of control as perceived by

localisers, which has been identified as a relevant construct in this context of socio-

technical aspects of work, or surveying developers’ knowledge of translation and

localisation processes.

A more ambitious project would be to develop a practical measure of localisation quality,

the lack of which currently appears as one of the biggest limitations both in localisation

and in conducting research about it. In this research, it was tried to partly address this by

measuring localisation effort instead. However, localisation quality assessments as

suggested by Nielsen (1996a, 1996b) and Sun (2004a), i.e. task performance tests across

different locales with respective users, are not practicable in surveys. Other suitable

193

definitions of localisation quality for surveys are not known (Lewis et al., 2009). If an

easily applied measure of localisation quality could be developed, it would open up the

possibility to reliably test the effects of various tools and processes, and it would become

possible to further examine the effects of outsourcing or CAT tools on quality. In this

research, since localisation quality was replaced by localisation effort, this was not

possible as the independent variable, i.e. use of CAT tools and outsourcing, was part of

the dependent construct LE.

Another more ambitious project might be to examine a software artefact and archival

data from its development process in order to identify localisation issues and their

causes. This could include focus group studies with the professionals involved during

original development. Such research might be used to verify the GT results of this

research by triangulation, but would be connected to serious effort and would have to

overcome a number of practical obstacles such as obtaining access.

The phenomenon of interdisciplinary collaboration should be examined further in a more

general sense. Existing research seems to focus on the narrow areas of collaboration in a

team and in the academic sector. However, I wonder if there is not a larger riddle here.

Some of the findings seem to suggest that the distinction between developer and

localiser might be more than just different work priorities and more or less conscious

profit maximisation strategies. Deep knowledge of a discipline or subject area might

inform our behaviour and cognition in a much more profound way. Questions to ask are

what effect affiliations to a discipline have on human perception, communication and

behaviour, and whether these are conscious or subconscious phenomena. It would be

most interesting to know whether disciplinary knowledge works as a communication filter

or influences perceptions of professionals.

194

Appendix A Survey

Note: Item numbers were not shown on the web form, but are shown here to simplify
identification in the text.

Software Localization Survey

In this survey, we examine the interoperation of software development and localization
processes and its influence on quality and development effort. If you have ever
participated in the creation of software for international markets, including websites,
then this survey is for you, regardless of how much you know about software
localization.

The survey serves scientific purposes only. The collected data from all participants will
be pooled and participants will remain anonymous. Any data will be treated
confidentially.

This survey is divided into five parts. Completing it takes approximately 15 to 20
minutes.

For the purposes of this survey, “localization” refers to adapting a product for different
markets, languages and cultures (e.g. translation of user interface text). A “localizer”
would be the person doing this. Usually, this is also a translator. “Localization” in the
context of this survey also includes “internationalization”.

Instructions:

- Please follow the instructions and read each question carefully before
answering.

- Answer questions speedily and in the given order. Don’t skip any questions.
- Don’t worry if you are not sure about the precise meaning of a question or

statement. Make a guess and follow your instincts.
- If none of the answer options fit perfectly, choose the one that comes closest.
- There are no “right” or “wrong” answers.
- It is ok to choose the “I don’t know” option often. A substantial goal of the

survey is to determine how much knowledge about software localization is
available in the development community.

If you have any questions or comments, please feel free to contact us at
locdevresearch@uwl.ac.uk.

Part 1

1. What is your age in years?

2. What is your gender?

Male / Female

195

3. Have you been working on software projects which were localized?

Yes / No / I don’t know

4. What is your nationality?

5. What is your highest level of education you have completed?

o High School, Grammar school, Gymnasium or equivalent
o Bachelor’s degree or equivalent (e.g. BA, BSc)
o Master’s degree or equivalent (e.g. MSc, MA)
o Doctoral degree or equivalent (e.g. PhD, Dr)
o Other, please specify: _________________________

Part 2

Thank you for participation so far. The second section considers perceptions of and
opinions about software localization. Please rate the following statements on a scale
from “strongly disagree” to “strongly agree”.

6. For me, software localization is not a regular concern on a day-to-day basis.

7. Applying knowledge in software localization can help me to create more
effective software for international users.

8. I am confident about my ability to do well in a software project which is
localized.

9. If the software project I am working on is localized, this will only mean more
work for me.

10. I do not think that software localization will be useful for the software projects I
am working on.

11. I feel at ease learning about software localization.

12. Software localization helps increasing the user base of software projects I am
working on.

13. I am not the type to do well with software localization.

14. Software localization will increase the usability of the software I am working on
for international users.

15. Any gain through software localization can be achieved just as well some other
way.

196

16. The thought of software localization being a part of the software project I am
working on frightens me.

17. Software localization is confusing to me.

18. Software localization is necessary for software projects to adhere to local laws
and customs.

19. I do not feel threatened by the impact of software localization on my software
projects.

20. I am anxious about software localization in my software projects because it
might interfere with my efforts or ideas.

21. Software localization helps avoid misunderstandings and offenses for
international users of the software I am working on.

22. I don't see how software localization can improve my software project for
international users.

23. I feel comfortable about my ability to handle software localization in my
software projects.

24. Knowing about software localization will not be helpful in my future work.

25. I feel confident employing localization-related functionalities of UI frameworks
(e.g. WPF, Cocoa).

26. I feel confident documenting context information about the software I'm
developing for a translator.

27. I feel confident deciding what elements of an application need to be localized.

28. I feel confident handling translations from third parties for inclusion in the
software I'm developing.

29. I feel confident working on projects which use Unicode.

30. I feel confident creating a clear user interface layout for software.

31. I feel confident conducting usability tests.

32. I feel confident phrasing error messages for software in a helpful way.

33. I feel confident analyzing feedback from usability tests.

34. I feel confident implementing changes suggested by usability experts in the
software I'm developing.

197

Part 3

Following are 20 statements about your general interactions with other cultures in
everyday situations. Read each statement and select the response that best describes
your capabilities. Select the answer that BEST describes you AS YOU REALLY ARE (1 =
strongly disagree; 7 = strongly agree).

35. I am conscious of the cultural knowledge I use when interacting with people with
different cultural backgrounds.

36. I adjust my cultural knowledge as I interact with people from a culture that is
unfamiliar to me.

37. I am conscious of the cultural knowledge I apply to cross-cultural interactions.

38. I check the accuracy of my cultural knowledge as I interact with people from
different cultures.

39. I know the legal and economic systems of other cultures.

40. I know the rules (e.g., vocabulary, grammar) of other languages.

41. I know the cultural values and religious beliefs of other cultures.

42. I know the marriage systems of other cultures.

43. I know the arts and crafts of other cultures.

44. I know the rules for expressing nonverbal behaviors in other cultures.

45. I enjoy interacting with people from different cultures.

46. I am confident that I can socialize with locals in a culture that is unfamiliar to
me.

47. I am sure I can deal with the stresses of adjusting to a culture that is new to me.

48. I enjoy living in cultures that are unfamiliar to me.

49. I am confident that I can get accustomed to the shopping conditions in a
different culture.

50. I change my verbal behavior (e.g. accent, tone) when a cross-cultural interaction
requires it.

51. I use pause and silence differently to suit different cross-cultural situations.

198

52. I vary the rate of my speaking when a cross-cultural situation requires it.

53. I change my nonverbal behavior when a cross-cultural situation requires it.

54. I alter my facial expressions when a cross-cultural interaction requires it.

Part 4

In this part, we’d like to learn more about your experiences. Please answer the
questions in this section for your most recent finished software project which was
localized.
If none of your previous projects were localized, but your current project is, please
answer the questions for your current project.

55. What kind of software was your most recent localized project? Check all that
apply.

o Application software
o Videogame
o Website
o Mobile App
o System Software
o Firmware
o Other, please specify: _________________________

56. Who are typical users of your most recent localized project?

o Private end-users
o Other software developers
o Scientists
o Companies
o Government institutions
o Educational institutions
o Other, please specify: _________________________

57. Are the users of your most recent localized project your customers?

o Yes
o No
o Partly
o I don’t know.
o This question doesn’t apply.

(Help: For example, customers and users are not identical if:
 - a company commissions a website for promotion.
 - a hardware developer buys software for bundling with its hardware
 products.)

58. In a general sense, was your most recent localized project commercial or non-
commercial?

199

o Commercial
o Non-commercial
o I don’t know.

59. For how many target languages was your most recent localized product
localized? Select one:

o 1 – 5
o 6 – 15
o 16 – 30
o More than 30
o I have absolutely no idea.

(Help: If you don’t know the exact number, please make an approximation.)

60. What software development model was followed mostly during your most
recent localized project? Select one:

o Waterfall model
o Spiral model
o Agile model
o No particular model
o I don’t know.
o Other, please specify: _________________________

61. Which of the following statements applies for your most recent localized project?

o The localization requirements were clearly defined.
o Best practice guidelines for localization were provided.
o A glossary or corporate dictionary was used in the creation of UI

dialogues and text.
o Translations were stored for re-use in other projects.
o A dedicated person or team handled the technical aspects of localization.
o All developers could build, compile and run any language version of the

software.
o All language versions, including the original language, were released at

the same time.

62. How often was the importance of localization quality for your most recent

localized project emphasized by the project leaders?

o Never
o Once or twice
o A few times
o Often

200

63. Which parts of the software were localized in your most recent localized
project?

o User interface text
o Formatting, e.g. time and date and sort orders
o Units, e.g. measurements, currency and paper sizes.
o Colors, graphics and sound
o Navigation and layout
o Functionality
o Feature sets
o I don’t know.

64. Who did the translation work for your most recent localized project? Check all
that apply:

o Machine translation
o Employees with a different primary task, e.g. marketing or

documentation
o Users, for no charge (“crowdsourcing”)
o Customers who commissioned the project or language(s)
o Freelancers or external translators
o Agencies or localization/translation providers
o Full-time employees with the primary task of translating
o I don’t know

65. How could you communicate with the localizer during your most recent localized
project?

o There was no way for us to communicate with each other.
o Communication was unidirectional, e.g. I could contact the localizer, but

not the other way around.
o Communication was relayed through a third party, e.g. project managers

or agencies.
o We could communicate directly by email.
o We could communicate directly by phone.
o We could meet in person on reasonably short notice.
o Localizers were routinely present in meetings and/or part of the

development team.
o I don’t know.

66. How did the translators receive the text to be translated during your most recent
localized project? Check all that apply:

o We didn’t have text to translate.
o Translators edited the text directly in the program files.
o We mailed text in files, but there are no standard file formats to use.
o We mailed text in self-developed proprietary formats.
o We mailed text in txt files or XML files.

201

o We mailed text in standard office formats, e.g. word, excel or rich text
format.

o We mailed text in XLIFF format.
o We exchange text through online databases, content management

systems or translation memories.
o I don’t know.
o Other, please specify: _________________________

67. Context information helps translators in creating appropriate translations. What
kind of information sources were available to them in your most recent
localized project? Check all that apply.

o Direct access to project members (e.g. by phone or mail)
o Resource files (e.g. containing UI elements or text)
o Complete source code
o A written description of the software and its functionality
o Internal design documents
o Screenshots
o A working version (e.g. a prototype, pre-release version, or the full

product)
o None of the above.
o I don’t know.
o Other, please specify: _________________________

68. What quality assurance efforts were in place for your most recent localized project?
Check all that apply:

o Localization bugs were fixed when reported by customers.
o Some language versions were partially tested before release.
o All language versions were partially tested before release.
o Some language versions were fully tested before release.
o All language versions were fully tested before release.
o Automated scripts tested for missing translations, UI fit etc.
o All translations and/or localizations were reviewed by a second

translator/localizer.
o None of the above.
o I don’t know.
o Other, please specify: _________________________

Part 5

You have already finished four of five survey parts. The last part covers a few facts and
opinions about your previous experience with software localization.

69. What are your usual roles in software development? Check all that apply.

o Software engineer
o User interface designer
o Software architect

202

o Business analyst
o Project manager
o Translator/Localizer
o Technical editor
o Other, please specify: _________________________

70. For how many years have you been working on software projects for
international users?

71. Did you receive any training about software localization? Check all that apply:

o I have read books and/or articles dealing exclusively with software
localization.

o I have read books and/or articles dealing in part with software
localization.

o I have received informal training, e.g. from colleagues.
o I have received formal training, e.g. a course.
o None of the above.

72. In your opinion, what parts of software should be localized?

o User interface text
o Formatting, e.g. time and date, sort orders
o Units, e.g. measurements, currency, paper sizes, and currency
o Colors, graphics and sound
o Navigation and layout
o Functionality
o Feature sets
o None of the above
o Other, please specify: _________________________

73. Sort the following nouns according to what you consider most important for
software:

o Maintainability
o Reliability
o Correctness
o Execution speed
o Usability
o Power
o Popularity
o Success

74. Sort the following priorities according to what you consider most important for
software development outcomes:

o Costs within budget

203

o Quality on target
o Release on time

75. Do you feel that generally, responsibility of software quality for international
users is part of your roles?

Yes / No

Thank you for making it so far. We have two more questions which are stored
separately from your previous answers to ensure anonymity. Please follow the link
below:

-> Please follow this link for two final questions. <-

Thank you very much for completing the survey. The replies on this page are stored
separately and can’t be linked to your previous answers.

Please feel free to leave a comment:

- Do you have any feedback about this survey?
- Are there important aspects about software localization that have not been

mentioned?
- Would you like to leave your email to obtain a copy of the survey results?
- Is there anything else you would like to let us know?

You can also contact us directly at mailto:locdevresearch@uwl.ac.uk.

Experiences in software development are often specific and complex. For that reason,
we would also like to interview software developers in person or by phone to gain a
more comprehensive understanding. If you would be willing to discuss your
experiences, please fill in your email address below and we will get in touch with you.

(Help: Your email address will be saved separately and won't be linked to your replies
in the survey.)

Thank you very much for your participation!

If you have any further inquiries, please feel free to contact us at
locdevresearch@uwl.ac.uk.

mailto:
mailto:
mailto:locdevresearch@uwl.ac.uk

204

Appendix B Informed Consent Information Sheet

Information about Informed Consent for (telephone) interviews:

Ethical regulations require us to inform all participants of our research of the following:

In our research, we examine the interplay of software development and software
localisation and the interoperation of these two areas. Our research aims to understand
the impact of processes, infrastructure and interdisciplinary collaboration on required
effort and resulting quality. To this end, we conduct interviews with professionals from
related disciplines about their practices and experiences.

Our research is conducted according to the ethics codes of the Faculty of Professional
Studies at the University of West London, the Association for Computing Machinery
(ACM), and The British Sociological Association. The research has been reviewed and
approved by the University of West London Research Degree Committee.

You have the right to withdraw from participation at any time. Participation in this
research is voluntary.

You have a right to remain anonymous. All gathered data will be treated confidentially.
Publication of any data will be in anonymized form. No individuals and/or companies will
be identifiable. Confidential information will not be shared with anybody. Research
results will be published. Participants will receive a copy of the research results if they
want.

If you have any questions, you may ask them at any time.

205

Appendix C Interview Excerpt

Author: So, I'm just curious, what you just told me about that you have
this e-book xml or the xml file with the text for the buttons, erm, did you
that before, or did somebody, I mean, did somebody tell you, did your
engineer tell you that when you were [at company headquarters] last
time, and asked them about localisation? Or did they, how did you know
that, how it works?

Interviewee: Me?

Author: Yeah.

Interviewee: Because, erm, erm, er, I have thorough training about the
back office, you know. So... [CODE: source of knowledge of localisation
process and infrastructure]

Author: Ah ok. So that was part of the training.

Interviewee: Yeah, it was for the training [CODE: source of knowledge of
localisation process and infrastructure] [NOTE: Maybe participant
received training because he is involved with customers and customers
are involved with localisation.], and the, er, er, er, so this is a process.
You want any new languages, ok, you provide to us a file, an xml file,
with all the translation, and we are going to integrate after then in the
back office [CODE: localisation process]. Ok? So, we don't have a big
program, you know, with a culture between, between countries, because
if [customer 1] want to translate in German, is easy for, for them,
because there is a subsidiary [CODE: localisation by customer], there is
German people there, so the, they speak French and German, so they do
the work, and after they give to us the file.

Author: Ok. Just that I get this right, because for me if, if you, we look at
the brochure again, or the catalogue, well, we don't really, yeah, there it
is. I mean there are two separate things, right? One is the actual
brochure, the catalogue, and obviously [customer 1] has to, has to
translate themselves. Of that, you know, the customers, but for the
reader, for the buttons up there, you know, those, these are, in a way
those are part of your program. Right? So I'm just wondering: Do they
do the German translations, or do you get them somewhere else, or do
you get them from [customer 1], for the buttons?

Interviewee: Yeah, it's [customer 1] who give, who give the file. To us.

Author: Because I'm wondering, let's assume that for the next version of
your frontend you have a new button.

Interviewee: Ok.

206

Author: Then you need this translated in 32 languages, right?

Interviewee: We need to ask, erm, at each of our customer who want to
integrate this new feature. For example tomorrow we are going to
launch, I don't know, a new feature, a new button, I don't know, to share
on Facebook, maybe. To share the [unintelligible] on Facebook. So, if our
customer wants, er, this new feature, we are going to ask to them, so
we are going to launch a new product, and so, so we need a translation
for, er, for, er, for the display on the front office. So maybe takes time?
But you know, it's good.

Author: Yeah, I understand. But then you kind of, that means that you're
kind of dependant on your customers to get the translations?

Interviewee: No, because if, if we want, because it's not for us, it's our
customer who ask us, I want these languages, I want these languages.
So if they don't want the languages, it's not a problem for us. [CODE:
defer responsibility to customer]

Author: So you would, just that I get this right, so you would say the,
erm, the responsibility of getting the translations lies with the customer?

Interviewee: Yes.

207

Appendix D Memo example

Excerpt from the interview:

Author: Ok. You mentioned that there, basically, localisation is, I can
show you that here [refers to previously drawn diagram of the
participant’s localisation architecture], has these three parts: integration
framework...

Interviewee: Yes. Ok, so one of these apps is called the [framework
name], which is... every [local subsidiary] got a different billing system,
right? So if you're gonna write a generic thing that says, you know, pay,
authorize refund, then you need to have code at the backend which will
integrate to those backend systems. That by definition will be different
for every [local subsidiary], and therefore every [local subsidiary] needs
to, you know, write that part themselves. So we provide the framework,
and they write that code themselves.

This led to the following memo:

If the internationalisation is very general, then localisation work requires a lot of

coding!

It appears that localisation can be perceived as a mathematical problem: infinite

possible customisations allow infinite localisations – and then this particular

developer considers the task finished. As a consequence, in this project, the

interface between development and localisation is in the technical domain, not

between the technical and linguistic/cultural domains; as opposed to an

interface which is next to the, let’s say, technical and HCI domain, which then

can’t incorporate cultural issues which are not within HCI.

Does this mean that development might need interfaces to every domain

affected by localisation?

208

Appendix E Sample Request for a Call of Participation

This is a sample request to publish a call for participation. Requests were adapted
depending on whether the recipient was an individual or an organisation and was
situated on the technical or linguistic side. Here, the recipient is a translator interest
group, so the request mentions the localisation/linguist aspects of the research first:

Dear team at [organisation],

My name is Malte Ressin, I am a PhD student at the University of West
London. My thesis topic is the interoperation of software development
processes and software localisation, i.e. how issues such as quality,
effort and cost are affected by the way in which international software
is developed and localised, and the way in which those two disciplines
software localisation and software engineering collaborate.

For my research, I am among others conducting a survey aimed at
translators, project managers, software developers/engineers, UI
designers etc., who have worked on localised software. For this, I am still
looking for participants. Since [organisation], as a globalization and
localization community, probably also has many members with relation
to software localisation, I would like to ask if there is an unobtrusive way
in which I can inform the [organisation] community about my survey? I
tried to look into the member area at [organisation’s website], hoping to
find a forum. However, as I am not a member of an organisation which
is part of [organisation], it appears I have no proper access.

It would be very helpful if you could help me find participants for my
survey. It can be found behind this link:

http://samsa.uwl.ac.uk/locdevsurvey/survey.html

The survey is completely anonymous and any gathered information will
be treated confidently and only be used for my research. The survey
takes about 20 minutes to complete. The results will of course be shared
with participants, and if [organisation] could help me spread the link, I'd
be more than happy to share results with [organisation], too.

I will gladly mail you the survey as word file if you would like to take a
look at it first. Please contact me if you have any questions.

Thanks a lot and best regards,

Malte Ressin

209

Appendix F Interview, Transcription and Analysis Tools

Note: Skype, VLC media player and Notepad++ were updated regularly during research
so that specific version numbers cannot be provided.

Interview Tools

Recording device: Samsung YP-U3

VoIP software: Skype, available at www.skype.com

Recording plugin: MP3 Skype Recorder 2.1.1, available at www.voipcallrecording.com

Transcription Tools

Playback software: VLC media player, available at www.videolan.org

Coding software: WeftQDA 1.0.1, available at www.pressure.to/qda

NVivo 8, available at
www.qsrinternational.com/products_nvivo.aspx

Editor: Notepad++, available at www.notepad-plus-plus.org

Survey Tools

Survey software: LimeSurvey v1.90, available at www.limesurvey.org

Statistics Tools

Statistics software: SPSS 22, available at www.ibm.com/software/analytics/spss

210

Appendix G Publication Sources for Initial Literature Review

Conferences and Workshops

IWIPS www.iwips.org

Translating and the Computer www.translatingandthecomputer.com

Journals

Journal of Specialised Translation www.jostrans.org

Localisation Focus www.localisation.ie/oldwebsite/resources/locfocus

Localisation Ireland www.localisation.ie/oldwebsite/resources/locfocus

Translation Journal translationjournal.net/journal

Websites

The Localisation Research Centre www.localisation.ie

The Machine Translation Archive www.mt-archive.info

211

Publications

Ressin, M. (2012). Empirically Researching Development of International Software. In:
Proceedings of the 34th International Conference on Software Engineering (ICSE), 2 June
2012, Zürich, Switzerland.

Ressin, M. and Abdelnour-Nocera, J. (2011). Comparing Development Roles in Software
Localisation. In: 2nd International Workshop on Comparative Informatics, 2011, Denmark,
Copenhagen.

Ressin, M., Abdelnour-Nocera, J. and Smith, A. (2010). Localization and Agile
Development. In: Designing for Global Markets 9: Proceedings of the Ninth International
Workshop on Internationalisation of Products and Systems, Designing for Global Markets,
2010, London: Product & Systems International, p.173 – 176.

Ressin, M., Abdelnour-Nocera, J. and Smith, A. (2011). A Taxonomy of Software
Localization Issues with Connections to the Development Process. In: Designing for Global
Markets 10: Proceedings of the Tenth International Workshop on Internationalisation of
Products and Systems, 2011, Kuching, Malaysia.

Ressin, M., Abdelnour-Nocera, J. and Smith, A. (2011). Defects and Agility: Localization
Issues in Agile Development Projects. In: Agile Processes in Software Engineering and
Extreme Programming, 12th International Conference, XP 2011, Lecture Notes in Business
Information Processing 77, Heidelberg: Springer, p.316 – 317.

Ressin, M., Abdelnour-Nocera, J. and Smith, A. (2011). Lost in Agility? Approaching
Software Localization in Agile Software Development. In: Agile Processes in Software
Engineering and Extreme Programming, 12th International Conference, XP 2011, Lecture
Notes in Business Information Processing 77, Heidelberg: Springer, p.320 – 321.

Ressin, M., Abdelnour-Nocera, J. and Smith, A. (2011). Of code and context: collaboration
between developers and translators. In: CHASE ’11 Proceedings of the 4th international
workshop on Cooperative and human aspects of software engineering, 2011, Waikiki,
Honolulu, Hawaii, USA: ACM.

212

References

Abdelnour-Nocera, J., Dunckley, L. and Sharp, H. (2007). An Approach to the Evaluation of
Usefulness as a Social Construct Using Technological Frames. International Journal of
Human-Computer Interaction, 22 (1 & 2), p.153–172.

Abdelnour-Nocera, J. L. (2007). The Social Construction of Usefulness. Saarbrücken,
Germany: VDM Verlag.

Abdelnour-Nocera, J. L., Hall, P. A. V. and Dunckley, L. (2003). Making Sense in
Intercultural ERP Implementation. In: Evers, V., Röse, K., Honold, P., Coronado, J. and Day,
D. L. (eds.), Designing for Global Markets 5 - Proceedings of the Fifth International
Workshop on Internationalisation of Products and Systems, 2003, Berlin, Germany, p.135–
152.

Abdelnour-Nocera, J., Michaelides, M., Austin, A. and Modi, S. (2011). A Cross-national
Study of HCI Education Experience and Representation. In: 2nd International Workshop
on Comparative Informatics, 2011, Copenhagen, Denmark.

Abdelnour-Nocera, J. and Sharp, H. (2008). Adopting Agile in a Large Organization. In:
Agile Processes in Software Engineering and Extreme Programming, 2008, Berlin,
Germany: Springer, p.42–52.

Abufardeh, S. and Magel, K. (2008a). Culturalization of Software Architecture: Issues and
Challenges. In: International Conference on Computer Science and Software Engineering,
2008, p.436–439.

Abufardeh, S. and Magel, K. (2008b). Software localization: the challenging aspects of
Arabic to the localization process (Arabization). In: IASTED Proceeding: Software
Engineering SE 2008, 2008, Innsbruck, Austria, p.275–279.

Abufardeh, S. and Magel, K. (2009). Software Internationalization: Crosscutting Concerns
across the Development Lifecycle. In: 2009 International Conference on New Trends in
Information and Service Science (NISS 2009), 2009, Beijing, China: IEEE, p.447–450.

Abufardeh, S. and Magel, K. (2010). The Impact of Global Software Cultural and Linguistic
Aspects on Global Software Development Process (GSD): Issues and Challenges. In: 4th
International Conference on New Trends in Information Science and Service Science (NISS)
2010, 2010, Gyeongju, Korea: IEEE, p.133–138.

Abufardeh, S. O. (2008). A framework for the integration of internationalization and
localization activities into the software development process. PhD thesis, Fargo, ND, USA:
North Dakota State University.

Adair, J. G. (1984). The Hawthorne Effect: A reconsideration of the methodological
artifact. Journal of Applied Psychology, 69 (2), p.334–345.

Adolph, S., Hall, W. and Kruchten, P. (2011). Using grounded theory to study the
experience of software development. Empirical Software Engineering, 16 (4), p.487–513.

213

Agarwal, R. and Karahanna, E. (2000). Time Flies When You’re Having Fun: Cognitive
Absorption and Beliefs About Information Technology Usage. MIS Quarterly, 24 (4),
p.665–694.

Ahmed, T., Mouratidis, H. and Preston, D. (2008). Website Design and Localisation: A
Comparison of Malaysia and Britain. International Journal of Cyber Society and Education,
1 (1), p.3–16.

Albir, A. H. and Alves, F. (2009). Translation as a cognitive activity. In: The Routledge
Companion to Translation Studies, Revised ed., London, UK: Routledge, p.54–73.

Alchian, A. A. and Demsetz, H. (1972). Production, information costs, and economic
organization. The American Economic Review, 62 (5), p.777–795.

Ale Ebrahim, N., Ahmed, S. and Taha, Z. (2009). Virtual teams: a literature review.
Australian Journal of Basic and Applied Sciences, 3 (3), p.2653–2669.

Ali, A. and Kohun, F. (2007). It is Time to Add Kurdish Culture to VS .NET Globalization.
Issues in Informing Science and Information Technology, 4, p.353–363.

Allen, J. (1999). Adapting the Concept of ‘Translation Memory’ to ‘Authoring Memory’ for
a Controlled Language Writing Environment. In: Proceedings of the 21st International
Conference on Translating and the Computer, 1999, London, UK.

Allen, J. D., Anderson, D., Becker, J., Cook, R., Davis, M., Edberg, P., Everson, M., Freytag,
A., Iancu, L., Ishida, R., Jenkins, J. H., Lunde, K., McGowan, R., Moore, L., Phillips, A.,
Pournader, R., Suignard, M. and Whistler, K. (2015). The Unicode Standard Version 8.0 -
Core Specification. Mountain View, CA, USA: Unicode Consortium. [Online]. Available at:
http://www.unicode.org/versions/Unicode8.0.0/UnicodeStandard-8.0.pdf [Accessed: 14
October 2015].

Allen, T. J. (1977). Managing the flow of technology: Technology transfer and the
dissemination of technological information within the research and development
organization. Cambridge, MA, USA: MIT Press.

Amaya, V., Chapman, H., Coady, S., Comerford, T., Estreen, F., David-Moravia, F., Kearney,
R., Ryan, K., LIeske, C., Loomis, S., Michael, A., Morado Vásquez, L., O’Carroll, D., Ow, M.,
Prause, I., Raya, R., Ryoo, J. W., Savourel, Y., Schnabel, B., Schurig, J., Stahlschmidt, U.,
Waldhör, K., Walters, D. and Wasala, A. (2014). XLIFF Version 2.0. XLIFF Version 2.0.
[Online]. Available at: http://docs.oasis-open.org/xliff/xliff-core/v2.0/xliff-core-v2.0.html
[Accessed: 14 October 2015].

Amichai-Hamburger, Y. (2010). Designing a Net Intergroup Contact Platform: Dealing with
cultural Differences and Individual Similarities. In: 1st International Workshop on
Comparative Informatics, 2010, Copenhagen, Denmark.

Anastasiou, D. (2009). Localisation, Centre for Next Generation Localisation and
Standards. In: Explorations across Languages and Corpora - PALC 2009, 2009, Lodz,
Poland: Peter Lang Internationaler Verlag der Wissenschaften, p.401–410.

214

Anastasiou, D. (2010a). Open and flexible localization metadata. MultiLingual, 21 (4),
p.50–52.

Anastasiou, D. (2010b). Survey on the Use of XLIFF in Localisation Industry and Academia.
In: Language Resource and Language Technology Standards – state of the art, emerging
needs, and future developments Workshop, 2010, Malta.

Anastasiou, D. and Morado Vázquez, L. (2010). Localisation Standards and Metadata. In:
Metadata and Semantic Research, Communications in Computer and Information Science
108, Berlin, Germany: Springer, p.255–274.

Anastasiou, D. and Schäler, R. (2009). Lokalisierung - Lokalisierungskonzept,
Internationalisierung und Lokalisierung, Software-Lokalisierung [Localisation - Localisation
Concept, Iinternationalisation and Localisation, Software Localisation]. Sprache &
Sprachen - Zeitschrift der Gesellschaft für Sprache und Sprachen GeSuS e.V. [Speech and
Language - Magazine of the Society for Speech and Language GeSuS e.V.], 39, p.45–51.

Anastasiou, D. and Schäler, R. (2010). Translating Vital Information: Localisation,
Internationalisation, and Globalisation. Syn-Thèses, 3, p.11–25.

Andelfinger, U. (2002). On the Intertwining of Social and Technical Factors in Software
Development Projects. In: Dittrich, Y., Floyd, C. and Klischewski, R. (eds.), Social Thinking-
Software Practice, Cambridge, MA, USA: MIT Press, p.185–203.

Anderson, R. E., Engel, G., Gotterbarn, D., Hertlein, G. C., Hoffman, A., Jawer, B., Johnson,
D. G., Lidtke, D. K., Little, J. C., Martin, D., Parker, D. B., Perrolle, J. A. and Rosenburg, R. S.
(1992). ACM Code of Ethics and Professional Conduct. Communications of the ACM, 33
(5), p.94–99. [Online]. Available at: http://www.acm.org/about/code-of-ethics [Accessed:
14 October 2015].

Ang, S. and Van Dyne, L. (2008). Conceptualization of Cultural Intelligence: Definition,
Distinctiveness, and Nomological Network. In: Ang, S. and Van Dyne, L. (eds.), Handbook
of Cultural Intelligence, M.E. Sharpe, p.3–15.

Ang, S., Van Dyne, L., Koh, C., Ng, K.-Y., Templer, K. J., Tay, C. and Chandrasekar, N. A.
(2007). Cultural Intelligence: Its Measurement and Effects on Cultural Judgment and
Decision Making, Cultural Adaptation and Task Performance. Management and
Organization Review, 3 (3), p.335–371.

APA. (2009). Publication Manual of the American Psychological Association. 6th ed.
Washington, DC, USA: APA Books.

Arthur, K. (1998). Building in the international component. Localisation Ireland, 2 (2), p.8.
[Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/locfocus/issues/1998may.pdf
[Accessed: 14 October 2015].

Aryana, B. and Liem, A. (2011). Country-Specific Usability Evaluation: Experience from Iran
and Turkey. In: 2nd International Workshop on Comparative Informatics, 2011,
Copenhagen, Denmark.

215

Austermühl, F. and Mirwald, A. (2010). Images of Translators in Localization Discourse.
T21N - Translation in Transition. [Online]. Available at:
http://www.t21n.com/homepage/articles/T21N-2010-08-Austermuehl,Mirwald.pdf
[Accessed: 14 October 2015].

Austin, R. D. (2001). The effects of time pressure on quality in software development: An
agency model. Information Systems Research, 12 (2), p.195–207.

Badre, A. and Laskowski, S. (2001). The Cultural Context of Web genres: Content vs. Style.
Georgia Institute of Technology.

Badre, A. N. (2000). The Effects of Cross Cultural Interface Design Orientation on World
Wide Web User Performance. Georgia Institute of Technology. [Online]. Available at:
ftp://130.207.127.23/pub/gvu/tech-reports/2001/01-03.pdf [Accessed: 14 October
2015].

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review, 84 (2), p.191–215.

Banker, R. D. and Kemerer, C. F. (1992). Performance evaluation metrics for information
systems development: A principal-agent model. Information Systems Research, 3 (4),
p.379–400.

Barber, W. and Badre, A. N. (1998). Culturability: The Merging of Culture and Usability. In:
Proceedings of the 4th Conference on Human Factors and the Web, 1998, Basking Ridge,
NJ, USA. [Online]. Available at: http://research.microsoft.com/en-
us/um/people/marycz/hfweb98/barber/ [Accessed: 14 October 2015].

Barbour, R. H. and Yeo, A. (1997). Strategies of internationalisation and localisation: A
postmodernist’s perspective. University of Waikato Working Paper Series, 17. [Online].
Available at: http://researchcommons.waikato.ac.nz/handle/10289/1115 [Accessed: 14
October 2015].

Barnlund, D. C. (1970). A transactional model of communication. In: Language behavior: A
book of readings, The Hague, The Netherlands: Mouton, p.43–61.

Baron, R. A. (1995). How environmental variables influence behaviour at work. In: Collett,
P. and Furnham, A. (eds.), Social Psychology at Work: Essays in honour of Michael Argyle,
London, UK: Routledge, p.176–205.

Bauer, S. C. and Rodrigo, E. Y. (2004). Circumstances, challenges and consequences of a
quality-geared and technology-aided process of translating: a case study. Hieronymus -
professional quarterly journal of the ASTTI, 2/2004. [Online]. Available at:
http://www.tradulex.com/articles/Cerella-Yuste.pdf [Accessed: 14 October 2015].

Beecham, S., Baddoo, N., Hall, T., Robinson, H. and Sharp, H. (2008). Motivation in
Software Engineering: A systematic literature review. Information and Software
Technology, 50 (9 - 10), p.860–878.

216

Bijker, W. E. (1997). Of bicycles, bakelites, and bulbs: Toward a theory of sociotechnical
change. Cambridge, MA, USA: MIT Press.

Bikmatov, R., Glenn, N., Gladkoff, S. and Melby, A. (2013). Visualization of ITS 2.0
Metadata for Localization Process. Localisation Focus, 12 (1), p.74–77. [Online]. Available
at: http://www.localisation.ie/locfocus/issues/12/1 [Accessed: 14 October 2015].

Blackburn, J. D., Hoedemaker, G. and Van Wassenhove, L. N. (1996). Improving speed and
productivity of software development: a survey of European software developers. IEEE
Transactions on Software Engineering, 22 (12), p.875–885.

Bocij, P., Greasley, A. and Hickie, S. (2008). Business Information Systems: Technology,
Development and Management. 4th ed. Harlow, UK: Pearson Education.

Boehm, B. (2006). The future of software processes. In: Li, M., Boehm, B. and Osterweil, L.
J. (eds.), Unifying the Software Process Spectrum, Lecture Notes in Computer Science
3840, Berlin/Heidelberg, Germany: Springer, p.10–24.

Boehm, B. (2011). Some Future Software Engineering Opportunities and Challenges. In:
Nanz, S. (ed.), The Future of Software Engineering, Berlin, Germany: Springer, p.1–32.

Bohan, N., Breidt, E. and Volk, M. (2000). Evaluating Translation Quality as Input to
Product Development. In: Proceedings of the 2nd International Conference on Language
Resources and Evaluation LREC-2000, 2000, Athens, Greece. [Online]. Available at:
http://www.lrec-conf.org/proceedings/lrec2000/html/summary/136.htm [Accessed: 14
October 2015].

Bowker, L. (2005). Productivity vs quality? A pilot study on the impact of translation
memory systems. Localisation Focus, 4 (1), p.13–20. [Online]. Available at:
http://lrc.csisdmz.ul.ie/sites/default/files/publications/Vol4_1Bowker.pdf [Accessed: 14
October 2015].

Braverman, H. (1999). Labor and Monopoly Capitalism: The Degradation of Work in the
Twentieth Century. 2nd ed. New York, NY, USA: Monthly Review Press.

Brewer, W. F. and Lambert, B. L. (2001). The Theory-Ladenness of Observation and the
Theory-Ladenness of the Rest of the Scientific Process. Philosophy of Science, Supplement:
Proceedings of the 2000 Biennial Meeting of the Philosophy of Science Association. Part I:
Contributed Papers, 68 (3), p.176–186.

Briggs Myers, I. (1962). The Myers-Briggs Type Indicator: Manual. Palo Alto, CA, USA:
Consulting Psychologists Press.

Brooks, F. P. (1995). The mythical man-month: essays on software engineering.
Anniversary ed. Reading, MA, USA: Addison-Wesley.

Browne, K. (2005). An Introduction to Sociology. 3rd ed. Cambridge, UK: Polity Press.

Bryman, A. and Cramer, D. (1995). Quantitative Data Analysis for Social Scientists. Revised
ed. New York, NY, USA: Routledge.

217

BSA. (2002). Statement of Ethical Practice for the British Sociological Association. The
British Sociological Association - Giving Sociology a Voice. [Online]. Available at:
http://www.britsoc.co.uk/about/equality/statement-of-ethical-practice.aspx [Accessed:
14 October 2015].

Bumeder, B., Dietz, E. and Sander, M. (2003). Cultural Repository - How can Culture be
Integrated into an Engineering Portal. In: Evers, V., Röse, K., Honold, P., Coronado, J. and
Day, D. L. (eds.), Designing for Global Markets 5 - Proceedings of the Fifth International
Workshop on Internationalization of Products and Systems, 2003, Berlin, Germany, p.167–
173.

Bunting, R., Coallier, F. and Lewis, G. (2002). Interdisciplinary influences in software
engineering practices. In: Proceedings of the 10th International Workshop on Software
Technology and Engineering Practice, 2002, IEEE, p.62–69.

Caddell, M. and Hall, P. A. V. (2005). New Connections, Old Exclusions? Language, Power
and ICTs. In: Proceedings of the DSA Annual Conference 2005, 2005. [Online]. Available at:
http://www.bhashasanchar.org/pdfs/DSA_confpaper_v4.2.pdf [Accessed: 14 October
2015].

Caesar, M. and Fehrenbach, C. (2005). Management von Lokalisierungsprojekten
[Management of localisation projects]. In: Reineke, D. and Schmitz, K.-D. (eds.),
Einführung in die Softwarelokalisierung [Introduction to software localisation], Tübingen,
Germany: Narr, p.27–38.

Callele, D., Neufeld, E. and Schneider, K. (2008). Emotional Requirements. IEEE Software,
25, p.43–45.

Capretz, L. F. (2003). Personality types in software engineering. International Journal of
Human-Computer Studies, 58 (2), p.207–214.

Carey, J. M. (1998). Creating global software: a conspectus and review. Interacting with
Computers, 9, p.449–465.

Chavan, A. L., Gorney, D., Prabhu, B. and Arora, S. (2009). The Washing Machine That Ate
My Sari - Mistakes in Cross-Cultural Design. Interactions, 16 (1), p.26–31.

Chiaro, D. (2009). Issues in audiovisual translation. In: The Routledge Companion to
Translation Studies, London, UK: Routledge, p.141–165.

Choi, B., Lee, I., Kim, J. and Yunsuk, J. (2005). A Qualitative Cross-National Study of
Cultural Influences on Mobile Data Service Design. In: Proceedings of the SIGCHI
conference on Human factors in computing systems, 2005, Portland, OR, USA, p.661–670.

Choong, Y.-Y. and Salvendy, G. (1998). Design of icons for use by Chinese in mainland
China. Interacting with Computers, 9 (4), p.417–430.

Christiansen, E. (2010). Comparison as a process of translation. In: 1st International
Workshop on Comparative Informatics, 2010, Copenhagen, Denmark.

218

Clemmensen, T. (2010). Regional Styles of Human-Computer Interaction. In: Proceedings
of the 3rd International Conference on Intercultural Collaboration, 2010, ACM, p.219–222.

Clemmensen, T. and Roese, K. (2010). An overview of a decade of journal publications
about culture and human-computer interaction (HCI). In: Katre, D., Orngreen, R.,
Yammiyavar, P. and Clemmensen, T. (eds.), Human Work Interaction Design: Usability in
Social, Cultural and Organizational Contexts, IFIP Advances in Information and
Communication Technology 316, Berlin/Heidelberg, Germany: Springer, p.98–112.
[Online]. Available at:
http://openarchive.cbs.dk/bitstream/handle/10398/7948/WP_2009_003.pdf?sequence=
1 [Accessed: 14 October 2015].

Coleman, G. and O’Connor, R. (2008). Investigating software process in practice: A
grounded theory perspective. The Journal of Systems and Software, 81 (5), p.772–784.

Collins, R. W. (2001). Software Localization: Issues and Methods. In: European Conference
on Information Systems ECIS 2001 Proceedings, 4, 2001, Bled, Slovenia, p.36–44.

Collins, R. W. (2002). Software Localization for Internet Software: Issues and Methods.
IEEE Software, 19 (2), p.74–80.

Combe, K. R. (2011). Relationship management. In: Dunne, K. J. and Dunne, E. S. (eds.),
Translation and Localization Project Management: The Art of the Possible, American
Translators Association Scholarly Monograph Series XVI, Amsterdam, The Netherlands:
John Benjamins Pub. Co, p.319–345.

Cook, J. D. (2011). Software exoskeletons. The Endeavour. [Online]. Available at:
http://www.johndcook.com/blog/2011/07/21/software-exoskeletons/ [Accessed: 14
October 2015].

Cooper, A. (2004). The Inmates are Running the Asylum - Why High-tech Products Drive us
Crazy and How to Restore the Sanity]. Paperback ed. Indianapolis, IN, USA: Sams
Publishing.

Cosby, K. S. and Croskerry, P. (2004). Profiles in Patient Safety: Authority Gradients in
Medical Error. Academic Emergency Medicine, 11 (12), p.1341–1345.

Crabtree, C. A., Seaman, C. B. and Norcio, A. F. (2009). Exploring language in software
process elicitation: A grounded theory approach. In: Proceedings of the 2009 3rd
International Symposium on Empirical Software Engineering and Measurement, 2009,
Lake Buena Vista, FL, USA: IEEE Computer Society, p.324–335.

Creswell, J. W. and Clark, V. L. P. (2007). Designing and conducting mixed methods
research. 2nd ed. London, UK: Sage.

Cyr, D. (2008). Modeling Website Design across Cultures: Relationships to Trust,
Satisfaction and E-loyaly. Journal of Management Information Systems, 24 (4), p.47–72.

219

Cyr, D. and Trevor-Smith, H. (2004). Localization of Web design: An empirical comparison
of German, Japanese, and United States Web site characteristics. Journal of the American
Society for Information Science and Technology, 55 (13), p.1199–1208.

Dagenais, B., Ossher, H., Bellamy, R. K. E., Robillard, M. P. and de Vries, J. P. (2010).
Moving into a new software project landscape. In: Proceedings of the 32nd International
Conference on Software Engineering, 1, 2010, Cape Town, South Africa: ACM, p.275–284.

Deal, T. E. and Kennedy, A. A. (2000). Corporate Cultures: The Rites and Rituals of
Corporate Life. New York, NY, USA: Perseus Publishing.

De Dreu, C. K. and Weingart, L. R. (2003). Task Versus Relationship Conflict, Team
Performance, and Team Member Satisfaction: a Meta-Analysis. Journal of Applied
Psychology, 88 (4), p.741–749.

Dennis, H. S. (1975). The construction of a managerial communication climate inventory
for use in complex organizations. In: Annual Convention of the International
Communication Association, 1975, Chicago, IL, USA.

DePalma, D. A. (2006). Quantifying the return on localization investment. In: Dunne, K. J.
(ed.), Perspectives on Localization, American Translators Association Scholarly Monograph
Series XIII, Amsterdam, The Netherlands: John Benjamins Pub. Co, p.15–36.

Detweiler, M. (2007). Managing UCD Within Agile Projects. Interactions, May / June 2007,
p.40–42.

Dohler, P. N. (1997). Facets of Software Localization - A Translator’s View. Translation
Journal, 1 (1). [Online]. Available at: http://translationjournal.net/journal/softloc.htm
[Accessed: 14 October 2015].

Donnellon, A. (1993). Crossfunctional Teams in Product Development: Accommodating
the Structure to the Process. Journal of Product Innovation Management, 10 (5), p.377–
392.

Dr. International. (2003). Developing International Software. 2nd ed. Redmond, WA, USA:
Microsoft Press.

Dröge, R., Nowak, P. and Weber, T. (2006). Programmieren mit dem .NET Compact
Framework: Anwendungsentwicklung für mobile Geräte [Programming for the .NET
Compact Framework: Application Development for Mobile Devices]. Köln, Germany:
Microsoft Press.

Dunne, K. J. (2006). A Copernican revolution. In: Dunne, K. J. (ed.), Perspectives on
Localization, American Translators Association Scholarly Monograph Series XIII,
Amsterdam, The Netherlands: John Benjamins Pub. Co, p.1–11.

Dunne, K. J. (2011). Managing the fourth dimension - Time and schedule in translation
and localization projects. In: Dunne, K. J. and Dunne, E. S. (eds.), Translation and
Localization Project Management: The Art of the Possible, American Translators

220

Association Scholarly Monograph Series XVI, Amsterdam, The Netherlands: John
Benjamins Pub. Co, p.349–378.

Durkheim, E. (1893). The division of labour in society. New York, NY, USA.

Edwards, K. (2012). Inclusion and exclusion. MultiLingual, 23 (7), p.12–13.

Ellis, G. and Silk, J. (2014). Defend the integrity of physics. Nature, 516 (7531), p.321–323.

Elsen, H. (2005). Maschinelle Übersetzung in der Softwarelokalisierung [Machine
translation in software localisation]. In: Reineke, D. and Schmitz, K.-D. (eds.), Einführung
in die Softwarelokalisierung [Introduction to software localisation], Tübingen, Germany:
Narr, p.89–99.

Espinosa, A., Kraut, R., Slaughter, S., Lerch, J., Herbsleb, J. and Mockus, A. (2002). Shared
Mental Models, Familiarity, and Coordination: A Multi-Method Study of Distributed
Software Teams. ICIS 2002 Proceedings. [Online]. Available at:
http://aisel.aisnet.org/icis2002/39 [Accessed: 14 October 2015].

Esselink, B. (2000). A practical guide to localization. Revised ed. Philadelphia, PA, USA:
John Benjamins Pub. Co.

Esselink, B. (2003). Content Management and Translation - Two Worlds Together? In:
Evers, V., Röse, K., Honold, P., Coronado, J. and Day, D. L. (eds.), Designing for Global
Markets 5 - Proceedings of the Fifth International Workshop on Internationalization of
Products and Systems, 2003, Berlin, Germany, p.3–5.

Esselink, B. (2006). The evolution of localization. In: Pym, A., Perekrestenko, A. and
Starink, B. (eds.), Translation Technology and its Teaching, 14, Tarragona, Spain: Servei de
Publicacions, p.21–29. [Online]. Available at: http://isg.urv.es/library/papers/isgbook.pdf
[Accessed: 14 October 2015].

Evers, V., Maldonado, H., Brodecki, T. and Hinds, P. (2008). Relational vs. Group Self-
Construal: Untangling the Role of National Culture in HRI. In: 3rd ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 2008, Amsterdam, The Netherlands: IEEE,
p.255–262.

Exton, C., Spillane, B. and Buckley, J. (2010). A Micro-Crowdsourcing implementation: the
Babel software project. Localisation Focus, 9 (1), p.46–62. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol9_1ExtonSpillaneBuckley.
htm [Accessed: 14 October 2015].

Facebook. (2008). Facebook Releases Site in Spanish; German and French to Follow.
facebook press releases. [Online]. Available at:
http://newsroom.fb.com/news/2008/02/facebook-releases-site-in-spanish-german-and-
french-to-follow/ [Accessed: 14 October 2015].

Ferreira, J. (2011). User Experience Design and Agile Development: Integration as an on-
going achievement in practice. PhD thesis, Milton Keynes, UK: Open University.

221

Fetzer, J. H. (1988). Program verification: The very idea. Communications of the ACM, 31
(9), p.1048–1063.

Field, A. P. (2005). Discovering statistics using SPSS. 2nd ed. London, UK: SAGE.

Fissgus, U. and Seewald-Heg, U. (2005). Ausbildung in Softwarelokalisierung [Education in
software localisation]. In: Reineke, D. and Schmitz, K.-D. (eds.), Einführung in die
Softwarelokalisierung [Introduction to software localisation], Tübingen, Germany: Narr,
p.189–204.

Flick, U. (2002). An introduction to qualitative research. London, UK: Sage.

Forssell, D. (2001). One Translator’s Thoughts on Software Localization. Translation
Journal, 5 (3). [Online]. Available at: http://translationjournal.net/journal/17softloc.htm
[Accessed: 14 October 2015].

Freigang, K.-H. (2000). Anforderungen an Hardware und Software [Requirements on
Hardware and Software]. In: Schmitz, K.-D. and Wahle, K. (eds.), Softwarelokalisierung
[Software localisation], Tübingen, Germany: Stauffenburg, p.181–183.

Freigang, K.-H. and Reinke, U. (2005). Translation-Memory-Systeme in der
Softwarelokalisierung [Translation memory systems in software localisation]. In: Reineke,
D. and Schmitz, K.-D. (eds.), Einführung in die Softwarelokalisierung [Introduction to
software localisation], Tübingen, Germany: Narr, p.55–71.

French, J. R. P. and Raven, B. (1959). The bases of social power. In: Cartwright, D. (ed.),
Studies in Social Power, Ann Arbour, MI, USA: Institute for Social Research, p.150–167.

Friedman, A. L. (1993). The Information Technology Field: An historical analysis. In:
Quintas, P. (ed.), Social dimensions of systems engineering - People, processes, policies
and software development, Ellis Horwood series in interactive information systems, New
York, NY, USA: Ellis Horwood, p.18–33.

Fukuda, H. and Ohashi, Y. (1997). A Guideline for Reporting Results of Statistical Analysis
in Japanese Journal of Clinical Oncology. Japanese Journal of Clinical Oncology, 27 (3),
p.121–127.

GALA. (2015). Globalization and Localization Association. Globalization and Localization
Association. [Online]. Available at: http://www.gala-global.org/ [Accessed: 14 October
2015].

del Galdo, E. M. (1996). Culture and Design. In: del Galdo, E. M. and Nielsen, J. (eds.),
International User Interfaces, New York, NY, USA: John Wiley & Sons, p.74–87.

del Galdo, E. M. and Nielsen, J. (1996). Preface. In: del Galdo, E. M. and Nielsen, J. (eds.),
International User Interfaces, New York, NY, USA: John Wiley & Sons, p.v – vii.

Gerth, H. and Mills, C. W. (1991). From Max Weber: Essays in Sociology. Oxon, United
Kingdom: Routledge.

222

Giammarresi, S. (2011). Strategic views on localization project management - The
importance of global product management and portfolio management. In: Dunne, K. J.
and Dunne, E. S. (eds.), Translation and Localization Project Management: The Art of the
Possible, American Translators Association Scholarly Monograph Series XVI, Amsterdam,
The Netherlands: John Benjamins Pub. Co, p.17–50.

Gizaw, S. (2014). An Empirically Derived Personalisation Framework for Technical
Support. In: Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, 2014, ACM.

Gladwell, M. (2015). The Engineer’s Lament. The New Yorker. [Online]. Available at:
http://www.newyorker.com/magazine/2015/05/04/the-engineers-lament [Accessed: 14
October 2015].

Glaser, B. G. (1978). Theoretical Sensitivity: Advances in the Methodology of Grounded
Theory. Mill Valley, CA, USA: Sociology Press.

Glaser, B. G. and Strauss, A. L. (2009). The Discovery of Grounded Theory: Strategies for
Qualitative Research. 7th ed. Piscataway, NJ, USA: Transaction Publishers.

Glass, R. L. (2002). Facts and fallacies of software engineering. Boston, MA, USA: Addison-
Wesley Professional.

Glass, R. L. (2005). The Plot to Deskill Software Engineering. Communications of the ACM,
48 (11), p.21–24.

Glass, R. L., Ramesh, V. and Vessey, I. (2004). An analysis of research in computing
disciplines. Communications of the ACM, 47 (6), p.89–94.

Goggins, S. P. and Mascaro, C. (2011). Social Media Discourse and Culture: A Proposal for
Comparative Informatics Research. In: 2nd International Workshop on Comparative
Informatics, 2011, Copenhagen, Denmark. [Online]. Available at:
http://seangoggins.net/sites/default/files/ComparativeInformaticsStudyProposal-FINAL-
V3.pdf [Accessed: 14 October 2015].

Green, T. R. G. (1994). Why software engineers don’t listen to what psychologists don’t
tell them anyway. In: User-centred requirements for software engineering environments,
Springer, p.323–333.

Grigas, G. (2014). Designing Tablet Computer Keyboards for European Languages.
Localisation Focus, 13 (1), p.16–26. [Online]. Available at:
http://www.localisation.ie/locfocus/issues/13/1 [Accessed: 14 October 2015].

Grinter, R. E. (1995). Using a configuration management tool to coordinate software
development. In: Proceedings of the Conference on Organizational Computing Systems,
1995, ACM, p.168–177.

Grinter, R. E. (1996a). Understanding Dependencies: A Study of the Coordination
Challenges in Software Development. PhD thesis, Irvine, CA, USA: University of California.
[Online]. Available at:

223

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5130&rep=rep1&type=pdf
[Accessed: 14 October 2015].

Grinter, R. E. (1996b). Understanding the Role of Configuration Management Systems in
Software Development. In: Conference Companion on Human Factors in Computing
Systems, 1996, Vancouver, Canada, p.39–40.

de Groot, A. D. (1969). Methodology: Foundations of inference and research in the
behavioral sciences. The Hague, The Netherlands: Mouton.

de Groot, A. D. (2014). The Meaning of ‘Significance’ for Different Types of Research. Acta
Psychologica, 148, p.188–194.

Guttman, L. L. (1974). The Basis for Scalogram Analysis. In: Maranell, G. M. (ed.), Scaling:
A Sourcebook for Behavioral Scientists, Chicago, IL, USA: Aldine Pub. Co., p.142–171.

Hacker, W. (1986). Arbeitspsychologie: Psychische Regulation von Arbeitstätigkeiten
[Work psychology: Psychological Regulation of Work Activities]. Berlin, GDR: Deutscher
Verlag der Wissenschaften.

Hagen, J. U. (2013). Confronting Mistakes - Lessons from the Aviation Industry When
Dealing With Error. Basingstoke, UK: Palgrave Macmillan.

Hall, E. T. (1959). The Silent Language. New York, NY, USA: Doubleday & Co.

Hall, E. T. (1966). The Hidden Dimension. 1st ed. New York, NY, USA: Doubleday & Co.

Hall, E. T. (1977). Beyond Culture. New York, NY, USA: Anchor Books.

Hall, P. (1998). Designing Code Tables with Application to Nepali. Journal of Global
Information Management, 6 (4), p.5–14.

Hall, P. (2006). Localisation in Nepal. Localisation Focus, 5 (2), p.21–23. [Online]. Available
at: http://www.localisation.ie/oldwebsite/resources/locfocus/issues/Jun2006.pdf
[Accessed: 14 October 2015].

Hall, P. (2015). Computerised writing for small languages. Journal of Specialised
Translation, 24, p.163–186. [Online]. Available at:
http://www.jostrans.org/issue24/art_hall.pdf [Accessed: 14 October 2015].

Hall, P. A. V. (2000). Software Internationalization Architectures for Decision Support
Systems. In: Kersten, G. E., Zbigniew, M. and Gar-On Yeh, A. (eds.), Decision Support
Systems for Sustainable Development, New York, NY, USA: Kluwer Academic Publishers,
p.291–304.

Hall, P. A. V. (2002). Bridging the Digital Divide, the Future of Localisation. The Electronic
Journal of Information Systems in Developing Countries, 8 (1), p.1–9.

Hall, P. A. V. (2004). Localising Nations, saving languages: moving from Unicode to
Language Engineering. In: Proceedings of the 26th International Conference on Translating

224

and the Computer, 2004, London, UK. [Online]. Available at: http://mt-archive.info/Aslib-
2004-Hall.pdf [Accessed: 14 October 2015].

Hall, P., Bal, B. K., Dhakhwa, S. and Regmi, B. N. (2014). Issues in Encoding the Writing of
Nepal’s Languages. In: Computational Linguistics and Intelligent Text Processing, Lecture
Notes in Computer Science 8403, Berlin, Germany: Springer, p.52–67.

Hall, P., Ghimire, G. and Newton, M. (2009). Why Don’t People Use Nepali Language
Software? Information Technologies and International Development, 5 (1), p.65–79.

Hall, P., Lawson, C. and Minocha, S. (2003). Design Patterns as a Guide to the Cultural
Localisation of Software. In: Evers, V., Röse, K., Honold, P., Coronado, J. and Day, D. L.
(eds.), Designing for Global Markets 5 - Proceedings of the Fifth International Workshop
on Internationalization of Products and Systems, 2003, Berlin, Germany, p.79–88.

Hall, P., Parikh, T., Minocha, S. and Venkatesh, H. (2002). Localisation in South Asia.
Localisation Focus, 1 (3), p.4–5. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/locfocus/issues/2002dec.zip [Accessed:
14 October 2015].

Hammersley, M. (1992). What’s wrong with Ethnography? New York, NY, USA: Routledge.

Haralambos, M., Holborn, M. and Heald, R. (2004). Sociology: Themes and Perspectives.
6th ed. London, UK: HarperCollins.

Haralambos, M., Holborn, M. and Heald, R. (2013). Sociology: Themes and Perspectives.
8th ed. London, UK: HarperCollins.

Harper, R., Rodden, T., Rogers, Y. and Sellen, A. (eds.). (2008). Being Human: Human-
Computer Interaction in the Year 2020. Cambridge, UK: Microsoft Research.

Hartley, T. (2009). Technology and translation. In: Munday, J. (ed.), The Routledge
Companion to Translation Studies, London, UK: Routledge, p.106–127.

Heath, H. and Cowley, S. (2004). Developing a grounded theory approach: a comparison
of Glaser and Strauss. International Journal of Nursing Studies, 41 (2), p.141–150.

Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E. (2000). Distance,
dependencies, and delay in a global collaboration. In: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, 2000, ACM, p.319–328.

Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E. (2001). An empirical study of
global software development: distance and speed. In: Proceedings of the 23rd
International Conference on Software Engineering, 2001, IEEE Computer Society, p.81–90.

He, Z., Bustard, D. W. and Liu, X. (2002). Software internationalisation and localisation:
practice and evolution. In: Proceedings of the inaugural conference on the Principles and
Practice of Programming and the second Workshop on Intermediate Representation
Engineering for Virtual Machines, 2002, National University of Ireland, p.89–94.

225

Hirschheim, R. and Klein, H. K. (1989). Four Paradigms of Information Systems
Development. Communications of the ACM, 32 (10), p.1199–1216.

Hoda, R. (2011). Self-Organizing Agile Teams: A Grounded Theory. PhD thesis, Wellington,
New Zealand: Victoria University of Wellington. [Online]. Available at:
http://researcharchive.vuw.ac.nz/handle/10063/1617 [Accessed: 14 October 2015].

Hoda, R., Noble, J. and Marshall, S. (2010). Using Grounded Theory to Study the Human
Aspects of Software Engineering. In: HAoSE’10 Human Aspects of Software Engineering,
2010, Reno, NV, USA: ACM.

Hoda, R., Noble, J. and Marshall, S. (2011). Grounded Theory for Geeks. In: Proceedings of
the 18th Conference on Pattern Languages of Programs PLoP’11, 2011, Portland, OR, USA:
ACM, p.24–41.

Hoda, R., Noble, J. and Marshall, S. (2012). Developing a grounded theory to explain the
practices of self-organizing Agile teams. Empirical Software Engineering, 17 (6), p.609–
639.

Hofstede, G. and Hofstede, G. J. (2005). Cultures and organizations : software of the mind.
2nd ed. New York, NY, USA: McGraw-Hill.

Hoft, N. L. (1996). Developing a cultural model. In: del Galdo, E. M. and Nielsen, J. (eds.),
International User Interfaces, New York, NY, USA: John Wiley & Sons, p.41–73.

Hogan, J. M., Ho-Stuart, C. and Pham, B. (2004). Key Challenges in Software
Internationalisation. In: Hogan, J., Montague, P., Purvis, M. and Steketee, C. (eds.),
Proceedings of the second workshop on Australasian information security, Data Mining
and Web Intelligence, and Software Internationalisation, 32, 2004, Dunedin, New
Zealand: Australian Computer Society, Inc., p.187–194.

Honkela, T., Lehtola, A., Kalliomäki, S., Suitiala, R., Hudson, R., Karkaletsis, V. and Vouros,
G. (1997). A Recommended Globalization Method. In: Hall, P. A. V. and Hudson, R. (eds.),
Software Without Frontiers, Wiley Series in Software Engineering Practice, Chichester, UK:
John Wiley & Sons, p.33–49.

Hua, Z., Taslim, M. and Keating, M. (2014). Same but not the same: how much do we look
into it for localization design? In: Proceedings of HCI Korea 2015, 2014, Seoul, Korea:
Hanbit Media, Inc., p.83–87.

Hubscher-Davidson, S. E. (2009). Personal diversity and diverse personalities in
translation: A study of individual differences. Perspectives: Studies in translatology, 17 (3),
p.175–192.

Hudson, R. (1997). Introduction. In: Hall, P. A. V. and Hudson, R. (eds.), Software Without
Frontiers, Wiley Series in Software Engineering Practice, Chichester, UK: John Wiley &
Sons, p.1–13.

Hudson, R., McHugh, N. and Kalpakas, C. (1997). How Major Software Companies
Approach Globalization. In: Hall, P. A. V. and Hudson, R. (eds.), Software Without

226

Frontiers, Wiley Series in Software Engineering Practice, Chichester, UK: John Wiley &
Sons, p.15–32.

Illmensee, T. and Muff, A. (2009). 5 Users Every Friday: A Case Study in Applied Research.
In: AGILE ’09 Proceedings of the 2009 Agile Conference, 2009, Chicago, IL, USA, p.404–
409.

Immonen, J. and Sajaniemi, J. (2003a). Globalisation Practices in the Finnish Software
Industry. In: Evers, V., Röse, K., Honold, P., Coronado, J. and Day, D. L. (eds.), Designing for
Global Markets 5 - Proceedings of the Fifth International Workshop on
Internationalization of Products and Systems, 2003, Berlin, Germany, p.155–166.

Immonen, J. and Sajaniemi, J. (2003b). Software Globalisation in Finland: A State-of-the-
practice Survey. Joensuu, Finland: University of Joensuu, Department of Computer
Science. [Online]. Available at: ftp://cs.uef.fi/pub/Reports/A-2003-1.pdf [Accessed: 14
October 2015].

Irmler, U. and Hartwig, D. (2000). Sprachliche Qualität im lokalisierten Softwareprodukt:
Kriterien und Vorgehensweisen der Qualitätssicherung [Linguistic quality in the localised
software product: criterias and procedure of quality assurance]. In: Schmitz, K.-D. and
Wahle, K. (eds.), Softwarelokalisierung [Software localisation], Tübingen, Germany:
Stauffenburg, p.89–100.

Isa, W. A. R. W. M., Noor, N. L. M. and Mehad, S. (2010). Web Architectural-Inducing
Model (WA-IM) for Information Architecture in Cultural Context: An Empirical
Investigation. Journal of Digital Information Management, 8 (5), p.330–337.

ISO/IEC JTC 1/SC 2. (1998). ISO/IEC 8859-1:1998 8-bit single-byte coded graphic character
sets - Part 1: Latin alphabet No.1. Geneva, Switzerland: ISO/IEC.

ISO/IEC JTC 1/SC 2. (1999a). ISO/IEC 8859-2:1999 8-bit single-byte coded graphic
character sets - Part 2: Latin alphabet No.2. Geneva, Switzerland: ISO/IEC.

ISO/IEC JTC 1/SC 2. (1999b). ISO/IEC 8859-3:1999 8-bit single-byte coded graphic
character sets - Part 3: Latin alphabet No.3. Geneva, Switzerland: ISO/IEC.

ISO/IEC JTC 1/SC 2. (2011). ISO/IEC 14651:2011(E) Information technology - International
string ordering and comparison - Method for comparing character strings and description
of the common template tailorable ordering. Geneva, Switzerland: ISO/IEC.

ISO/IEC JTC 1/SC 2. (2014). ISO/IEC 10646:2014 Universal Coded Character Set (UCS).
Geneva, Switzerland: ISO/IEC.

ISO/IEC JTC 1/SC 7. (1991). ISO/IEC 9126:1991 Software engineering - Product quality.
Geneva, Switzerland: ISO/IEC.

ISO/IEC JTC 1/SC 7. (2011). ISO/IEC 25010:2011 Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models. Geneva, Switzerland: ISO/IEC.

227

ISO/IEC JTC 1/SC 22. (1998). ISO/IEC TR 11017:1998(E) Information technology -
Framework for internationalization. Geneva, Switzerland: ISO/IEC.

ISO/IEC JTC 1/SC 35. (2014). ISO/IEC TR 30112 Information technology - Specification
methods for cultural conventions. Geneva, Switzerland: ISO/IEC.

ISO TC 37/SC 2. (2002). ISO 639-1:2002 Code for the representation of names of
languages. Geneva, Switzerland: ISO.

ISO TC 46. (2013). ISO 3166-1:2013 Codes for the representation of names of countries
and their subdivisions - Part 1: Country codes. Geneva, Switzerland: ISO.

Ito, M. and Nakakoji, K. (1996). Impact of Culture on User Interface Design. In: del Galdo,
E. M. and Nielsen, J. (eds.), International User Interfaces, New York, NY, USA: John Wiley
& Sons, p.105–126.

Jensen, M. C. and Meckling, W. H. (1976). Theory of the Firm: Managerial Behavior,
Agency Costs and Ownership Structure. Journal of financial economics, 3 (4), p.305–360.
[Online]. Available at: http://www.sfu.ca/~wainwrig/Econ400/jensen-meckling.pdf
[Accessed: 14 October 2015].

Jin, L. (1997). Building an Internationalized Word Processor - A Case Study. In: Hall, P. A. V.
and Hudson, R. (eds.), Software Without Frontiers, Wiley Series in Software Engineering
Practice, Chichester, UK: John Wiley & Sons, p.123–133.

Juric, R., Kim, I. and Kuljis, J. (2003). Cross cultural web design: an experiences of
developing UK and Korean cultural markers. In: Proceedings of the 25th International
Conference on Information Technology Interfaces 2003, ITI 2003, 2003, Cavtat, Croatia:
IEEE, p.309–313.

Kahler, T. (2000). Projektmanagement in der Softwarelokalisierung: Eine Einführung
[Project management in software localisation: an introduction]. In: Schmitz, K.-D. and
Wahle, K. (eds.), Softwarelokalisierung [Software localisation], Tübingen, Germany:
Stauffenburg, p.11–19.

Kalliomäki, S., Lehtola, A. and Lagus, K. (1997). Internationalization Analysis. In: Hall, P. A.
V. and Hudson, R. (eds.), Software Without Frontiers, Wiley Series in Software Engineering
Practice, Chichester, UK: John Wiley & Sons, p.51–82.

Kamppuri, M. (2011). Theoretical and methodological challenges of cross-cultural
interaction design. PhD thesis, Joensuu, Finland: University of Eastern Finland. [Online].
Available at: http://epublications.uef.fi/pub/urn_isbn_978-952-61-0407-2/urn_isbn_978-
952-61-0407-2.pdf [Accessed: 14 October 2015].

Karkaletsis, E. A., Spyropoulos, C. D. and Vouros, G. (1995). The Use of Terminological
Knowledge Bases in Software Localisation. Lecture Notes in Computer Science, 898,
p.175–188.

Khodadady, E. and Ghahari, S. (2012). Exploring the Relationship Between Foreign
Language Proficiency and Cultural Intelligence. International Journal of Language

228

Learning and Applied Linguistics World, 1 (1), p.22–30. [Online]. Available at:
http://profdoc.um.ac.ir/paper-abstract-1035942.html [Accessed: 14 October 2015].

Kim, B. Y. and Kang, B.-K. (2008). Cross-Functional Cooperation with Design Teams in New
Product Development. International Journal of Design, 2 (3), p.43–54.

Kinzie, M. B., Delcourt, M. A. B. and Powers, S. M. (1994). Computer technologies:
Attitudes and self-efficacy across undergraduate disciplines. Research in Higher
Education, 35 (6), p.745–768.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C. and
Rosenberg, J. (2008). Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Transactions on Software Engineering, 28 (8), p.721–734.

Klein, J. T. (1990). Interdisciplinarity: History, theory, and practice. Detroit, MI, USA:
Wayne State University Press.

Klein, J. T. (2005). Interdisciplinary Teamwork: The Dynamics of Collaboration and
Integration. In: Derry, S. J., Schunn, C. D. and Gernsbacher, M. A. (eds.), Interdisciplinary
Collaboration: An Emerging Cognitive Science, New York, NY, USA: Psychology Press,
p.23–50.

Kling, R. (1996a). A Reader’s Guide to Computerization and Controversy’. In: Kling, R.
(ed.), Computerization and Controversy: Value Conflicts and Social Choices, 2nd ed., San
Diego, CA, USA: Morgan Kaufmann, p.4–9.

Kling, R. (1996b). Where are the Payoffs from Computerization? Technology, Learning,
and Organizational Change. In: Kling, R. (ed.), Computerization and Controversy: Value
Conflicts and Social Choices, 2nd ed., San Diego, CA, USA: Morgan Kaufmann, p.239–260.

Kokkotos, S. and Spyropoulos, C. (1997a). An Architecture for Internationalization. In:
Hall, P. A. V. and Hudson, R. (eds.), Software Without Frontiers, Wiley Series in Software
Engineering Practice, Chichester, UK: John Wiley & Sons, p.111–122.

Kokkotos, S. and Spyropoulos, C. D. (1997b). An Architecture for Designing
Internationalized Software. In: Budgen, D., Hoffnagle, G. and Trienekens, J. (eds.), Eigth
IEEE International Workshop on Software Technology and Engineering Practice
incorporating Computer Aided Software Engineering, 1997, London, UK: IEEE Computer
Society, p.13–21.

Kokkotos, S., Spyropoulos, C., Honkela, T., Kapylä, T., Lagus, K. and Hall, P. A. V. (1997).
Languages and Character Sets. In: Hall, P. A. V. and Hudson, R. (eds.), Software Without
Frontiers, Wiley Series in Software Engineering Practice, Chichester, UK: John Wiley &
Sons, p.135–157.

Kroeber, A. L., Kluckhohn, C., Untereiner, W. and Meyer, A. G. (1952). Culture - A critical
review of concepts and definitions. Cambridge, MA, USA: Peabody Museum of American
Archaeology and Ethymology, Harvard University.

229

Kruchten, P. (2005). Casting Software Design in the Function-Behavior-Structure
Framework. IEEE Software, 22 (2), p.52–58.

Kumhyr, D., Merrill, C. and Spalink, K. (1994). Internationalization and Translatability. In:
Proceedings of the First Conference of the Association for Machine Translation in the
Americas, 1, 1994, p.142–148.

Kvale, S. (2007). Doing Interviews, Sage Qualitative Research Kit 2. London, UK: Sage.

Lagus, K., Suitiala, R. and Honkela, T. (1997). Culture, Conventions and Local Practices. In:
Hall, P. A. V. and Hudson, R. (eds.), Software Without Frontiers, Wiley Series in Software
Engineering Practice, Chichester, UK: John Wiley & Sons, p.159–166.

Landsberger, H. A. (1958). Hawthorne Revisited. Ithaca, NY, USA: New York State School
of Industrial and Labor Relations.

Larman, C. and Basili, V. R. (2003). Iterative and incremental development: A brief history.
Computer, 36 (6), p.47–56.

Latane, B., Williams, K. and Harkins, S. (1979). Many Hands Make Light the Work: The
Causes and Consequences of Social Loafing. Journal of Personality and Social Psychology,
37 (6), p.822–832.

Law, L.-C. (2003). Challenges in Software Localization: A Case Study of a European
Educational Network. In: Evers, V., Röse, K., Honold, P., Coronado, J. and Day, D. L. (eds.),
Designing for Global Markets 5 - Proceedings of the Fifth International Workshop on
Internationalization of Products and Systems, 2003, Berlin, Germany, p.267–279.

LeBlanc, M. (2013). Translators on translation memory (TM). Results of an ethnographic
study in three translation services and agencies. Translation & Interpreting, 5 (2), p.1–13.
[Online]. Available at: http://trans-int.org/index.php/transint/article/view/228 [Accessed:
14 October 2015].

Leedy, P. D. and Ormrod, J. E. (2013). Practical Research: Planning and Design. 10th ed.
Upper Saddle River, NJ, USA: Pearson Education.

Lehtola, A., Kalliomäki, S., Honkela, T. and Lillqvist, R. (1997). An Application Framework
for Internationalization. In: Hall, P. A. V. and Hudson, R. (eds.), Software Without
Frontiers, Wiley Series in Software Engineering Practice, Chichester, UK: John Wiley &
Sons, p.83–110.

Leith, P. (1986). Fundamental errors in legal logic programming. The Computer Journal, 29
(6), p.545–552.

Lenker, M., Anastasiou, D. and Buckley, J. (2011). Workflow Specification for Enterprise
Localisation. Localisation Focus, 9 (1), p.26–35. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol9_1LenkerAnastasiouBuc
kley.htm [Accessed: 14 October 2015].

230

Levy, D. (2007). Love and sex with Robots: the evolution of human-robot relationships.
New York, NY, USA: HarperCollins.

Lewis, D., Curran, S., Feeney, K., Etzioni, Z., Keeney, J., Way, A. and Schäler, R. (2009).
Web Service Integration for Next Generation Localisation. In: Proceedings of the
Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language
Processing, SETQA-NLP ’09, 2009, Stroudsburg, PA, USA: Association for Computational
Linguistics, p.47–55.

Liem, A., Vatrapu, R. and Clemmensen, T. (2011). A Culture and Touchpoint Approach to
Improve Experiences in Service and Human-Computer Interaction Design. In: 2nd
International Workshop on Comparative Informatics, 2011, Copenhagen, Denmark.

Linberg, K. R. (1999). Software developer perceptions about software project failure: a
case study. Journal of Systems and Software, 49 (2), p.177–192.

Lindvall, M. and Rus, I. (2000). Process Diversity in Software Development. IEEE Software,
17 (4), p.14–18.

Lingotek. (2011). Lingotek - the translation network. The Localization Industry Standards
Association (LISA) shuts down operations. [Online]. Available at:
http://www.lingotek.com/localization-industry-standards-association-lisa-shuts-down-
operations [Accessed: 14 October 2015].

Linna, P. and Jaakkola, H. (2010). Toward finding culture assessment tools for SE
companies. In: Proceedings of the PICMET ’10 Conference, 18 July 2010, Phuket, Thailand,
p.1–6.

Liu, Z. and Zhang, G. (2011). Exploring Culture Factors in HCI Design: A Perspective from
SEUC. In: Proceedings of the 2nd International Workshop on Comparative Informatics
(IWCI 2011), 2011, Copenhagen, Denmark.

Low, J., Johnson, J., Hall, P., Hovenden, F., Rachel, J., Robinson, H. and Woolgar, S. (1996).
Read this and change the way you feel about software engineering. Information and
Software Technology, 38 (2), p.77–87.

Mahemoff, M. J. and Johnston, L. J. (1998). Software Internationalisation: Implications for
Requirements Engineering. In: Fowler, D. and Dawson, L. (eds.), Proceedings of the Third
Australian Workshop on Requirements Engineering, 1998, Geelong, Australia, p.83–90.

Malmkjaer, K. S. (2008). Translation competence and the aesthetic attitude. In: Pym, A.,
Shlesinger, M. and Simeoni (eds.), Beyond Descriptive Translation Studies, Benjamins
Translation Library 75, Amsterdam, The Netherlands: John Benjamins Pub. Co, p.293–309.

Marcus, A. (1996). Icon and Symbol Design Issues for Graphical User Interfaces. In: del
Galdo, E. M. and Nielsen, J. (eds.), International User Interfaces, John Wiley & Sons,
p.257–270.

Marcus, A. and Gould, E. W. (2000). Crosscurrents: Cultural Dimensions and Global Web
User-Interface Design. ACM Interactions, 7 (4), p.32–46.

231

Martin, A. M. (2009). The Role of Customers in Extreme Programming Projects. PhD thesis,
Wellington, New Zealand: Victoria University of Wellington. [Online]. Available at:
http://researcharchive.vuw.ac.nz/handle/10063/877 [Accessed: 14 October 2015].

Matsumoto, D., LeRoux, J., Ratzlaff, C., Tatani, H., Uchida, H., Kim, C. and Araki, S. (2001).
Development and validation of a measure of intercultural adjustment potential in
Japanese sojourners: The Intercultural Adjustment Potential Scale (ICAPS). International
Journal of Intercultural Relations, 25 (5), p.483–510.

Maxwell, K. (2002). The Maturation of HCI: Moving beyond Usability toward Holistic
Interaction. In: Carroll, J. M. (ed.), Human-Computer Interaction in the New Millenium,
New York, NY, USA: ACM Press, p.191–209.

Maylor, H. (2010). Project Management. 4th ed. New York, NY, USA: Pearson Education.

McConnell, S. (2004). Code Complete. 2nd ed. Redmond, WA, USA: Microsoft Press.

McHugh, N., Honkela, T. and Hudson, R. (1997). Quality Assurance. In: Hall, P. A. V. and
Hudson, R. (eds.), Software Without Frontiers, Wiley Series in Software Engineering
Practice, Chichester, UK: John Wiley & Sons, p.219–228.

McKethan, K. A. and White, G. (2005). Demystifying Software Globalization. Translation
Journal, 9 (2). [Online]. Available at: http://accurapid.com/journal/32global.htm
[Accessed: 14 October 2015].

McSweeney, B. (2002). Hofstede’s model of national cultural differences and their
consequences: A triumph of faith-a failure of analysis. Human relations, 55 (1), p.89–118.

Microsoft Corporation Editorial Style Board. (2004). Microsoft Manual of Style for
Technical Publications. 3rd ed. Redmond, WA, USA: Microsoft Press.

Milder, M. (2000). Projektmanagement in einem globalen Umfeld [Project management
in a global environment]. In: Schmitz, K.-D. and Wahle, K. (eds.), Softwarelokalisierung
[Software localisation], Tübingen, Germany: Stauffenburg, p.21–30.

Miles, M. B. and Huberman, A. M. (1994). Qualitative Data Analysis: An expanded
sourcebook. 2nd ed. London, UK: Sage.

Milgram, S. (1963). Behavioral study of obedience. The Journal of Abnormal and Social
Psychology, 67 (4), p.371–378.

Milgram, S. (1974). Obedience to Authority: An Experimental View. London, UK:
HarperCollins.

Moorkens, J. (2011). Translation Memories guarantee consistency: Truth or fiction? In:
Proceedings of the 33. International Conference on Translating and the Computer, 2011,
London, UK. [Online]. Available at: http://www.mt-archive.info/Aslib-2011-Moorkens.pdf
[Accessed: 14 October 2015].

232

Moorkens, J. (2012a). A mixed-methods study of consistency in translation memories.
Localisation Focus, 11 (1), p.14–26. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol11_1Moorkens.htm
[Accessed: 14 October 2015].

Moorkens, J. (2012b). Measuring Consistency in Translation Memories: a Mixed-Methods
Case Study. PhD thesis, Dublin, Ireland: Dublin City University. [Online]. Available at:
http://www.cngl.ie/wp-content/uploads/2014/10/Josh-Moorkens_PhD_Thesis.pdf
[Accessed: 14 October 2015].

Morado Vásquez, L., Anastasiou, D., Exton, C. and O’Keefe, I. (2011). Web 2.0 and
Localisation. In: Proceedings of the Social Media Engagement Workshop, World Wide Web
Conference, 28 March 2011, Hydarabad, India.

Morado Vázquez, L. and Mooney, S. (2010). XLIFF Phoenix and LMC Builder: Organising,
capturing and using localisation data and metadata. In: The Annual Conference
Proceedings of the Localisation Research Centre, Brave New World, University of Limerick,
LRC XV, 2010, Limerick, Ireland.

Mor, S., Toma, C., Schweinsberg, M. and Ames, D. (2015). Intercultural Judgment
Accuracy and the Role of Social Projection Processes. Centre Emile Bernheim Working
Papers, 15 (29). [Online]. Available at:
https://dipot.ulb.ac.be/dspace/bitstream/2013/206240/3/wp15029.pdf [Accessed: 14
October 2015].

Munday, J. (2009). Issues in translation studies. In: Munday, J. (ed.), The Routledge
Companion to Translation Studies, London, UK: Routledge, p.1–19.

Nardi, B. (2011). Occupational Identities. In: 2nd International Workshop on Comparative
Informatics, December 2011, Copenhagen, Denmark.

Nardi, B., Vatrapu, R. and Clemmensen, T. (2011). Comparative Informatics. Interactions,
18 (2), p.28–33.

Nielsen, J. (1996a). International Usability Engineering. In: del Galdo, E. M. and Nielsen, J.
(eds.), International User Interfaces, New York, NY, USA: John Wiley & Sons, p.1–13.

Nielsen, J. (1996b). International Usability Testing. useit.com. [Online]. Available at:
http://www.useit.com/papers/international_usetest.html [Accessed: 14 October 2015].

Nissani, M. (1990). A cognitive reinterpretation of Stanley Milgram’s observations on
obedience to authority. American Psychologist, 45, p.1384–1385. [Online]. Available at:
http://drnissani.net/MNISSANI/PAGEPUB/milgram.htm [Accessed: 14 October 2015].

Norušis, M. J. (2006). SPSS 15.0 Guide to Data Analysis. Upper Saddle River, NJ, USA:
Prentice Hall.

Nuzzo, R. (2014). Statistical Errors. Nature, 506 (13), p.150–152.

233

O’Donnell, A. M., DuRussel, L. A. and Derry, S. J. (1997). Cognitive processes in
interdisciplinary groups: Problems and possibilities. Research Monograph, National
Institute for Science Education, University of Wisconsin-Madison.

O’Keeffe, I. R. (2009). Music Localisation: Active Music Content for Web Pages.
Localisation Focus, 8 (1), p.67–81. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol8_1OKeeffe.htm
[Accessed: 14 October 2015].

Orlikowski, W. J. (1991). Integrated information environment or matrix of control? The
contradictory implications of information technology. Accounting, Management and
Information Technologies, 1 (1), p.9–42.

O’Sullivan, P. (2001a). Pat O’Sullivan’s award winning localisation thesis covers new
ground. Localisation Ireland, 5 (2), p.6–10. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/locfocus/issues/2001sept.pdf
[Accessed: 14 October 2015].

O’Sullivan, P. and Hyland, M. (2004). Engineering Global Software - A System Test
Standards Perspective. Localisation Focus, 3 (3), p.6–8. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/locfocus/issues/Sept2004.zip
[Accessed: 14 October 2015].

O’Sullivan, P. J. M. (2001b). A Paradigm for Creating Multilingual Interfaces. PhD thesis,
Limerick, Ireland: University of Limerick. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/Awards/Theses/PhD-PatOSullivan.zip
[Accessed: 14 October 2015].

O’Sullivan, P., Wallace, M. and Yousuf, N. (2003). A Software Model Approach to
Accommodating Cultural Diversity in the Development of Multilingual Applications. In:
Evers, V., Röse, K., Honold, P., Coronado, J. and Day, D. L. (eds.), Designing for Global
Markets 5 - Proceedings of the Fifth International Workshop on Internationalization of
Products and Systems, 2003, Berlin, Germany, p.9–28.

O’Sullivan, S. (1989). Problems in software translation and how to avoid them. In:
Proceedings of the 11th International Conference on Translating and the Computer, 1989,
London, UK, p.20–23. [Online]. Available at: http://www.mt-archive.info/70/Aslib-1989-
OSullivan.pdf [Accessed: 14 October 2015].

Ottmann, A. (2005). Lokalisierung von Softwareoberflächen [Localisation of software user
interfaces]. In: Reineke, D. and Schmitz, K.-D. (eds.), Einführung in die
Softwarelokalisierung [Introduction to software localisation], Tübingen, Germany: Narr,
p.101–115.

Paetsch, F., Eberlein, A. and Maurer, F. (2003). Requirements engineering and agile
software development. In: Proceedings of the 12th International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2003, IEEE Computer Society,
p.308–308.

234

Papaioannou, J. (2005). The Localisation Outsourcing Decision: How to. Localisation
Focus, 4 (3), p.17–20. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol4_3Papaioannou.htm
[Accessed: 14 October 2015].

Peng, W., Yang, X. and Zhu, F. (2009). Automation technique of software
internationalization and localization based on lexical analysis. In: Proceedings of the 2nd
International Conference on Interaction Sciences: Information Technology, Culture and
Human, 403, 2009, Seoul, Korea: ACM, p.970–975.

Pérez-Quiñones, M. A., Padilla-Falto, O. I. and McDevitt, K. (2005). Automatic Language
Translation for User Interfaces. In: TAPIA’05 2005 Richard Tapia Celebration of Diversity in
Computing Conference, 2005, Albuquerque, NM, USA: ACM, p.60–63.

Perlman, G. (1999). Universal Web Access: Delivering Services to Everyone. In: CHI’99
Extended Abstracts on Human Factors in Computing Systems, 1999, Pittsburgh, PA, USA,
p.347.

Perry, D. E., Staudenmayer, N. A. and Votta, L. G. (1996). Understanding and Improving
Time Usage in Software Development. In: Fuggetta, A. and Wolf, A. (eds.), Software
Process, Trends in Software 4, Chichester, UK: Wiley-Blackwell.

Perry, D., Porter, A. and Votta, L. (2000). Empirical Studies of Software Engineering: A
Roadmap. In: Proceedings of the Conference on The Future of Sofware Engineering, 2000,
Limerick, Ireland, p.345–355.

Pinto, J. K. (2015). Project Management: Achieving Competitive Advantage. 4th ed.
Boston, MA, USA: Prentice Hall.

Pittenger, D. J. (1993). Measuring the MBTI… and coming up short. Journal of Career
Planning and Employment, 54 (1), p.48–52. [Online]. Available at:
http://www.indiana.edu/~jobtalk/Articles/develop/mbti.pdf [Accessed: 14 October
2015].

Plonka, L., Segal, J., Sharp, H. and van der Linden, J. (2011). Collaboration in Pair
Programming: Driving and Switching. In: Agile Processes in Software Engineering and
Extreme Programming, Lecture Notes in Business Information Processing 77,
Berlin/Heidelberg, Germany: Springer, p.43–59.

Porsiel, J. (2008). Machine translation at Volkswagen: a case study. MultiLingual, 19 (8),
p.58–61.

Portanieri, F. and Amara, F. (1996). Arabization of Graphical User Interfaces. In: del Galdo,
E. M. and Nielsen, J. (eds.), International User Interfaces, John Wiley & Sons, p.127–150.

Pym, A. (2008). On Toury’s laws of how translators translate. In: Pym, A., Shlesinger, M.
and Simeoni, D. (eds.), Beyond Descriptive Translation Studies, Benjamins Translation
Library 75, Amsterdam, The Netherlands: John Benjamins Pub. Co, p.324–328.

235

Quintas, P. (1993). Introduction - Living the Lifecycle: Social processes in software and
systems development. In: Quintas, P. (ed.), Social dimensions of systems engineering -
People, processes, policies and software development, Ellis Horwood series in interactive
information systems, New York, NY, USA: Ellis Horwood, p.1–17.

Rafii, F. and Perkins, S. (1995). Internationalizing software with concurrent engineering.
IEEE Software, 5 (12), p.39–46. [Online]. Available at:
http://www.computer.org/csdl/mags/so/1995/05/s5039.pdf [Accessed: 14 October
2015].

Randall, D., Hughes, J. and Shapiro, D. (1993). Systems Development - The Fourth
Dimension: Perspectives on the social organization of work. In: Quintas, P. (ed.), Social
dimensions of systems engineering - People, processes, policies and software
development, Ellis Horwood series in interactive information systems, New York, NY, USA:
Ellis Horwood, p.197–214.

Rauterberg, M. (2006). Usability in the Future - explicit and implicit effects in cultural
computing. In: Heinecke, A. M. and Paul, H. (eds.), Mensch und Computer 2006: Mensch
und Computer im Strukturwandel [Human and Computer 2006: Human and Computer
within Structural Change], Oldenbourg Verlag, p.29–36.

Reineke, D. (2005). Softwarelokalisierungswerkzeuge [Software localisation tools]. In:
Reineke, D. and Schmitz, K.-D. (eds.), Einführung in die Softwarelokalisierung [Introduction
to software localisation], Tübingen, Germany: Narr, p.73–87.

Ressin, M. (2012). Empirically Researching Development of International Software. In:
Proceedings of the 34th International Conference on Software Engineering (ICSE), 2 June
2012, Zürich, Switzerland.

Rico, C. and Torrejón, E. (2012). Skills and Profile of the New Role of the Translator as MT
Post-editor. Tradumàtica, 10, p.166–178. [Online]. Available at:
http://ddd.uab.cat/record/105642/ [Accessed: 14 October 2015].

Robinson, H., Hall, P., Hovenden, F. and Rachel, J. (1998). Postmodern software
development. The Computer Journal, 41 (6), p.363–375.

Robson, C. (2011). Real World Research. 3rd ed. Oxford, UK: Wiley-Blackwell.

Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14 (2), p.131–164.

Rusakevičienė, A. and Kriaučionytė, R. (2012). Translating the Baltic languages.
MultiLingual, 23 (2), p.34–38.

Russo, P. and Boor, S. (1993). How Fluent is Your Interface? Designing for International
Users. In: INTERCHI’93, 1993, Amsterdam, The Netherlands, p.342–347.

Ryan, L., Anastasiou, D. and Cleary, Y. (2009). Using Content Development Guidelines to
Reduce the Cost of Localising Digital Content. Localisation Focus, 8 (1), p.11–28. [Online].
Available at:

236

http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol8_1RyanAnastasiouCleary
.htm [Accessed: 14 October 2015].

Sachse, F. (2005). Lokalisierungsformate [Localisation formats]. In: Reineke, D. and
Schmitz, K.-D. (eds.), Einführung in die Softwarelokalisierung [Introduction to software
localisation], Tübingen, Germany: Narr, p.145–167.

Salo, O. and Abrahamsson, P. (2004). Empirical evaluation of agile software development:
The controlled case study approach. In: Bomarius, F. and Iida, H. (eds.), Product Focused
Sofware Process Improvement, Lecture Notes in Computer Science 3009,
Berlin/Heidelberg, Germany: Springer, p.408–423.

Sasikumar, M. and Hegde, J. J. (2004). Software localisation: some issues and challenges.
In: SCALLA 2004, 2004, Kathmandu, Nepal. [Online]. Available at:
http://kbcs.in/downloads/papers/Localisation.pdf [Accessed: 14 October 2015].

Schäler, R. (1994). A Practical Evaluation of an Integrated Translation Tool during a Large
Scale Localisation Project. In: Proceedings of the 4th Conference on Applied Natural
Language Processing, 1994, Stuttgart, Germany.

Schäler, R. (2007). Reverse localisation. Localisation Focus, 6 (1), p.39–48. [Online].
Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol6_1Schaler.htm
[Accessed: 14 October 2015].

Schubert, K. (2009). Positioning translation in technical communication studies. Journal of
Specialised Translation, 11, p.17–30. [Online]. Available at:
http://www.jostrans.org/issue11/art_schubert.pdf [Accessed: 14 October 2015].

Seaman, C. B. (1999). Qualitative Methods in Empirical Studies of Software Engineering.
IEEE Transactions on Software Engineering, 25 (4), p.557–572.

Séguinot, C. (2007). Translation and the Changing Profession: A Cross-Disciplinary
Perspective. TTR: Traduction, terminologie, rédaction, 20 (1), p.171–191. [Online].
Available at: http://www.erudit.org/revue/ttr/2007/v20/n1/018502ar.html [Accessed: 14
October 2015].

Sharp, H., Woodman, M. and Hovenden, F. (2005). Using metaphor to analyse qualitative
data: Vulcans and humans in software development. Empirical Software Engineering, 10
(3), p.343–365.

Shneiderman, B., Mayer, R., McKay, D. and Heller, P. (1977). Experimental investigations
of the utility of detailed flowcharts in programming. Communications of the ACM, 20 (6),
p.373–381.

Sikes, R. (2011). Rethinking the role of the localization project manager. In: Dunne, K. J.
and Dunne, E. S. (eds.), Translation and Localization Project Management: The Art of the
Possible, American Translators Association Scholarly Monograph Series XVI, Amsterdam,
The Netherlands: John Benjamins Pub. Co, p.235–264.

237

Smith, A. and Dunckley, L. (2007). Issues for Human-Computer Interaction in Developing
Countries. In: User Centered Design and International Development, Workshop at CHI
2007, 2007, p.2.

Smith, A., Dunckley, L., French, T., Minocha, S. and Chang, Y. (2004). A process model for
developing usable cross-cultural websites. Interacting with Computers, 16, p.63–91.

Smith, A., Joshi, A., Liu, Z., Bannon, L., Gulliksen, J. and Li, C. (2007). Institutionalizing HCI
in Asia. In: Human-Computer Interaction – INTERACT 2007, Lecture Notes in Computer
Science 4663, 2, Springer, p.85–99.

Smith, V. (2013). Sociology of Work: An Encyclopedia. Los Angeles, CA, USA: SAGE
Publications.

Solheim, J. A. and Rowland, J. H. (1993). An empirical study of testing and integration
strategies using artificial software systems. IEEE Transactions on Software Engineering, 19
(10), p.941–949.

Sommerville, I. and Dewsbury, G. (2007). Dependable domestic systems design: A socio-
technical approach. Interacting with Computers, 19 (4), p.438–456.

Srivastava, A. and Thomson, S. B. (2009). Framework analysis: a qualitative methodology
for applied policy research. Journal of Administration & Governance, 4 (2), p.72–79.
[Online]. Available at:
http://www.joaag.com/uploads/06_Research_Note_Srivastava_and_Thomson_4_2_.pdf
[Accessed: 14 October 2015].

Stamey, J. W. and Speights, W. S. (1999). Website localization. In: Proceedings of the 17th
Annual International Conference on Computer Documentation, 1999, New Orleans, LA,
USA: ACM, p.127–130.

Stewart, O., Lubensky, D., Macdonald, S. and Marcotte, J. (2010). Using Machine
Translation for the Localization of Electronic Support Content: Evaluating End-User
Satisfaction. In: 9th Conference of the Association for Machine Translation in the Americas
(AMTA), 2010, Denver, CO, USA. [Online]. Available at: http://www.mt-
archive.info/AMTA-2010-Stewart.pdf [Accessed: 14 October 2015].

Stoeller, W. (2011). Global virtual teams. In: Dunne, K. J. and Dunne, E. S. (eds.),
Translation and Localization Project Management: The Art of the Possible, American
Translators Association Scholarly Monograph Series XVI, Amsterdam, The Netherlands:
John Benjamins Pub. Co, p.289–317.

Strauss, A. and Corbin, J. M. (1998). Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Newbury Park, CA, USA: Sage.

Sturm, C. (2002). TLCC - Towards a framework for systematic and successful product
internationalization. In: Coronado, J., Day, D. L. and Hall, B. (eds.), Designing for Global
Markets 4 - Proceedings of the 4th International Workshop on Internationalisation of
Products and Systems, 2002, Austin, TX, USA, p.61–70.

238

Sun, H. (2002). Why Cultural Contexts Are Missing - A Rhetorical Critique of Localization
Practices. In: Leading the Technical Communication Revolution - 49th Annual Conference
of the Society for Technical Communication, 2002, Nashville, TN, USA, p.164–168.

Sun, H. (2004a). Expanding the Scope of Localization: A Cultural Usability Perspective on
Mobile Text Messaging Use in American and Chinese Contexts. PhD thesis, Troy, NY, USA:
Rensselaer Polytechnic Institute. [Online]. Available at:
http://www.localisation.ie/sites/default/files/best-thesis/sun_diss.pdf [Accessed: 14
October 2015].

Sun, H. (2004b). Understanding the Localisation Process of Mobile Text Messaging on a
Cultural Circuit. Localisation Focus, 3 (4), p.9. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/locfocus/issues/Dec2004.pdf [Accessed:
14 October 2015].

Sy, D. (2007). Adapting Usability Investigations for Agile User-Centered Design. Journal of
Usability Studies, 2 (3), p.112–132.

Szuki, A. (1988). Aptitudes of translators and interpreters. Journal des
traducteurs/Translators’ Journal, 33 (1), p.108–114. [Online]. Available at:
http://www.erudit.org/revue/META/1988/v33/n1/004314ar.pdf [Accessed: 14 October
2015].

Tarquini, G., Nishio, N. and O’Keeffe, I. (2010). Localisation in the stream: Assessing GILT
strategies in relation to online services - The case of JAL web site in Japanese and English.
In: 2010 IEEE International Professional Communication Conference (IPCC 2010), 7 July
2010, Enschede, The Netherlands, p.350–356.

Thayer, A. and Kolko, B. E. (2004). Localization of digital games: The process of blending
for the global games market. Technical Communication, 51 (4), p.477–488.

Thicke, L. (2012). Automating Intel’s multilingual chat. MultiLingual, 23 (1), p.14–16.

Thomas, D. C., Stahl, G., Ravlin, E. C., Poelmans, S., Pekerti, A., Maznevski, M., Lazarova,
M. B., Elon, E., Ekelund, B. Z., Cerdin, J.-L., Brislin, R., Aycan, Z. and Au, K. (2012).
Development of the Cultural Intelligence Assessment. In: Mobley, W. H., Wang, Y. and Li,
M. (eds.), Advances in Global Leadership, 7, 155 - 178, Bingley, UK: Emerald.

Thomas, K. W. (1992). Conflict and negotiation processes in organizations. In: Dunnette,
D. and Hough, L. M. (eds.), Handbook of industrial and organizational psychology, 2nd ed.,
3, Palo Alto, CA, USA: Consulting Psychologists Press, p.651–717.

Thompson, N. (2003). Communication and Language: A handbook of theory and practice.
Basingstoke, UK: Palgrave Macmillan.

Tichy, W. F. (1982). Design, implementation, and evaluation of a revision control system.
In: Proceedings of the 6th International Conference on Software Engineering, 1982, IEEE
Computer Society Press, p.58–67.

239

Trist, E. and Murray, H. (1990). Historical overview: the foundation and development of
the Tavistock Institute. In: Trist, E. and Murray, H. (eds.), The social engagement of social
science: A Tavistock anthology, 1, Philadelphia, PA, USA: University of Pennsylvania Press,
p.45–67.

Trompenaars, F. and Hampden-Turner, C. (1998). Riding the waves of culture. New York,
NY, USA: McGraw-Hill.

Truex, D., Baskerville, R. and Travis, J. (2000). Amethodical systems development: the
deferred meaning of systems development methods. Accounting, management and
information technologies, 10 (1), p.53–79.

Tsvetkov, N. and Tsvetkov, V. (2011). Effective communication in translation and
localization project management. In: Dunne, K. J. and Dunne, E. S. (eds.), Translation and
Localization Project Management: The Art of the Possible, American Translators
Association Scholarly Monograph Series XVI, Amsterdam, The Netherlands: John
Benjamins Pub. Co, p.189–210.

Tubbs, S. L. and Moss, S. (2003). Human Communication: Principles and Contexts. 9th ed.
Boston, MA, USA: McGraw-Hill.

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin,
63 (6), p.384–399.

Tuffley, D. (2003). Improving Information Systems Usability by Having a Technical Writer
Facilitate Communication when Developing the Requirements Specification. In: Evers, V.,
Röse, K., Honold, P., Coronado, J. and Day, D. L. (eds.), Designing for Global Markets 5 -
Proceedings of the Fifth International Workshop on Internationalization of Products and
Systems, 2003, Berlin, Germany, p.31–40.

Turk, D., France, R. and Rumpe, B. (2002). Limitations of Agile Software Processes. In:
Third International Conference on eXtreme Programming and Agile Processes in Software
Engineering, 2002, Alghero, Italy, p.43–46.

Umarji, M. and Seaman, C. (2005). Predicting Acceptance of Software Process
Improvement. In: Proceedings of the 2005 Workshop on Human and Social Factors of
Software Engineering HSSE’05, 2005, St. Louis, MS, USA.

United Nations. (2012). Information Economy Report 2012 - The Software Industry and
Developing Countries. Geneva, Switzerland: United Nations Publication. [Online].
Available at: http://unctad.org/en/PublicationsLibrary/ier2012_en.pdf [Accessed: 14
October 2015].

United Nations. (2015a). United Nations Member States. United Nations Member States.
[Online]. Available at: http://www.un.org/en/members/ [Accessed: 14 October 2015].

United Nations. (2015b). United Nations member States - Non-member state maintaining
observer mission. United Nations Non-member States. [Online]. Available at:
http://www.un.org/en/members/nonmembers.shtml [Accessed: 14 October 2015].

240

UWL. (2008). Research Ethics Code of Practice. London, UK: UWL. [Online]. Available at:
http://www.uwl.ac.uk/sites/default/files/Departments/Research/Web/PDF/research_eth
ics_codes_of_practice.pdf [Accessed: 14 October 2015].

UWL. (2015). Research Student Handbook AY 2015-2016 Appendix 1 Regulations for the
Award of the University’s Research Degrees. London, UK: UWL.

Vasiļjevs, A. and Sāmīte, I. (2012). Machine translation for less-resourced languages.
MultiLingual, 23 (1), p.25–30.

Vatrapu, R. K. (2011). Comparative Informatics: Cultural and Linguistic Influences in
Computer Supported Collaboration. In: 2nd International Workshop on Comparative
Informatics, 2011, Copenhagen, Denmark.

Vinekar, V., Slinkman, C. W. and Nerur, S. (2006). Can Agile and Traditional Systems
Development Approaches Coexist? An Ambidextrous View. Information Systems
Management, 23 (3), p.31–42.

Vouros, G., Karkaletsis, V. and Spyropoulos, C. (1997). Documentation and Translation. In:
Hall, P. A. V. and Hudson, R. (eds.), Software Without Frontiers, Wiley Series in Software
Engineering Practice, Chichester, UK: John Wiley & Sons, p.167–202.

Wahle, K. (2000). Wie wird Software lokalisiert? [How is software localised?]. In: Schmitz,
K.-D. and Wahle, K. (eds.), Softwarelokalisierung [Software localisation], Tübingen,
Germany: Stauffenburg, p.31–47.

Wasala, A., Schmidtke, D. and Schäler, R. (2012). XLIFF and LCX: A Comparison.
Localisation Focus, 11 (1), p.67–79. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol11_1WasalaSchmidtkeSc
haler.htm [Accessed: 14 October 2015].

Weiss, A. and Evers, V. (2011). Exploring cultural factors in human-robot interaction: A
matter of personality? In: 2nd International Workshop on Comparative Informatics, 2011,
Copenhagen, Denmark. [Online]. Available at: http://doc.utwente.nl/79601/ [Accessed:
14 October 2015].

White, N. (2012). Understanding the role of non-technical skills in patient safety. Nursing
Standard, 26 (26), p.43–48.

Winter, J. and Rönkkö, K. (2010). SPI success factors within product usability evaluation.
Journal of Systems and Software, 83 (11), p.2059–2072.

Wisker, G. (2008). The Postgraduate Research Handbook. 2nd ed. Basingstoke, UK:
Palgrave Macmillan.

Wolff, F. (2006). Software localisation by Translate.org.za. Localisation Focus, 5 (3), p.19–
21. [Online]. Available at:
http://www.localisation.ie/oldwebsite/resources/lfresearch/Vol5_3Wolff.htm [Accessed:
14 October 2015].

241

Yao, J., Zhou, M., Zhao, T., Yu, H. and Li, S. (2002). An Automatic Evaluation Method for
Localization Oriented Lexicalised EBMT System. In: Second International Workshop on
Language Resources for Translation Work, Research & Training, 2002, Geneva,
Switzerland.

Yuste, E. (2004). Corporate Language Resources in Multilingual Content Creation,
Maintenance and Leverage. In: Second International Workshop on Language Resources
for Translation Work, Research & Training, 2004, Geneva, Switzerland, p.9–15.

Yuste, E. (2005). Computer-aided technical translation workflows-man-machine in the
construction and transfer of corporate knowledge. Linguistik online, 23 (2), p.67–75.
[Online]. Available at: http://www.linguistik-online.de/23_05/yuste.pdf [Accessed: 14
October 2015].

Zahedi, F., Van Pelt, W. V. and Song, J. (2001). A conceptual framework for international
web design. IEEE Transactions on Professional Communication, 44 (2), p.83–103.

Zerfaß, A. (2005). TMX - Austauschformat für Translation-Memory-Systeme [TMX -
exchange format for translation memory systems]. In: Reineke, D. and Schmitz, K.-D.
(eds.), Einführung in die Softwarelokalisierung [Introduction to software localisation],
Tübingen, Germany: Narr, p.169–175.

Zhang, C. Y. (2012). The use of massively multiplayer online games to augment early-stage
design process in construction. PhD thesis, Loughborough, UK: Loughborough University.
[Online]. Available at: https://dspace.lboro.ac.uk/2134/9924 [Accessed: 14 October
2015].

Zhang, P., Carey, J., Te’eni, D. and Tremaine, M. (2003). Integrating Human-Computer
Interaction Development into the Systems Development Life Cycle: A Methodology.
Communications of the ACM, 15, p.512–543.

Zhou, P. (2011). Managing the challenges of game localization. In: Dunne, K. J. and Dunne,
E. S. (eds.), Translation and Localization Project Management: The Art of the Possible,
American Translators Association Scholarly Monograph Series XVI, Amsterdam, The
Netherlands: John Benjamins Pub. Co, p.349–378.

Zouncourides-Lull, A. (2011). Applying PMI methodology to translation and localization
projects - Project Integration Management. In: Dunne, K. J. and Dunne, E. S. (eds.),
Translation and Localization Project Management: The Art of the Possible, American
Translators Association Scholarly Monograph Series XVI, Amsterdam, The Netherlands:
John Benjamins Pub. Co, p.71–93.

Zuboff, S. (1988). In the age of the smart machine: The future of work and power. New
York, NY, USA: Basic Books.

242

Credits

