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In 1923, Austrian author Felix Salten wrote a novel about a buck's life in 
the woods, experiencing from birth the ruthlessness of nature, intrusion 
of man, maturation into adulthood, and finally ascension to solitary 
leader. The popular book, a pitiless commentary on the relationship 
between nature and humans, was soon picked up by a young cartoon 
producer to be made into an animated movie for children. Walt Disney's 
Bambi premiered in cinemas in August 1942. 

In the original novel, written in German, Bambi is a roe deer or “Reh”, a 
species only occurring in Europe. Because Disney assumed that the US-
American audience would relate better to a local species, Bambi was 
changed into a white-tailed deer or “Weißwedelhirsch”, or short 
“Hirsch”. It is a minor change since both species are related, but they are 
visually distinct: Roe deer have no tail, and more importantly, their 
bucks do not grow majestic and impressive antlers like most other deer. 

When Disney's Bambi reached German cinemas in December 1950, the 
dubbing translators had kept closely to Salten's book. At Bambi’s birth, 
his mother’s species is identified as “Reh”. But because the visuals 
remained unchanged, once Bambi grows up and meets his father, their 
antlers clearly show both to be “Hirsche”. 

Thus, a generation of German children grew up with the so-called 
“Bambi-Irrtum” or Bambi error: the understanding that “das Reh ist die 
Frau vom Hirsch”, that instead of being a distinct species, roe deer are 
female deer. 
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Abstract 

Acceptance on international markets is an important selling proposition for software 

products and a key to new markets. The adaptation of software products for specific 

markets is called software localisation. Practitioner reports and research suggests that 

activities of developers and translators do not mesh seamlessly, leading to problems such 

as disproportionate cost, lack of quality, and delayed product release. Yet, there is little 

research on localisation as a comprehensive activity and its human factors. 

This thesis examines how software localisation is handled in practice, how the localisation 

process is integrated into development, and how software developers and localisers work 

individually and collaboratively on international software. The research aims to 

understand how localisation issues around the above-mentioned classifications of cost, 

quality and time issues are caused. Qualitative and quantitative data is gathered through 

semi-structured interviews and an online survey. The interviews focused on the individual 

experiences of localisation and development professionals in a range of relevant roles. 

The online survey measured cultural competence, attitude towards and self-efficacy in 

localisation, and properties of localisation projects. Interviews were conducted and 

analysed following Straussian Grounded Theory. The survey was statistically analysed to 

test a number of hypotheses regarding differences between localisers and developers, as 

well as relationships between project properties and software quality. 

Results suggest gaps in knowledge, procedure and motivation between developers and 

translators, as well as a lack of cross-disciplinary knowledge and coordination. Further, a 

grounded theory of interdisciplinary collaboration in software localisation explains how 

collaboration strategies and conflicts reciprocally affect each other and are affected by 

external influences. A number of statistically significant differences between developers 

and localisers and the relevance of certain project properties to localisation were 

confirmed. The findings give new insights into interdisciplinary issues in the development 

of international software and suggest new ways to handle interdisciplinary collaboration 

in general. 



ii 
 

  



iii 
 

Table of Contents 

List of Abbreviations and Acronyms .................................................................................... vii 

List of Tables .......................................................................................................................... ix 

List of Figures ......................................................................................................................... x 

Chapter 1 Introduction ........................................................................................................... 1 

1.1 Software Localisation ................................................................................................... 1 

1.2 Current Challenges in Software Localisation ............................................................... 2 

1.3 The Problem Statement ............................................................................................... 3 

1.4 Aims and Objectives ..................................................................................................... 4 

1.5 Research Questions ...................................................................................................... 6 

1.5.1 Empirical Study of Software Localisation .............................................................. 6 

1.5.2 Human Factors in Developer-Translator Collaboration ........................................ 6 

1.5.3 Project Properties and Localisation ...................................................................... 8 

1.6 Research Contributions ................................................................................................ 9 

1.7 Thesis Structure ............................................................................................................ 9 

1.7.1 Chapter 2: Software Localisation and Internationalisation .................................. 9 

1.7.2 Chapter 3: Research Methodology and Method ................................................ 10 

1.7.3 Chapter 4: Qualitative Results ............................................................................ 10 

1.7.4 Chapter 5: Quantitative Results .......................................................................... 10 

1.7.5 Chapter 6: Conclusion ......................................................................................... 11 

Chapter 2 Software Localisation and Internationalisation .................................................. 12 

2.1 Literature Search Strategy ......................................................................................... 13 

2.2 From Culture to Locale ............................................................................................... 13 

2.2.1 Cultural Models ................................................................................................... 14 

2.3 GILT ............................................................................................................................. 17 

2.3.1 Locale .................................................................................................................. 18 

2.3.2 Translation .......................................................................................................... 19 

2.3.3 Localisation ......................................................................................................... 20 

2.3.4 Internationalisation ............................................................................................. 22 

2.3.5 Globalisation ....................................................................................................... 25 

2.4 Scope of Localisation .................................................................................................. 29 

2.4.1 Localisation Requirements .................................................................................. 30 

2.4.2 Locale-specific Design and Cultural Marker ........................................................ 32 

2.4.3 Cultural Markers and Usability ........................................................................... 34 

2.5 Localisation Factors, Issues and Challenges ............................................................... 36 



iv 
 

2.5.1 Localisation Issues .............................................................................................. 39 

2.5.2 Role Relationships and Causes of Localisation Issues ........................................ 40 

2.5.3 Future Localisation Challenges ........................................................................... 42 

2.6 Facilitation and Support of Localisation .................................................................... 42 

2.6.1 Translation Tools ................................................................................................ 43 

2.6.2 Platform Support ................................................................................................ 50 

2.6.3 Outsourcing ........................................................................................................ 51 

2.6.4 Standards ............................................................................................................ 52 

2.7 Software Localisation Practice ................................................................................... 56 

2.7.1 Interdisciplinary Issues in International Software Development ....................... 57 

2.7.2 Cultural Knowledge for Software Developers .................................................... 59 

2.7.3 Contrasting Engineers and Translators ............................................................... 60 

2.8 Summary .................................................................................................................... 62 

Chapter 3 Research Methodology and Method .................................................................. 65 

3.1 Qualitative and Quantitative Research...................................................................... 65 

3.1.1 Mixed Methods ................................................................................................... 67 

3.2 Using Grounded Theory to Explore Software Localisation ........................................ 67 

3.2.1 Selecting Qualitative Methods ........................................................................... 68 

3.2.2 Grounded Theory ................................................................................................ 75 

3.2.3 Application of Grounded Theory ........................................................................ 83 

3.3 Quantitative Research ............................................................................................... 89 

3.3.1 Selecting Quantitative Methods ......................................................................... 90 

3.3.2 Questionnaire Construction ............................................................................... 91 

3.3.3 Survey Presentation and Pilot .......................................................................... 100 

3.3.4 Survey Analysis ................................................................................................. 101 

3.4 Population and Sample ............................................................................................ 102 

3.5 Ethics ........................................................................................................................ 104 

3.6 Summary .................................................................................................................. 105 

Chapter 4 Qualitative Results ............................................................................................ 106 

4.1 The Research Process .............................................................................................. 106 

4.1.1 Participants and Interviewing ........................................................................... 106 

4.1.2 Core Emergence and Implementation of the GT Process ................................ 109 

4.2 A Theory of Interdisciplinary Collaboration in Software Localisation ..................... 112 

4.2.1 External Influences ........................................................................................... 114 

4.2.2 Conflicts ............................................................................................................ 128 

4.2.3 Strategies .......................................................................................................... 142 



v 
 

4.3 Discussion .................................................................................................................151 

4.3.1 Borrowing of Models and Concepts across Disciplines ....................................151 

4.3.2 Interdisciplinary Work as a Social System .........................................................152 

4.3.3 Dominance of Software Engineering ................................................................153 

4.3.4 Authority and Hierarchy ....................................................................................156 

4.3.5 The Theory of Agency .......................................................................................158 

4.3.6 Organisational Control in Software Localisation ..............................................159 

4.4 Summary ..................................................................................................................161 

Chapter 5 Quantitative Results ..........................................................................................163 

5.1 Sample Description ..................................................................................................163 

5.1.1 Respondents......................................................................................................164 

5.1.2 Projects of International Software ....................................................................166 

5.2 Variable Distributions and Data Preparation ...........................................................168 

5.3 Hypothesis Results ...................................................................................................169 

5.4 Discussion .................................................................................................................176 

5.4.1 Distinctness of Developers and Localisers ........................................................176 

5.4.2 Cultural Competence and the Scope of Localisation ........................................177 

5.4.3 Software Localisation and Project Properties ...................................................178 

5.4.4 Generalisability of the Sample ..........................................................................180 

5.5 Summary ..................................................................................................................181 

Chapter 6 Conclusions ........................................................................................................183 

6.1 Summary of Findings ................................................................................................183 

6.1.1 Conjunction of Qualitative and Quantitative Results .......................................184 

6.2 Contribution to Knowledge ......................................................................................185 

6.2.1 A Grounded Theory of Interdisciplinary Collaboration.....................................185 

6.2.2 Localisation is Difficult Due to its Multidisciplinary Character .........................186 

6.2.3 Localisation Issues are Caused by the Separation of Disciplines ......................186 

6.2.4 Cross-Disciplinary Knowledge Trumps Cultural Competence ...........................186 

6.2.5 Support for the Notion of a Software Engineering Mind-Set ...........................187 

6.3 Implications for Practice ..........................................................................................187 

6.3.1 No Complete and Comprehensive List of Cultural Differences ........................187 

6.3.2 Localisation as Process Rather than Deliverable ..............................................188 

6.3.3 Counteracting Control, Agency and Dominance in Localisation .......................189 

6.3.4 Creating Cross-Disciplinary Knowledge ............................................................189 

6.4 Limitations ................................................................................................................190 

6.5 Future Work .............................................................................................................192 



vi 
 

Appendix A Survey ............................................................................................................. 194 

Appendix B Informed Consent Information Sheet ............................................................ 204 

Appendix C Interview Excerpt ........................................................................................... 205 

Appendix D Memo example .............................................................................................. 207 

Appendix E Sample Request for a Call of Participation ..................................................... 208 

Appendix F Interview, Transcription and Analysis Tools ................................................... 209 

Appendix G Publication Sources for Initial Literature Review ........................................... 210 

Publications ........................................................................................................................ 211 

References ......................................................................................................................... 212 

Credits ................................................................................................................................ 242 

 



vii 
 

List of Abbreviations and Acronyms 

ACM:  Association for Computer Machinery 

ACT:  Attitude towards Computer Technology 

ANOVA: Analysis of Variance 

APA:  American Psychological Association 

API:  Application Programming Interface 

ASCII:  American Standard Code for Information Interchange 

ASTTI:  Association Suisse des Traducteurs, Terminologues et Interprètes 

ATL:  Attitude Towards Localisation 

BSA:  British Sociological Association 

CAT:  Computer-Assisted Translation 

CQ:  Cultural Intelligence 

CQS:  Cultural Intelligence Scale 

EU:  European Union 

GALA:  Globalization and Localization Association 

GILT:  Globalisation Internationalisation Localisation Translation 

GMX:  Global information management Metrics eXchange 

GT:  Grounded Theory 

G11N:  Globalisation 

HCI:  Human-Computer Interaction 

HSD:  Honest Significant Difference 

ICAPS:  Intercultural Adjustment Potential Scale 

IEEE:  Institute of Electrical and Electronics Engineers 

IETF:  Internet Engineering Task Force 

IP:  Internet Protocol 

ISO:  International Organization for Standardization 

ITS:  Internationalization Tag Set 

I18N:  Internationalisation 

LE:  Localisation Effort 

LISA:  Localization Industry Standards Association 

L10N:  Localisation 



viii 
 

LSP:  Localisation Service Provider 

M:  Mean 

MFC:  Microsoft Foundation Classes 

MT:  Machine Translation 

OS:  Operating System 

RQ:  Research Question 

SD:  Standard Deviation 

SEL:  Self-Efficacy in Localisation 

SEU:  Self-Efficacy in Usability 

SPSS:  Statistical Package for the Social Sciences 

SRX:  Segmentation Rules eXchange 

TBX:  Term Base eXchange 

TM:  Translation Memory 

TMS:  Translation Memory System 

TMX:  Translation Memory eXchange 

T9N:  Translation 

UCS:  Universal Character Set 

UI:  User Interface 

UTF:  Unicode Transformation Format 

UWL:  University of West London 

UX:  User Experience 

VoIP:  Voice-over-IP 

WPF:  Windows Presentation Foundation 

XAML:  Extensible Application Markup Language 

XLIFF:  XML Localisation Interchange File Format 

XML:  Extensible Markup Language 

XP:  Extreme Programming 



ix 
 

List of Tables 

Table 3-1 List of hypotheses ................................................................................................ 89 

Table 3-2 Relationship between survey questions and constructs ..................................... 92 

Table 3-3 General changes to ACT ....................................................................................... 94 

Table 3-4 Semantic changes to ACT ..................................................................................... 94 

Table 3-5 Examples of semantic changes to ACT ................................................................. 95 

Table 3-6 Origins of LE items ..............................................................................................100 

Table 3-7 Scales of constructs ............................................................................................102 

Table 4-1 Interviewees .......................................................................................................107 

Table 5-1 Nationality of respondents ................................................................................164 

Table 5-2 Highest level of education of respondents ........................................................165 

Table 5-3 Role of respondents ...........................................................................................165 

Table 5-4 Localisation training of survey respondents ......................................................165 

Table 5-5 Software types of reported projects ..................................................................166 

Table 5-6 User types of reported projects .........................................................................166 

Table 5-7 Localised software elements of reported projects ............................................167 

Table 5-8 Number of languages of reported projects .......................................................167 

Table 5-9 Development model of reported projects .........................................................168 

Table 5-10 Variable distributions .......................................................................................169 

Table 5-11 Overview of the survey analysis results ...........................................................169 

Table 5-12 Independent samples t-test results .................................................................172 

Table 5-13 Pearson test results ..........................................................................................173 

Table 5-14 Chi-square test results .....................................................................................173 

Table 5-15 Phi coefficient test results ................................................................................174 

Table 5-16 Spearman rank correlation test results ...........................................................174 

Table 5-17 ANOVA test results ...........................................................................................175 

Table 5-18 Post-Hoc Tukey HSD result for H13 ..................................................................175 

Table 5-19 Post-Hoc Tukey HSD result for H14 ..................................................................175 

 



x 
 

List of Figures 

Figure 2-1 The project management triangle ...................................................................... 38 

Figure 3-1 The research process in Grounded Theory ........................................................ 79 

Figure 4-1 Initial coding node structure ............................................................................ 111 

Figure 4-2 Descriptive categories of software localisation issues ..................................... 111 

Figure 4-3 Emergence of interdisciplinary collaboration during software localisation .... 113 

Figure 4-4 Emergence of the category External Influences .............................................. 114 

Figure 4-5 Emergence of the category Conflicts ............................................................... 128 

Figure 4-6 Emergence of the category Strategies ............................................................. 142 

https://d.docs.live.net/35c3cac072631ff1/Dokumente/Thesis%20V2/thesis%20amended.docx#_Toc439645140
https://d.docs.live.net/35c3cac072631ff1/Dokumente/Thesis%20V2/thesis%20amended.docx#_Toc439645143


1 
 

Chapter 1 Introduction 

Software localisation is an important aspect for internationally published software. This 

research aims to research the causes of problems in software localisation and the 

adaptation of software for international markets. In particular, it examines how 

localisation budget, quality and schedule is influenced by developer-translator 

collaboration, development, localisation infrastructure and processes. 

1.1 Software Localisation 

International software is software to be used in different countries. Such software needs 

to be adapted to the target markets’ languages and cultures in order to ensure usability 

and acceptance. Failure to consider the cultural background of users disrupts 

communication between software and user, and threatens eventual use. Successful 

adaptation, on the other hand, increases the software’s effectiveness and efficiency. 

Localisation plays a crucial role in spreading software across cultural boundaries and is 

therefore understood as both a business objective to successfully enter new markets, and 

inclusion counteracting the digital divide by allowing smaller and underprivileged cultures 

access to information technology. 

The adaptation of a product for specific markets is called localisation. Localisation usually 

includes translation of text, changing units and symbols for currencies and 

measurements, and modifying the formats for displays of time or other measures. More 

advanced adaptations extend to colours, layout, functionality and provisions for technical 

infrastructure, or may go as far as catering for different business models. Localisation is 

usually conducted by translators. It is often separately performed on an otherwise 

finished product. 

Closely related to localisation is the process of internationalisation. This is the activity of 

separating culturally dependant and independent parts of the software by extracting or 

removing all cultural references. This creates a culturally neutral version that can be 

configured to specific cultures. Internationalisation is usually done by software engineers. 

Originally, just as software was limited by hardware constraints, it was also constrained 

by culture when it was created in Western countries for a Western audience. Thus, many 

fundamentals in computing were strongly influenced by Western culture. This manifested 
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itself in lack of support for conventions such as non-Latin scripts and right-to-left 

languages. Considerable effort was undertaken to overcome many of these early 

restrictions, for example through the creation of the Unicode standard so that software 

would support any script in the world. Accordingly, the tasks, abilities and concerns of 

software localisation today are fundamentally different from those 20 years ago. 

The importance of software localisation continues to increase because, as the global 

proliferation of computers and adoption of the World Wide Web continues, users in new 

regions gain access. Accordingly, more localisation is required. In addition, software is 

now developed in countries other than the Western world, which in turn becomes a 

localisation target. 

The scope of localisation increased as well. Software use was originally restricted to very 

few professional groups. But as the advent of desktop computing and the personal 

computer proliferated software to non-technical and untrained users, the notion of 

usability and user experience (UX) have gained importance in the design of human-

computer interaction (HCI), of which culture has become an important aspect. 

Similarly, one of the premises of HCI used to be that human use of computers is 

conscious, visible, and can be designed for. But this is changing as computers and 

software become more and more ubiquitous and pervasive. As computing areas such as 

mobile devices, social computing, augmented reality and robotics spread, interfaces 

diversify, take on new modes, become ephemeral and sometimes disappear altogether. 

This switch from interface-driven to interaction-driven use necessitates stronger 

consideration of users’ behaviour, values and expectations, and localisation has to move 

beyond the presentation layer to include all aspects of software. 

1.2 Current Challenges in Software Localisation 

Challenges in localisation have been identified as cost, quality, and time, i.e. the effort 

required, impact of localisation on the product, and the delay it causes to development 

completion. 

Software localisation is considered a comparatively expensive undertaking. Exact 

numbers are notoriously difficult to obtain and obviously depend on a number of factors 

such as localisation provider, content volume and number of languages. Hall (2002) 
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estimates localisation costs to make up around 10% of total development costs. A 

number of examples are discussed in Collins (2001), bracketing typical localisation costs 

between $50,000 and $300,000 per language, with staff costs often including additional 

engineering. 

Localisation also takes time. In particular, the time needed to localise source content, but 

also to handle localisation-related bugs. The practice of simshipping, i.e. of releasing 

international software simultaneously in many markets, curtails available time for 

localisation even further. 

Two other challenges in localisation have been mentioned in the literature: volume, i.e. 

handling large amounts of content into ever more languages, and access, i.e. providing 

localisation relatively quickly and cheaply for content which otherwise would not be 

localised. Extreme cases of cost and time require immediate or near-instantaneous 

localisation at no, or virtually no, expense. For example, messages on online social 

networks or customer support documents are often processed through machine 

translation, crowdsourcing, or a combination of the two. 

Shortcomings in localisation practice are a lack of defined processes, an incomplete 

understanding of localisation activities, and collaboration issues between software 

engineering and localisation. 

It has further been noted that localisation is often approached from a very technical point 

of view as something that can be parameterised and isolated, focusing on an interface-

driven approach to software localisation instead of designing for cultures. 

1.3 The Problem Statement 

This research started as a puzzle from my experiences as localisation team leader in a 

mid-sized software company: I had observed that most time was spent on handling 

localisation issues that had been created by trivial causes, and these causes defied any 

attempts at proactive prevention. Our despair usually came in the form of if-only, for 

example: 

 If only software engineers finalised user interface (UI) text a month before product 

release, there would be no translation-caused release delays. 
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 If only UI designers remembered to leave at least 30% buffer space for translation-

expanded text, there would be fewer instances of cut text in the UI. 

 If only translators referred to the terminology when translating, we would have 

fewer retranslations. 

Comparing notes with colleagues at other companies confirmed that similar issues exist 

despite organisational differences, suggesting that the difficulty experienced in 

localisation might originate in the way localisation is conducted in the context of software 

development. Process-related shortcomings in localisation practice have further been 

acknowledged in the literature, e.g. a lack of standard processes (Abufardeh and Magel, 

2008b), an incomplete understanding of localisation activities and workflow (Lenker et al., 

2011), and issues of collaboration between software engineering and localisation 

(Abufardeh and Magel, 2010; Lewis et al., 2009). Accordingly, there have been calls to 

examine the collaboration of software engineering and localisation (O’Sullivan, 2001a; 

Collins, 2001). 

1.4 Aims and Objectives 

A review of research and literature around software localisation1 will establish the 

following: 

1. The development of global software is an effort involving the two disciplines 

translation and engineering. Generally, these activities are separated into 

internationalisation and localisation. 

2. Most research on software localisation examines internationalisation, localisation, 

software engineering and translation in isolation. Further, most research is 

focussed on an isolated aspect in the context of localisation such as the influence 

of culture on UIs, or the evaluation of technological aids such as translation tools 

and APIs. 

3. There is comparatively little research on the practice of software localisation and 

the causes of localisation issues. 

Conversely, the original research problem, i.e. what makes software localisation difficult 

and what shapes the contributions of individual disciplines, is narrowed down: first, an 

                                                      
1 See chapter 2. 
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empirical examination of software localisation as a whole as opposed to its individual 

constituents. Second, an examination of the collaboration between developers and 

localisers. And third, identifying the causes of localisation issues. 

The literature review will show that technological developments have been employed to 

address issues in software localisation. For example, Unicode simplifies the use of any 

script in software, Localisation APIs trivialise internationalisation of many common 

software functionalities and UI elements, and CAT tools facilitate collaboration of multiple 

translators while lowering cost and turnaround time. 

However, the sociological aspects of software localisation are left unexplored, specifically 

how development and localisation professionals work on software localisation, and how 

they work with each other. Both existing research (e.g. Collins, 2001; O’Sullivan, 2001a; 

Lewis et al., 2009; Abufardeh and Magel, 2010) and my own experience suggests that 

localisation issues are caused by this cooperation. Understanding underlying causes and 

effects in internationalisation and localisation activities might go a long way towards 

avoiding them. 

The literature review will further suggest that project properties have an influence on 

localisation. Such properties might be use of localisation tools, choice of development 

models, relationship between developers and customers, and user feedback. Similarly, 

the distinctiveness of developers and localisers is suggested to be of potential 

importance, e.g. shared or distinct mental models and so on. Accordingly, the research 

aims are explained as follows: 

 To understand the reciprocal influences between engineering and localisation 

processes. 

 To understand how localisation issues are caused during cooperative work of 

software engineers and translators. 

 To understand the distinctness of developers and localisers relevant to 

localisation. 

 To understand the relevance of cultural competence in software localisation. 

 To understand the influence of project and product properties on localisation 

quality. 
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This leads to the following research objectives: 

1. Analyse accounts about localisation practice, in particular regarding the 

cooperation of developers and localisers. 

2. Examine the role of human factors in localisation as a process. 

3. Examine differences of cultural competence between developers and localisers. 

4. Determine the influence of project properties on localisation. 

1.5 Research Questions 

Two different kinds of research objectives are becoming apparent. Research objective 1 

and 2 aim at describing and exploring a particular situation. Research objectives 3 and 4 

operate within suggested frameworks, here human factors, cultural competence, and 

project properties. Accordingly, exploratory research is appropriate for objective 1 and 2, 

while explanatory research is appropriate for objectives 2 to 4. 

1.5.1 Empirical Study of Software Localisation 

To complete the first research objective, research into the work of engineers and 

translators seems in order. An examination of how engineers and translators work 

individually and collectively during internationalisation and localisation leads to a large 

host of specific questions: What activities do engineers and translators conduct for 

internationalisation and localisation? How do they conduct these activities? What 

influences how they conduct them? How do engineers and translators communicate? 

What do they communicate about? What factors influence what they communicate 

about, and what not? This is summarised into two research questions (RQs): 

RQ 1: How is localisation conducted individually and collaboratively by developers and 

localisers, and how does this shape each discipline’s activities? 

RQ 2: How are issues caused during localisation and internationalisation? 

1.5.2 Human Factors in Developer-Translator Collaboration 

In the literature review, distinctness of developers and localisers and localisation issues as 

a potential consequence is discussed, in particular regarding cross-disciplinary knowledge 

(Bauer and Rodrigo, 2004; Russo and Boor, 1993; Sikes, 2011) and collaboration 

(O’Sullivan, 1989; Honkela et al., 1997). Law (2003) sums this up as human factors 
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affecting developer-translator collaboration. Next, it will be discussed what human 

factors are relevant and to what research questions they lead. 

For one, there is the distinctness of cultural competence. Its importance for developers 

has been repeatedly stated, both explicitly (Abufardeh and Magel, 2008b; Ryan et al., 

2009; Immonen and Sajaniemi, 2003a) and implicitly (Law, 2003; Abufardeh and Magel, 

2009; Mahemoff and Johnston, 1998; Abufardeh and Magel, 2010; Smith et al., 2007; 

Carey, 1998; Hogan et al., 2004; Liem et al., 2011). On the other hand, the argument is 

made that because software development is technical, handling of culture is not at the 

core of software development business (Linna and Jaakkola, 2010). It remains to be seen 

whether there actually is a difference in cultural competence between developers and 

localisers. 

Related topics are localisation scope and localisation requirements (Giammarresi, 2011; 

Kalliomäki et al., 1997), the assessment of which is based on an understanding of culture 

(see e.g. Hoft, 1996). Hence, if indeed there is a cultural competence gradient between 

developers and localisers, this might lead to different assessments of localisation scope. 

Cultural competence and attitude towards localisation effectively are about the 

relationship developers have with the localisation discipline. However, the relationship 

vice versa is just as important (Law, 2003; Immonen and Sajaniemi, 2003a), particularly 

whether localisers feel able to handle technical aspects of internationalisation. Cultural 

competence is a very central consideration in localisation. It has been suggested that 

cultural skills are affected by nationality or language skills (e.g. Carey, 1998).  

Some authors have suggested that, along the lines of a focus on technology, software 

developers are not favouringly predisposed towards software localisation (Honkela et al., 

1997; Sikes, 2011). Developers might not even feel responsible towards the outcome of 

localisation. In other words, there might be an attitude gradient between developers and 

localisers. 

The literature review presents the project management triangle of cost, quality and time. 

Some authors have suggested that cultural requirements are often sacrificed during 

development due to time and budget shortage (Tuffley, 2003; Dunne, 2011), just like 

software projects in general seem to prioritize cost and time over quality (Boehm, 2006, 
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2011; Blackburn et al., 1996). Similarly, the concerns regarding product quality might 

differ between developers and localisers (Abufardeh and Magel, 2009). 

In other words, the previous considerations suggest to examine the distinctness of 

developers and localisers regarding cultural competence, attitude towards localisation, 

and assessment of software quality and priorities in software development. This leads to: 

RQ 3: In what regards are developers and localisers distinct? 

1.5.3 Project Properties and Localisation 

In the literature review, the three localisation factors cost, quality and time are 

introduced as relevant properties in which localisation success can be assessed. Besides 

the individual and collaborative work of developers and localisers, these factors are 

affected by company culture and established practices, available resources, or market 

conditions (Giammarresi, 2011). More specific influences have been postulated for 

specific project properties, most prominently type of software (e.g. Abufardeh and Magel, 

2010; Hall, 2000; Giammarresi, 2011), type of user (e.g. Liu and Zhang, 2011), relationship 

between customer and user (e.g. Honkela et al., 1997; DePalma, 2006), number of target 

locales (e.g. Ryan et al., 2009), and influence of the software development model (e.g. 

Fissgus and Seewald-Heg, 2005; Abufardeh and Magel, 2010). Further, there are both 

expressed and implied suggestions that the localisation outcome can be related to the 

commercial character of a project, i.e. whether it is a commercial project or not (e.g. 

Wolff, 2006; Exton et al., 2010). 

The aim is to determine how these project properties affect the three localisation factors 

cost, quality and time. These are inherently difficult to measure, as discussed in section 

2.5. Localisation expenses are often not tracked (DePalma, 2006), and localisation quality 

lacks standardisation (e.g. Tarquini et al., 2010). Hence, localisation effort is chosen as 

dependent variable2, leading to the following research question: 

RQ 4: What dependencies exist between localisation effort and development project 

properties? 

                                                      
2 A detailed operationalisation of localisation effort will be discussed in subsection 3.3.2. 
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In all, four research questions were identified. The methods of answering them are 

discussed in chapter 3. 

1.6 Research Contributions 

The thesis contributes to an understanding of how international software can be 

developed efficiently. It describes software development and localisation practice used by 

software engineers, translators, and their managers. Further, it describes the origins of 

these practices in each discipline’s underlying practices, objectives and agendas, as well 

as the interdisciplinary conflicts arising from them. A grounded theory of interdisciplinary 

collaboration during software localisation explains how external influences based on 

general and discipline-specific success criteria, tools and processes provoke different 

strategies employed by, and cause conflicts between, localisers and developers during the 

facilitation of interdisciplinary collaboration. Further, the research contributes evidence 

of gradients in cultural competence and attitude towards localisation between developers 

and localisers, and of the relationship between localisation and certain project properties. 

1.7 Thesis Structure 

The thesis is structured into six chapters3: 

1.7.1 Chapter 2: Software Localisation and Internationalisation 

In the second chapter, existing literature is reviewed. First, the meaning of culture is 

discussed and the key terms locale, localisation, internationalisation, globalisation and 

translation are defined. Then, existing research in software localisation and related areas 

is discussed. The literature review will show that software localisation is an activity 

involving many disciplines, including engineering and translation, that most existing 

research examines localisation scope, activities, and their context in isolation, that there 

                                                      
3 The thesis structure is loosely based on the structure for social science research reports suggested by 
Wisker (2008). Writing was endeavoured to be gender-neutral throughout the thesis. In order to obscure 
interviewees’ identities, they are consistently referred to using the masculine form. In quotes, ellipses 
without square brackets (“…”) indicate a pause.  Occasional modifications and shortenings for clarity are 
indicated by square brackets. Ellipses in square brackets (“[…]”) indicate the omission of words, sentences, 
or paragraphs. Typeset, layout and referencing style follow The University of West London (UWL) thesis 
style regulations (UWL, 2015). Presentation of statistical results are based on the guidelines of the American 
Psychological Association (APA) (APA, 2009). 
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is relatively little research on the causes of localisation issues in general, and that there 

have been few comprehensive studies of the practice of software localisation. 

1.7.2 Chapter 3: Research Methodology and Method 

Based on the research questions and the literature review, two independent studies are 

constructed. The research aims are to understand the reciprocal influences between 

software engineering and localisation, the origins of localisation issues in collaborative 

work, the distinctness of developers and localisers, and the relevance of cultural 

competence for software localisation. An interview case study using Grounded Theory 

(GT) will explore localisation professionals’ perceptions of social processes, human 

interactions and organisational contexts involved in the development and localisation of 

international software. A survey study will test a number of hypotheses about the 

distribution of cultural competence, self-efficacy, opinions and attitude about localisation 

in professional localisation roles, and localisation projects and their properties.  

1.7.3 Chapter 4: Qualitative Results 

The qualitative research shows that the main concern of interviewees is the facilitation of 

interdisciplinary collaboration between linguistic and technical professionals, determined 

by constraints, conflicts and the chosen collaboration strategies, which in turn influence 

each other. The behaviour of developers and localisers can be characterised through a 

dominance of engineering considerations and processes, and a self-serving behaviour of 

localisers characterised by the theory of agency. 

1.7.4 Chapter 5: Quantitative Results 

The quantitative research confirms some of the assumed relationships. Compared to 

localisers, developers score lower on both cultural competence and attitude towards 

localisation, but this does not translate into a difference of localisation scope assessment 

or overall quality criterion prioritisation. Localisation is affected by the existence of a 

development model and certain software types, and the more locales are targeted, the 

more effort is expended. However, user type, relationship to the user, and commercial 

nature of a software project do not affect localisation.  
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1.7.5 Chapter 6: Conclusion 

The limitations of the qualitative and quantitative approaches and analysis methods are 

discussed. Further, the research contributions are discussed and their potential 

implications for practice elaborated. Potential for future research is explored. 
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Chapter 2 Software Localisation and Internationalisation 

In the first chapter, software localisation was introduced as the adaptation of software for 

use in international markets in order to foster acceptance and use of increasingly 

pervasive and relevant software, both as a business and inclusiveness objective. The 

introduction also set the original problem statement: to examine how localisation issues 

are caused by the process of software localisation in the context of software 

development. 

This chapter introduces research and development with relevance to software 

localisation, software internationalisation, processes and work steps, and limitations on 

them. It discusses the nature of localisation and influences on the process and the work 

of developers and translators, including localisation and internationalisation 

requirements, bugs, tools and utilities, standards, rules and guidelines, organisational 

forms and existing empirical research. Sections 2.1 details the literature search strategy. 

Sections 2.2 and 2.3 introduce relevant terminology and explore seminal research on 

culture, cultural differences, and the consequences for software products published in 

international markets. Sections 2.4 and 2.5 review scope of localisation, the localisation 

factors cost, quality and time, and localisation issues, i.e. bugs and process difficulties. 

Section 2.6 explores how research and practice tackle internationalisation and localisation 

through technical and procedural means. Section 2.7 discusses existing research on 

software localisation practice and contrasts it with existing empirical research on causes 

of localisation issues. The following will be shown: 

First, the adaptation of software for international markets is a multidisciplinary activity. 

Second, the majority of software localisation research is located around the context of 

software localisation, i.e. evaluation and examination of activities and tools used during 

translation, internationalisation and localisation. 

Third, there is comparatively little research about the practice of software localisation 

and internationalisation in the context of software development, and this existing 

research suggests that the practice and engineer-translator cooperation are in need of 

improvement. 
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Fourth, while there is a good amount of research and development toward improving 

localisation, there is comparatively little research examining the causes of issues, and 

research that does is often limited to specific issues or narrows down to a particular 

localisation aspect. 

The findings from this chapter narrow down the problem statement to original research 

aims and objectives, and eventually the research questions as discussed in the 

introduction, leading to the choice of research methodologies in chapter 4 to examine the 

activity of software localisation. 

2.1 Literature Search Strategy 

For this literature review, publications were perused when they addressed in any way 

definitions and motivation for localisation, human factors in software localisation and 

work practice of localisers and developers working on international software, including 

tools, utilities, standards and processes. 

Because there are competing meanings for the terms localisation, language, translation 

and internationalisation, a search in common literature search databases led to a lot of 

false positives. Instead, this literature review started by a systematic manual search 

through the most relevant publications, as well as some websites listing peer-reviewed 

publications on localisation and related topics. Appendix G lists these resources. 

2.2 From Culture to Locale 

The activity of software localisation originates from the requirement to adapt software. 

The more complex software becomes, the more likely it is that it is not globally applicable 

to all markets. Barber and Badre (1998) explicate this by observing that there is no such 

thing as one global interface suitable for all cultures. And indeed, culture is the term 

under which idiosyncrasies of different software markets are often subsumed, with a 

market’s specific requirements referred to as cultural differences. To understand how 

culture is tackled during the development of international software, the term and 

applicable definitions in science and software development are discussed. 

The meaning of the term culture is complex. In general use, culture can refer to, among 

others, achievements in the field of art, individual sophistication, tradition and mores, or 

accepted norms and expected behaviour in professional or social groups. It is an 
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ambiguous and flexible term (del Galdo, 1996) used frequently in academia and everyday 

life, yet with many meanings. Kroeber et al. (1952) counted more than 156 different 

definitions, none of which are generally agreed (Kamppuri, 2011). The ambiguity of the 

term culture has been commented on by many researchers in computing (Smith et al., 

2007; Goggins and Mascaro, 2011; Kamppuri, 2011). 

How culture is handled in production environments is significantly shaped by how culture 

is perceived (Sun, 2002; Sturm, 2002). For this reason, it is important to discuss views on 

culture expressed in software development. 

Rauterberg (2006) explains culture as the integration of human behaviour, attitudes, 

norms, values, beliefs, actions, and communications in ethnic, religious or social groups. 

In other words, culture can be understood as attitudes, beliefs and behaviours of a group, 

including special interest groups such as religion, race, society, organisation, nationality, 

history, language or level of technical sophistications (del Galdo, 1996; Kamppuri, 2011; 

Linna and Jaakkola, 2010). Cultural values have been linked to biological and social factors 

(Ito and Nakakoji, 1996; Kamppuri, 2011). 

In the context of HCI, culture is a cognitive phenomenon affecting artefacts and behaviour 

(Kamppuri, 2011). It is located on or close to the level of language and national culture, as 

opposed to e.g. culture of smaller groups (Clemmensen and Roese, 2010), although the 

notion of national culture is problematic as well (Smith et al., 2007) as many nations4 are 

comprised of various ethnic groups differing in languages, traditions, norms, etc. India, 

Russia and the USA are examples of nations that are neither linguistically nor culturally 

homogeneous. But because a language can subtly differ between different nations as 

well, e.g. in the case of British English, US English and Australian English, culture cannot 

be equated with language either (Abufardeh, 2008, pp.9, 10). 

2.2.1 Cultural Models 

Culture has been examined in science through cultural models. These models specify so-

called cultural dimensions, also called international variables (Hoft, 1996). The notion is 

based on research by Edward T. Hall and suggests to find behaviour, properties or 

                                                      
4 The term nation is mostly applied either socio-culturally, referring to collectives of people with common 
characteristics such as language, culture and ethnicity, or geopolitically, referring to country states. In this 
thesis, it is used in the latter way for consistency with the terms national and international. 
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artefacts that consistently differ across cultures. Hall developed a number of cultural 

dimensions from his field work in Europe, the Middle East, Asia, and with indigenous 

cultures in North America, for example to what degree messages are context-dependant, 

and whether time is perceived as monochronic, i.e. sequential, or polychromic, i.e. 

parallel5 (Hall, 1959, 1966, 1977). Hall asserts that cultures can be described by their 

position on a spectrum of a number of such cultural dimensions. His conclusions have 

been criticised for being based on observations on qualitative insights on the level of 

larger geographical areas, e.g. the Eastern Mediterranean, Western or Northern Europe 

that are not necessarily culturally homogeneous (Ahmed et al., 2008). 

A number of cultural models exist and have been categorised into four meta models 

(Hoft, 1996; Linna and Jaakkola, 2010). The objective vs. subjective model distinguishes 

between objective culture and subjective culture, i.e. between tangible and visible culture 

such as artefacts, behaviour, and organisation on one side, and values, norms and other 

psychological features on the other side. The iceberg model views the subconscious 

aspects of culture such as values and beliefs as an iceberg’s large underwater body. On 

this is built the comparatively small visible part of the iceberg above the surface, e.g. 

artefacts and behaviour. The pyramid model shows culture as middle layer and linking 

element of human nature, which is common for all humans and therefore serves as the 

pyramid’s base, and personality, which is individual and is at the pyramid’s stop. The 

onion model describes culture as consisting of different layers, where the outer layers 

represent artefacts and behaviour, and the layers further inward stand for norms, values 

and beliefs. 

Cultural models have been used to inform the adaptation of software for different 

cultures (e.g. Hoft, 1996), and in HCI and behavioural research both as source for 

hypotheses towards the examination of cultural fit of UIs (e.g. Hall, 2000), and to explain 

findings (Kamppuri, 2011). On the other hand, cultural models have been described as 

encouraging stereotypes and generalisation (Kamppuri, 2011) and applying an unsuitable 

unit of analysis, i.e. nations or larger regions (Hua et al., 2014). 

                                                      
5 This is also referred to as M-time and P-time. 
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Some research uses Trompenaars’ model of national cultural differences (Trompenaars 

and Hampden-Turner, 1998)6, developed from a survey of 8,841 managers in 43 

organisations. It considers culture as the problem solving strategies of groups, in 

particular in the context of business management. For this reason, its application outside 

of this context has been criticised (e.g. Hoft, 1996). 

2.2.1.1 Hofstede’s Cultural Dimensions Model 

Hofstede’s Cultural Dimensions Model (Hofstede and Hofstede, 2005) is arguably the 

most popular cultural model. Hofstede considers culture as a group-discrete cognitive 

programming he calls software of the mind, e.g. norms, expectations, concepts, and 

responses to the environment which people acquire throughout their life from their social 

environment. Through empirical research on ca. 116,000 employees at IBM in the late 

1960s and early 1970s, six linearly independent dimensions of cultures were determined: 

 Power distance: Does social hierarchy form relationships?  

 Individualism vs. collectivism: Are people individuals or part of a group?  

 Masculinity vs. femininity: Is society oriented towards either male values such as 

power and wealth, or female values such as empathy and friendship?  

 Uncertainty avoidance: Are future events perceived as controllable? 

 Long-term vs. short-term orientation: Is motivation gained through immediate 

rewards or future payoffs?  

 Indulgence vs. self-restraint: Do social norms control self-gratification?  

Due to it being one of the first models to tackle the phenomenon of culture in a 

quantitative way through comparatively straightforward dimensions, Hofstede’s model 

has become ubiquitous and dominant wherever culture is supposed to make an impact. It 

has been widely adapted in many fields from politics via science to economy and 

                                                      
6 Trompenaars describes the following cultural dimensions: 

 Universalism vs. particularism: Do morals and judgement follow rules or relationships? 

 Individualism vs. communitarianism: Are people perceived as individuals or as part of a group? 

 Neutral vs. emotional: Are emotions subdued or expressed freely? 

 Specific vs. diffuse: Are private and business life separated? 

 Achievement vs. ascription: Is status gained through achievements or through titles? 

 Sequential vs. synchronic: Is time perceived as coherently linear or circular, or as incoherent? 

 Internal vs. external control: Is our environment perceived as controllable, or does it control us? 
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continuously tested against new data, being augmented where necessary7. For the same 

reasons, it has been extensively scrutinized, and various methodological issues were 

criticised (see Kamppuri, 2011; McSweeney, 2002). Among others, Hoft (1996) criticized 

that the questionnaire employed was not culture neutral, and McSweeney (2002) 

considered Hofstede’s approach to determining cultural dimensions through survey 

difference analysis tautological. Abufardeh and Magel (2010) pointed out multiple 

selection biases in Hofstede’s data, which was almost exclusively gathered at one specific 

company and therefore reflects more on organisational than national culture. Further, 

Hofstede did not present results consistently on a national level. While results were 

itemised for many countries, some nations were merged into culturally inhomogeneous 

conglomerates such as the Arab World (see Ahmed et al., 2008). Further, the model’s 

indications do not always match up with observation, as e.g. noted by Hall et al. (2009) 

regarding a perceived reluctance of organisations to make decisions in a society which is 

assumed to have low uncertainty avoidance. Similarly, Kamppuri (2011) reports 

interactions in Tanzania and Finland that frequently did not match Hofstede’s model. 

This might hint towards misunderstanding of the actual applicability of cultural models 

(Kamppuri, 2011): On one hand, Hofstede appears to encourage the application of his 

model, particularly in the sector of technology. On the other hand, Hofstede 

differentiates between cultural values, i.e. preferences as described by his cultural 

dimensions, and cultural practices, which are not directly described by his model. 

Hofstede argues that values are more stable than practices, but it does question the 

model’s use when designing products for different cultures. 

2.3 GILT 

Now that user groups requiring culturally adapted software versions can be specified 

through locales, the notion of software localisation can be discussed, that is, the 

adaptation of software for users in different locales. Localisation is part of the so-called 

GILT8 framework standing for Globalisation, Internationalisation, Localisation, 

                                                      
7 Originally, Hofstede’s model consisted of four dimensions. Long-term vs. short-term orientation was 
added in the second edition in 2001, indulgence vs. self-restraint was added in the third edition in 2010. 
8 Dunne (2006) suggests to refer to it as TLIG because practitioners build awareness in that order. 
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Translation9 (Anastasiou, 2009; Yuste, 2005). Although these terms, particularly the first 

three, are commonly used, there is only a rough consensus on their meaning and relation 

to each other (Schäler, 2007; Dunne, 2006). In short, translation refers to the transfer of 

text from one language to another, localisation is the adaptation of a product to a specific 

locale, internationalisation is the activity of preparing a product for adaptation to specific 

locales, and globalisation stands for the practice of distributing a product globally. Each of 

these activities has their own characteristics, rules and pitfalls. 

2.3.1 Locale 

The ambiguous character of the term culture was mentioned earlier and is reflected in 

the differing structures of cultural models. This ambiguity is problematic for two reasons: 

First, the notion of adapting software for different cultures implies a finite list of cultures 

to adapt for. But there is no generally agreed upon list of cultures. A similar problem was 

already touched upon in the previous section on cultural models considering different 

units, e.g. regions or nations. 

It might appear that nations are a very convenient unit to adapt software to, so that for 

each nation, there is a version. Assuming that there are currently 195 nations10, these 

might be mapped on one byte. It might further appear that nations map nicely to certain 

aspects in which software needs to be adapted, such as law, which generally differs 

between nations. 

However, distinguishing software adaptations on a national level implies that culture is 

nationally homogeneous. Unfortunately, as was already mentioned when scrutinising 

Hall’s and Hofstede’s cultural models earlier, this is not the case and many nations are 

both culturally and linguistically inhomogeneous. For example, the USA includes 

population groups with cultural traditions from Europe, Latin America, Africa and Asia, 

but also Native American traditions. Similarly, many nations have more than one official 

language, e.g. Switzerland and Canada, or large population groups with their own 

language, such as the Latino population in the USA. So, by creating nation-specific 

                                                      
9 Globalisation, Internationalisation, Localisation and Translation are often abbreviated as G11N, I18N, L10N 
and T9N, with the middle number indicating the count of omitted letters. 
10 At the time of writing, the United Nations (2015a, 2015b) have 193 member states and acknowledge two 
non-member states. 
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software, one would in part miss adaptations for cultural groups on a sub-national level, 

i.e. French speakers in Canada. 

Another segregation might be suggested on the level of languages so that for each 

language there is one version. That, too, brings difficulties due to linguistic and cultural 

inhomogeneities. For example, the predominantly English countries Australia, New 

Zealand and Canada use the metric system, whereas the USA and the UK each use their 

own system of imperial measurements. French is an official language in France, but also 

in the culturally distinct nations Ivory Coast and Congo. 

The second problem of the ambiguity of culture for development of international 

software is to determine along what dimensions software has to be adapted for each 

culture. 

To solve those two problems, the notion of locale has been introduced. A locale defines a 

set of linguistic, cultural and technical specifications including script, orthography rules, 

units of measurements, and data presentation formats (Tarquini et al., 2010; Hudson, 

1997; Dr. International, 2003; Anastasiou and Morado Vázquez, 2010; Mahemoff and 

Johnston, 1998; Hall, 2000). A locale is specified through a language-region pair, i.e. the 

combination of an ISO 639 language code and an ISO 3166-1 country code (ISO TC 37/SC 

2, 2002; ISO TC 46, 2013). These locales can be amended by additional information 

related to sorting instructions, character classifications and formats. For example, en-US 

refers to the English-speaking US market, en-GB refers to the English-speaking United 

Kingdom. 

2.3.2 Translation 

Translation between two languages, also called interlingua translation or translation 

proper, is the “interpretation of verbal signs by means of some other language” (Munday, 

2009, p.5), more mundanely understood as the transfer of text from a source language to 

a target language to facilitate communication (Anastasiou and Schäler, 2010; Malmkjaer, 

2008). Translation is not done word for word, but meaning for meaning, and therefore 

applies to more than just words on a page without perfect equivalence (Munday, 2009; 

Schubert, 2009). 
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Bauer und Rodrigo (2004) distinguish between sender-commissioned translation and 

receiver-commissioned translation. The former, e.g. a website or software for customers, 

usually demands high quality, whereas the latter, e.g. a social media user reading updates 

from foreign friends, often accepts less than perfect translations. 

The activity of translation depends on what is translated, and translators specialise 

accordingly. Russo and Boor (1993) makes the case that translating UIs is more difficult 

than for example literary translation because of the many subtleties included. Translating 

for software also includes auxiliary activities such as researching information (Schubert, 

2009), string management (Hogan et al., 2004), post-editing (Rico and Torrejón, 2012), 

and even content creation (Yuste, 2005). At times, even tasks closer to software 

engineering can become part of a translator’s activities, e.g. resizing of UI elements to 

accommodate text expanded during translation (Fissgus and Seewald-Heg, 2005; Hartley, 

2009). 

2.3.3 Localisation 

Localisation is the process of adapting a product for a specific locale by translating or 

otherwise adapting the relevant locale-dependent content for the benefit of users in said 

locale (Esselink, 2000; Collins, 2002; Dunne, 2006; Lenker et al., 2011; Liem et al., 2011; 

Sikes, 2011). It can be seen as a special case of accessibility, i.e. the adaptation of 

software for diverse user groups with very specific needs, and a way to diversify and 

reach more users (Perlman, 1999). 

Localisation can apply to services and physical wares. The two most common kinds of 

software localisation deal with applications and websites (Anastasiou, 2009). Its 

cornerstones are the translation of text and the adaptations to cultural conventions 

(Anastasiou and Schäler, 2009), but the exact scope of localisation is somewhat deeper 

and fuzzier and includes consideration of locale-specific data and number formats as well 

as date and time formats, calendar systems, units of measurement, currency, images, 

icons and symbols, aesthetics, conventions for names, sound and colour, gender roles, 

depiction of national borders and geography, locus of control, functionality, UI layout and 

time zone handling (He et al., 2002; Cyr and Trevor-Smith, 2004; Hall, 2002; Anastasiou 

and Morado Vázquez, 2010). The scope of localisation will be discussed in section 2.4. 
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2.3.3.1 The Relationship between Translation and Localisation 

Although, as discussed previously, the scope of localisation goes beyond text translation, 

language quality is a fundamental aspect of successful localisation (Exton et al., 2010; 

Anastasiou and Schäler, 2009). Software communicates mostly through text (Sikes, 2011). 

Accordingly, localisation consists most prominently of translation, hence localisation is 

perceived as translation for software (Dunne, 2006; Sikes, 2011). Insofar, localisation is 

conceptually related to screen translation, e.g. the translation of movie subtitles, and 

Chiaro (2009) argues that it might often be the more fitting term when localisation is 

limited to UI text translation. 

Nonetheless, there are different interpretations of the relationship between translation 

and localisation: Translation and localisation is seen by some as identical, being merely 

synonyms for the same concept applied in different contexts. Others see in localisation a 

comprehensive activity of which translation is a part of. 

Illustrating the first, Hartley (2009) writes that it has long been accepted in the translator 

community that localisation is a specialist term used when the concept of translation is 

applied to software. Hartley is aware of the different scope localisation work requires, 

e.g. resizing of the UI, but appears to understand translation as the larger concept of 

adapting a product beyond text translation (see Munday, 2009; Law, 2003). In other 

words, Hartley finds localisation and translation conceptually identical, and localisation as 

merely the concept of translation applied to software. A similar view is given by Dohler 

(1997), who argues that localisation of information technology products is a translation of 

the whole product, rather than just a product’s textual elements like packaging and 

handbooks. 

On the other hand, many authors explicitly understand localisation and translation as not 

synonymous, arguing that localisation is distinct from translation because it also involves 

non-textual elements such as layout, icons, colour, and sound (e.g. Anastasiou, 2010b; 

Anastasiou and Schäler, 2010; Collins, 2002; Sikes, 2011; Hudson, 1997), and that the 

notion of localisation as software translation does not apply precisely because 

translations are affected by restrictions such as available space in the UI (Anastasiou and 

Schäler, 2009). Further, localisation is different from translation because software as a 

product is less language-centric and more communication- and information-centric 
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(Fissgus and Seewald-Heg, 2005), and because translated text is only part of a software 

product, whereas in translation of a book, translation is the whole product (Chiaro, 2009). 

Following this argument, localisation was different from translation even if it merely 

focused on UI text. 

The relevance of this point is that in commercial software development, localisation is 

often limited to textual elements in software (e.g. Abufardeh and Magel, 2010), or at best 

include other superficial presentational elements for replacement, e.g. symbols and 

graphics (Kamppuri, 2011, p.24). This seems to be a deliberate decision to simplify 

localisation, rather than a lack of need to adapt the software further, as e.g. reported by 

Sun (2004b). 

2.3.4 Internationalisation 

There are two ways of adapting software for locales. A trivial approach is to create copies 

of the code for each locale and make the required adaptations for each locale in the 

respective copy. This is referred to as retrofitting. Since it creates redundancy and 

duplication of effort, e.g. if a bug requires code modification in each copy of the code, it is 

generally considered to be an expensive way of conducting localisation (Kumhyr et al., 

1994; Dohler, 1997). 

The relatively cheaper approach is to design software in such a way that all locale-

dependent aspects can be configured. This is commonly called software 

internationalisation (Caddell and Hall, 2005; Liem et al., 2011; Carey, 1998; Barbour and 

Yeo, 1997; Hudson, 1997), but has also been referred to as enabling (Kumhyr et al., 1994; 

Hudson, 1997), design-for-localisation (Hall, 2002), or globalisation11 (Dr. International, 

2003; Dröge et al., 2006). 

Software internationalisation can be understood in different ways: Some see it as 

separation of locale-dependent and locale-independent software elements (e.g. Caddell 

and Hall, 2005; Carey, 1998), others as developing a culture-neutral software core (e.g. 

                                                      
11 A different meaning for globalisation as global business strategy is introduced in subsection 2.3.5. 
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Barbour and Yeo, 1997), yet others as designing software to be configurable12 for various 

locales (e.g. Liem et al., 2011; Sikes, 2011). Esselink (2006) suggests it should be all three. 

Internationalisation is sometimes implied to be simplification and reduction of 

ambiguities (Kumhyr et al., 1994) or even the removal of any locale-relevant content so 

that localisation is not required (e.g. Law, 2003). A large body of advice on how to make a 

product more culture-neutral can be found in Microsoft Corporation Editorial Style Board 

(2004). However, the main objective of internationalisation is efficient localisation 

(Combe, 2011), including localisation maintenance, for example easy resizing of UIs to 

accommodate for translated text which has changed in length (Tarquini et al., 2010). 

Further, internationalisation simplifies testing if testing for many locales can be reduced 

to one test (O’Sullivan et al., 2003). 

Internationalisation requires code creation without assumptions of any single locale (He 

et al., 2002). Sikes (2011) breaks down internationalisation to three task: removal of 

culture-dependant elements from software design, separation of presentation and 

application logic in the software architecture, and support of global norms, e.g. character 

sets and locale-dependent application behaviour. 

Software internationalisation can be implemented in three different ways13 (Carey, 1998; 

Lehtola et al., 1997): In compile-time internationalisation, modified code is created and 

compiled for each target locale, similar to re-engineering. In link-time internationalisation, 

locale-specific objects and resource files are created during compilation of the code from 

a common code base. In run-time internationalisation, one set of object and resource files 

are created and locale-specific resources are loaded during software execution (e.g. Exton 

et al., 2010). The latter approach supports locale switching at runtime, but requires the 

most computing power due to the needed dynamic link calls (Kokkotos and Spyropoulos, 

1997a). 

                                                      
12 Despite being identical for all intents and purposes, configuration files contain guidelines or commands 
while resource files contain values (Kokkotos and Spyropoulos, 1997a). 
13 He et al. (2002) distinguishes between internationalisation and localisation approaches and lists seven 
permutations: run-time localisation, compile-time localisation, compile-time internationalisation with 
compile-time localisation, compile-time internationalisation with link-time localisation, compile-time 
internationalisation with run-time localisation, design-time internationalisation with link-time localisation, 
and design-time internationalisation with run-time localisation. 
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The necessities of the project should dictate the most suitable localisation or 

internationalisation approach, i.e. whether to re-engineer, internationalise, retrofit, or 

even reverse-engineer an already compiled product. Depending on whether software 

needs to be partly internationalised, i.e. supporting only specific locales, or fully 

internationalised, i.e. supporting any possible locale (Barbour and Yeo, 1997), some 

approaches are suitable for one or few locales, while others are preferable if software is 

localised into many locales (He et al., 2002). The required effort is determined by 

internationalisation scope and method, which are therefore dependent on motivation, 

i.e. business potential if applicable (Honkela et al., 1997). 

There is a consensus that internationalised software products are more efficient in 

development due to their single code base, and consume fewer time and resources 

during localisation, leading to cost savings and a faster time to market (He et al., 2002; 

Carey, 1998). Accordingly, internationalisation practically is a requirement for software 

localisation (Anastasiou and Schäler, 2009; He et al., 2002; Dunne, 2006). The overall 

success of a localisation project depends to a major extend on the quality of its 

internationalisation (Giammarresi, 2011). 

Internationalisation can be part of the original development, or may be applied to 

existing, not yet internationalised software (Hall, 2002; Honkela et al., 1997). The latter is 

referred to as re-engineering (Peng et al., 2009) or re-enabling (Mahemoff and Johnston, 

1998). Re-engineering already finished software is generally connected with additional 

effort and expenses (Mahemoff and Johnston, 1998; Kumhyr et al., 1994; O’Sullivan, 

2001a). Law (2003) describes the case study of an internet portal where re-engineering 

existing prototypes cost ca. 1 month. Particular challenges were the refactoring of code to 

accommodate universal character encoding and the general transformation from static to 

dynamic UI text. Similarly, the inclusion of right-to-left languages can require extensive 

reengineering (Giammarresi, 2011). Exton et al. (2010) describe the effort to re-engineer 

an existing application to use their Babel Client Library localisation framework. The 

authors detail the kinds of difficulty to be expected when retrofitting an existing 

application and conclude: 

[A]lthough it is possible to retro fit an existing application with the 
[Babel Software] architecture it is not advisable and so [Babel Client 
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Library] should be incorporated into a client application's design during 
the initial development phase. (Exton et al., 2010, p.46)  

Similarly, when contrasting Japanese and English versions of a website and discussing 

usability issues, localisation and internationalisation, Tarquini et al. (2010) found that 

websites not developed with internationalisation in mind are not easy to localise.  

Accordingly, it is recommended to include internationalisation from the start of design 

and development (Kumhyr et al., 1994; Hudson, 1997; McConnell, 2004, p.48; Dröge et 

al., 2006, p.423; Ryan et al., 2009; Tarquini et al., 2010). Initially higher costs of early 

internationalisation will be compensated by savings in the long run (Collins, 2002; 

Hudson, 1997), and Hudson et al. (1997) discuss the practice of involving the 

internationalisation department early in product development in order to save time, 

reduce costs, and foster locale-dependent awareness. 

Internationalisation does not only mean engineering effort, but also affects software 

development in other ways, as examined by Abufardeh and Magel (2009), who found that 

the impact on software security and performance were the most important. 

Internationalisation also leads to scattering, i.e. code changes affecting multiple classes, 

and tangling, i.e. code changes affecting elements which are also affected by 

requirements other than internationalisation/localisation. Scattering and tangling suggest 

that cultural factors go beyond the UI and create functional requirements with 

implementations throughout the software, thus complicating its development due to the 

many changes of interrelated parts and hampering reusability, extensibility, and 

traceability of software artefacts. Abufardeh and Magel (2009) call this crosscutting 

concerns and recommend to integrate the identification of such crosscutting concerns 

into the software development lifecycle as early as possible to reduce cost and time. 

2.3.5 Globalisation 

The term globalisation is often used in two different ways in the context of software 

localisation. As mentioned previously, the term is sometimes used synonymously with 

internationalisation.  

Other than that, globalisation refers to transforming many local markets into a single 

global market in which individuals and businesses operate and compete (Dunne, 2006; 
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Sikes, 2011; Hudson, 1997). It is effectively a marketing term (Anastasiou, 2009) referring 

to an overall strategy of a more or less global business presence or services, often but not 

necessarily including locale-adapted software. For a software vendor, internationalisation 

and localisation is the implementation of globalisation in order to operate globally 

(Hartley, 2009). 

The topic of globalisation touches on the motivation for localisation. Different objectives 

are possible. Anastasiou et al. (2010) distinguish between ordinary or mainstream 

globalisation, focused on economic aspects and exclusively driven by term sales, and out-

of-the-ordinary globalisation for social, political and cultural aspects, driven by 

independence and open to the community. Similarly, Ryan et al. (2009) distinguishes 

between informative motivation, i.e. increasing the availability of information or 

software, for example in the case of the - political - EU localizing content for its member 

states, and commercial motivation, i.e. increasing business by accessing new markets and 

attracting new users. 

As will be discussed later in detail, software localisation requires considerable effort. In 

the context of this research and relating to the distinction between informative and 

commercial motivation discussed above, I would like to argue that this effort is spent in 

order to satisfy one of two objectives: either culture-centred localisation, i.e. to enable 

populations, languages and cultures, or business-centred localisation, i.e. localisation to 

ensure international product proliferation and success. These will be discussed in more 

detail next. 

2.3.5.1 Culture-Centred Localisation 

Culture-centred localisation refers to catering for specific cultures, for example to 

preserve minority cultures that would otherwise fade. For small indigenous cultures, 

localisation is essential for full participation in technological developments and therefore 

preserving their active use (Barbour and Yeo, 1997; Hall, 2004; Caddell and Hall, 2005). 

Speedy localisation is important, as once a new technology has been adopted, users avoid 

even those changes increasing usability or accommodating their culture (Wolff, 2006; 

Clemmensen, 2010).  
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Likewise, Ito and Nakakoji (1996) discusses the suitability of the typewriter metaphor for 

word processing in Japan14. Due to the complexity of Japanese script, typewriters had not 

been widely used. Instead, Japanese was written in a 20x20 grid of rectangular squares. It 

is suggested that the import of foreign word processing software based on the typewriter 

metaphor forestalled the creation of a word processing metaphor more suitable to 

Japanese writing. Nowadays, of course, word processing based on the typewriter 

metaphor is the norm in Nippon. 

Localisation has also been identified as a prerequisite for development through the 

provision of information technology to developing countries, bridging the digital divide 

between developing and developed world15 (Abdelnour-Nocera et al., 2011; Hall, 2002, 

2004). However, ideally only localised IT technology should be provided in order to avoid 

technology rejection due to it being perceived as a power relationship statement 

(Amichai-Hamburger, 2010). The introduction of foreign culture through new technology, 

e.g. English as dominant IT language, can also develop a life of its own with severe 

consequences for local languages (Caddell and Hall, 2005; Wolff, 2006; Hall et al., 2009). 

There also appears to be a certain political aspect to localisation. For example, Hall (1998) 

notes that while Nepali is written in a derivative of the Devanagari script for which a 

Unicode16 encoding exists, this is rejected, apparently because Nepal prefers its own 

encoding for reasons of socio-political differentiation17. A further role is played by socio-

political agendas, e.g. participants of the Unicode standard encoding process apparently 

preferring exclusive Unicode code points for their ethnicity’s script, rejection the notion 

of sharing code points with congruent scripts of different ethnicities (Hall et al., 2014; 

Hall, 2015). 

2.3.5.2 Business-Centred Localisation 

Software localisation, i.e. the adaptation for different markets, obviously increases a 

software product’s potential for sales (Schäler, 2007; Hartley, 2009; DePalma, 2006). 

                                                      
14 The Japanese typewriter metaphor is also mentioned by del Galdo (1996), Nardi et al. (2011) and 
Clemmensen (2010). 
15 The term digital divide is also applied to other, non-national minorities. For example, Pérez-Quiñones et 
al. (2005) apply it to women vs. men in information technology. 
16 Unicode is discussed in subsection 2.6.4.1. 
17 Similarly Ali and Kohun (2007) request recognition of Kurdish culture by implementing a Kurdish locale in 
software development frameworks. 
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Many software companies conduct the majority of their sales outside of their domestic 

market (for numbers, see e.g. Tarquini et al., 2010; Hall et al., 2009). Motivations for what 

Lenker et al. (2011) call enterprise localisation might be reactive, i.e. to satisfy customer 

requests, or strategic, i.e. to expand into new markets (Giammarresi, 2011), though 

market entry itself does not immediately require localisation (DePalma, 2006). Far from 

being a question of mere profit, del Galdo (1996) and Giammarresi (2011) suggests that in 

a globalised word and a global market, localisation is not only an option, but a necessity 

for software development companies to survive. Accordingly, DePalma (2006) found that 

about a quarter of the examined companies measure their localisation return on 

investment, but 74% localised because they felt they have to. 

In any way, business-centred localisation differs from culture-centred localisation on two 

important points: First, it is an industrial process with respective constraints and 

requirements, e.g. minimum turnaround speed and cost (Hall, 2004). Software 

localisation brings with it significant cost18, e.g. discussed by Hall (2002) and Collins 

(2002), which must be justifiable in a business sense (Hoft, 1996; Hua et al., 2014), e.g. if 

localisation of the product results in enough additional product sales to make up for the 

additional cost19 (Sikes, 2011). And second, business-centred localisation has a different 

focus and different priorities than culture-centred localisation. For example, Dr. 

International (2003, p.8) lists consistent look, feel, and functionality of software across 

different locales as objective of localisation and points out that customers might have an 

expectation for software to be widely identical. In particular, corporate customers prefer 

localised, yet homogeneous software for reduced effort in technical support and training. 

Further, the permissible effort in a profit-oriented international software project, 

including the decision what to internationalise and localise, is obviously limited by 

expected revenue (Hudson, 1997). 

Consistency across different locale versions is at odds with cultural adaptation. For 

example, comparing to the example given earlier of the unsuitable typewriter metaphor 

for word processors in Japan, one can see how not using the typewriter metaphor would 

                                                      
18 Exton et al. (2010) argues that this cost furthers the digital divide mentioned above. 
19 Wolff (2006) implies that market pressure caused by the availability of localised software from volunteer 
and open source efforts might lead to localisation for commercial software. Honkela et al. (1997) note that 
localising for minority languages as a gesture of goodwill may affect revenue in other markets positively. 
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violate consistency across locales. Similar concerns apply to locale-adapted designs (Hall, 

2002), navigation and layout (Abufardeh and Magel, 2010; Collins, 2002). It might be this 

requirement for consistency which leads to localisation often restricting itself to textual 

and linguistic aspects of software. 

2.4 Scope of Localisation 

Earlier in this chapter, the ambiguity of culture was discussed, locale was introduced as an 

indicator replacing culture, and localisation was defined as adaptation of software for 

different locales. This section will explore what adaptations can or need to be made in 

software. This localisation scope significantly influences both scale of software 

internationalisation, and localisation deliverables, and has a significant impact on the 

extent of developer-translator collaboration. The importance is implicitly acknowledged 

by software localisation models and frameworks specifically aiming to tackle culture in 

the context of software development, e.g. the model by Sturm (2002), or the models and 

processes developed by Stamey and Speights (1999) and Smith et al. (2004). 

Chavan et al. (2009) lists language, aesthetics, religion, popular culture, history, 

geography and climate, among others, as objects of localisation. Tarquini et al. (2010) has 

made an effort to give a higher-level categorisation of these elements into linguistic, 

cultural and technical items: Linguistic items include right-to-left languages, scripts and 

character sets. Cultural items include legal regulations, representation such as symbols, 

addresses and currencies, and political and business conventions. Technical items include 

keyboard inputs, local service providers, layout resizing, and foreign script support. 

Kumhyr et al. (1994) makes a conceptually different categorisation, distinguishing 

between product-independent adaptations required regardless of functionality, e.g. the 

need to translate UI text, and product-dependent adaptations specific to what software 

does, e.g. considerations of regional tax law in accounting software. 

The locale-adaptation classifications of several authors distinguish representation and 

functionality. Lagus et al. (1997) distinguished between adaptations based on cultural 

factors derived from customs and beliefs and local conventions, both of which mostly 

affecting representation, and local practices, i.e. formulae and processes, which affect 

software on a functional level. A similar classification with a stronger focus on quality and 
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localisation depth from the somewhat different medium video games is given by Thayer 

and Kolko (2004), who distinguish between three levels of scope and complexity: Basic 

localisation translates only text. Complex localisation further adapts GUI and icons. And in 

blending, look and feel, functionality and usability are adapted to match requirements of 

a different culture. 

This categorisation seems conceptually similar to the distinction of the following three 

levels of cultural HCI adaptation of del Galdo and Nielsen (1996): 

1. The interface is able to process user's language, script, and formats, which in the 

opinion of the authors is achieved in most products. 

2. The interface has been subjected to common usability methods in order to make it 

usable and understandable for international users. 

3. The system accommodates cultural characteristics of the user, for example by 

moving the design beyond offensive and nonsensical icons to address specific 

cultural values such as the way communication and business is conducted. 

It stands out that on the first two levels, del Galdo and Nielsen (1996) talk about 

capabilities of the UI, whereas they refer to system capabilities for the highest level. The 

five levels of localisation given by Honkela et al. (1997), i.e. none, minimum, moderate, 

high and complete localisation, do not distinguish between either representation and 

functionality, or different UI element classes. 

There is the implication that there is localisation of presentation, and localisation of 

behaviour (see e.g. Abufardeh and Magel, 2008a). Schäler (2007) distinguishes between 

shallow level and deep level localisation: the former considers cultural conventions such 

as colours, symbols, sounds, signals, and product names, whereas the latter considers 

underlying value systems. Ito and Nakakoji (1996) distinguish between functional design 

so that a product is usable by foreign users, and good international HCI design. 

2.4.1 Localisation Requirements 

So, specifically what needs to be internationalised in software, i.e. made localisable? 

Obviously, UI text should be translated so that it is natural and user friendly, i.e. clear and 

consistent (O’Sullivan, 1989). Correct language is important as errors can lead to a 

decrease in acceptance. For example, simple spelling mistakes can insult Arabic users 
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when they are addressed in the wrong gender (Abufardeh and Magel, 2010). This is a 

particular concern when text is modified at run-time, e.g. if placeholders are filled in. 

Visually correct representation of text also relates to data representation, i.e. formatting 

and display, and relates to operations such as sorting and collation sequences (Kokkotos 

et al., 1997; Law, 2003). 

Beyond the obvious translation of text, localisation also needs to consider visual aspects 

of the UI. The locale dependence of colour associations is discussed in Barber and Badre 

(1998), Russo and Boor (1993) and Badre and Laskowski (2001). For example, in the 

Western world the colour associated with death is black, whereas in the Middle East and 

Southeast Asia, it is White. Symbols, icons and imagery carry different meanings in 

different locales. For example, the thumbs-up gesture has a positive connotation in 

Western culture, but is an offensive insult in Persian countries. Conversely, examples of 

non-Western symbols likely undecipherable for Western readers are given by Marcus 

(1996). Further, subtext and perceived aesthetic of sound and music vary widely between 

cultures (O’Keeffe, 2009). 

The previously mentioned adaptations are mostly representational differences, or 

functionality closely associated with representation, such as list sorting. Other localisation 

requirements relate to software behaviour rather than presentation. Such differences are 

more difficult to translate into different locale-dependent requirements. A starting point 

are the previously mentioned operations related to data presentation, e.g. sorting, and 

extend to any locale-related software business rule, i.e. account and financial rules and 

logistic and operations practices (Abufardeh and Magel, 2010; Hall, 2000; Abdelnour-

Nocera et al., 2003). Considerable differences in infrastructure could lead to further shifts 

in software requirements. Smith et al. (2007) relate how a lack of fixed power lines or a 

reliance on alternative energies might influence engineering choices, e.g. towards batch 

processing. Nardi (2011) discuss cultural and physical influences on the process of 

withdrawing money. And the more cultures differ, the broader the adaptations that are 

required: Another banking-related example by Hall et al. (2002) describes the capability 

of Indian banking websites to give to charity or conduct rituals to bless a financial 

transaction.  
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Localisation requirements are regularly associated with even higher levels of cultural 

differences, e.g. it is often pointed out that Western and Southeast-Asian cultures are 

fundamentally different in problem-solving strategies, where the Western approach is 

based on analytic reasoning and cause-and-effect-thinking, and the East-Asian approach 

is holistic and dialectic (see Rauterberg, 2006; Christiansen, 2010). Zahedi et al. (2001) 

proposed cultural factors believed to determine web document effectiveness. 

Many examples of cultural differences could be discussed. However, in order to arrive at 

a well-localised product, such punctual evidence of cultural differences have only limited 

usefulness as guidepost to decide comprehensively what to localise and what not to 

localise: First, the more subtle and subconscious the cultural differences become, the 

more likely it is that they will not be noticed or cannot be expressed in gritty examples as 

those above. Second, obvious cultural differences do not necessarily translate into what 

would seem to be the logical consequence in UIs, so for example the previously 

mentioned colour association of white with death Japan contradicts empirical data as 

Japanese web sites use white to a large extent (Cyr and Trevor-Smith, 2004)20. Third, for 

many cultural differences and idiosyncrasies, it is not clear how to translate them into 

localised software behaviour. 

In practice, a more empirical approach of defining localisation requirements is applied, 

e.g. by having product adaptations to specific markets being guided by examining 

respective users in the market through ethnographic studies (Liu and Zhang, 2011). 

2.4.2 Locale-specific Design and Cultural Marker 

This begs the question how it is known what elements in software are locale-dependent. 

Is there empirical evidence? 

Barber and Badre (1998)21 identified culturally relevant conventions on websites through 

statistical means and usability inspections of several hundred websites from different 

countries and languages, and used these insights to develop guidelines to increase the 

cross-cultural usability, or culturability, of web sites. Juric et al. (2003) identified general 

issues of cross-cultural web design and found culture-specific design elements of South 

                                                      
20 Similarly, Sun (2002) questions the usefulness of cultural guides advising Asian developers on the 
meaning of the colour red in the USA. 
21 The study is also reported in Badre (2000). 
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Korean and UK websites, particularly regarding colour, menu layout, and animations. Cyr 

and Trevor-Smith (2004) analysed 30 municipal websites each of Germany, Japan and the 

USA in order to find culturally preferred design elements and the degrees of difference, 

and confirmed variance across cultures for language and script, layout, symbols, content, 

structure, navigation, external links and colours. 

These studies assumed that localisation or lack thereof have an effect on performance 

and hence usability, and concluded that usability must be defined in terms of cultural 

context as culture defines what is useable and what is not. 

While the previous studies identified cultural markers bottom-up, i.e. based on data, a 

number of other studies attempted to find locale-specific software aspects through top-

down methods only, i.e. by conducting content analysis and using cultural models as a 

framework. Marcus and Gould (2000) mapped cultural properties of Hofstede’s - at the 

time five - cultural dimensions to implementations of websites from various locales, 

concluding that depending on the context, extensive adaptations of websites for different 

locales would be necessary. Some of their postulations were later confirmed by other 

researcher’s results, e.g. culture-dependent website navigation was supported by Cyr 

(2008). 

Ahmed et al. (2008) explored cultural values of Malaysia and Britain with relevance to 

web sites by conducting a content analysis for three Malaysian and British websites each. 

They examined how Hofstede’s individualism and collectivism dimension and Hall’s high 

vs. low context dimension was reflected in the websites and found considerable 

differences in cultural values on Malaysian and British websites, concluding that the 

world-wide web is not culturally homogeneous. 

Choi et al. (2005) used interviews with Finnish, Korean and Japanese participants about 

videos showing mobile data service use to examine the relationship between four cultural 

dimensions derived from Hofstede and Hall, and design attributes of mobile data services 

for feature phones. They arrived at a list of 52 design attributes related to culture with 

relevance for the design of future mobile data services. 
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Stamey and Speights (1999) conducted a case study that combined bottom-up analysis of 

existing websites with top-down theories of culture to develop a methodology for 

localising US-American websites for Mexican customers. 

Limitations of the previous studies include the predominant use of websites and 

restrictions to examining aspects of presentation while neglecting function or behaviour. 

When content analysis is not formal, there is a chance that the locale-dependence of the 

identified software elements and their mapping to existing cultural models is more a 

product of the researcher’s wish, than actual locale-dependency and a data-model fit. As 

Sun (2002) criticised, such studies assume and confirm an incorrect view of culture as a 

static collection of cultural markers, although culture is dynamic and cultural markers are 

nothing more than its manifestation. Nonetheless, it can be expected that as computers 

become more ephemeral, ubiquitous and pervasive, new interfaces and modes will 

provide more openings for culture to play a role (Harper et al. (eds.), 2008). e.g. in 

augmented reality (Rauterberg, 2006), robotics (Levy, 2007; Weiss and Evers, 2011; Evers 

et al., 2008), or mobile devices (Chiaro, 2009; Grigas, 2014). 

2.4.3 Cultural Markers and Usability 

An issue with the studies mentioned in the previous section is that in isolation, they do 

not actually show the necessity of cultural adaptation: Just because software products 

differ between two cultures does not necessarily mean that this difference has to be 

reflected in future products for success, particularly if the differences are primarily 

optical. They might also be chance or fashion, and simply irrelevant. 

This would be in conflict with the assumption that the presence of cultural markers has a 

positive influence not only on product acceptance, but also on usability and user 

performance (Barber and Badre, 1998; del Galdo, 1996; Hall, 2002). For example, text 

input for Indian characters on mobile phones might be affected by the need for 38 key 

presses in order to enter certain Sanskrit characters (Clemmensen, 2010). This has been 

verified by so-called cultural usability tests. 

Choong and Salvendy (1998) conducted a study showing that with regards to 

performance and UI, there are differences between American and Chinese users. 
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Americans performed better with alphanumeric and mixed icons, Chinese users 

performed better with pictorial and mixed icons. 

Badre (2000) examined the relationship between culture and website design and 

usability, showing that websites with Italian cultural markets required fewer clicks for 

navigation on average than with US cultural markers, and that US subjects might prefer 

foreign designs, but do not perform better on domestic websites. 

Aryana and Liem (2011) examined usability differences for Turkish and Iranian mobile 

phone users through interviews, focus groups and usability studies. Cyr (2008) found that 

localising websites increases trust, satisfaction and customer retention, i.e. repeat visits, 

in e-commerce websites. 

The results align with theoretical predictions. The UI is one of the most important aspects 

of software, and its quality is determined by UI text language and design (Irmler and 

Hartwig, 2000). Although users learn quickly to link a representation, e.g. a symbol, to its 

underlying function, understanding a representation facilitates this learning (Liem et al., 

2011), and cultural background has a strong influence of the understanding of UI 

elements (Smith et al., 2007). 

Sun (2004a, 2004b) examined users of text messaging in the US and China through 

surveys, observations, interviews and diary studies, and concluded that localisation of 

operational functions ignores that international users then effectively use the localised 

product differently, with different goals and objectives, than users in the original locale. 

The author suggests to localise for concrete use cases within specified contexts and to 

consider social aspects during localisation. 

However, although usability and related factors such as dependence and acceptance are 

important factors for the success of software (Sommerville and Dewsbury, 2007) and 

individuals are more likely to interact with technology if it appears easy to use and 

appealing (Agarwal and Karahanna, 2000), the research results discussed above are 

limited to a subset of global locales. Further, most studies on culture and HCI are 

questionnaire-based quantitative cross-cultural comparisons conducted with university 

students who more often than not speak English, and are analysed on the level of 
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national groups, not regions (Clemmensen and Roese, 2010). Hence, there is only limited 

validity and applicability of the results. 

There are also indications that for users, locale-dependent performance is not 

paramount. First, a lack of cultural fit can be compensated by users (Sun, 2004b). Second, 

some users appear to consider unlocalised software good enough or even superior (Cyr 

and Trevor-Smith, 2004; Hall, 2006). Third, socio-economic rationales and preferences 

can supersede individual preferences (Wolff, 2006; Schäler, 2007; Hall et al., 2009).  

2.5 Localisation Factors, Issues and Challenges 

A localised product must meet local needs while reaching the market within reasonable 

time (Hudson, 1997). Additionally, as for any project, there is also a limit on cost that can 

be accrued and of effort that can be expended. The localisation factors cost, quality and 

time (Hudson, 1997) are the criteria of successful software localisation (Karkaletsis et al., 

1995). 

Localisation costs can be considerable (Collins, 2001; Ryan et al., 2009). For example, 

DePalma (2006) report a survey where 0.25% and 2.5% of the international revenue was 

spent on localisation, but noting that exact accounting of localisation cost to locales, 

products and activities is difficult. External or exclusive costs such as staff costs for 

translators are comparatively simple to break out, but internal localisation costs, i.e. 

efforts of project managers and software engineers for which internationalisation and 

localisation work and localisation bug fixing is only part of their work, is complex 

(DePalma, 2006). Further costly localisation expenses include software purchases, 

compilation of information kits for localisers, localisation testing and terminology setup 

(Honkela et al., 1997). Localisation cost is also linked to volume, i.e. word count and 

number of target locales (Ryan et al., 2009), as a localisation service provider (LSP22) or 

freelance translator charges per word and each target locale requires at least one 

additional translator. Another major contributor to localisation cost is the handling of 

localisation bugs (O’Sullivan, 2001a). Further costs might be created through the purchase 

of localisation tools. As with many other efforts, although localisation cost cannot be 

known definitely while product development is ongoing, they must be forecast 

                                                      
22 Also called localisation vendor or translation agency, though the latter technically offer different services. 



37 
 

nonetheless (Sikes, 2011). A noted imprecision of the term cost is its implication of an 

exact, clearly defined financial value such as the salary of translators. However, many 

localisation-related costs do not appear separately on spreadsheets and are difficult to 

determine, i.e. the time spent by software engineers satisfying internationalisation 

requirements in the software or fixing localisation-related bugs. 

Localisation quality has not been standardised yet (Lewis et al., 2009; Tarquini et al., 

2010). McHugh et al. (1997) suggest to understand localisation quality in terms of the ISO 

9126 standard23 (ISO/IEC JTC 1/SC 7, 1991), which defines software quality through 

functionality, reliability, usability, efficiency, maintainability, and portability. These would 

accordingly be mapped to meeting local user needs, apparent friendliness towards a local 

user, software effectiveness in the locale, documentation correctness, difficulty of 

internationalisation and localisation, and extent of internationalisation and localisation. 

Alternatively, McHugh et al. (1997) suggest to understand localisation in terms of 

technical quality, linguistic quality, and how a product compares to the competition. 

Localising a product takes time (Collins, 2001), with the main concern being the impact 

internationalisation and localisation have on the release date (Caesar and Fehrenbach, 

2005). From the software industry’s point of view, time to market is extremely important. 

Due to the high frequency of innovation, being second risks losing the market, so even 

moderate delays can have disastrous effects on success. Accordingly, the software 

industry has developed an almost obsessive relationship with time to market (Boehm, 

2011, 2006; Blackburn et al., 1996). 

Software localisation has been impacted by this through the practice of simshipping24, i.e. 

the simultaneous release of all locale versions of a product (Ryan et al., 2009; Hartley, 

2009; Zhou, 2011), a requirement often originating in marketing departments (Kahler, 

2000). Even a moderate time between domestic and localised availability allows 

competitors to develop and release a competing, localised product and seize the market 

of a locale. Further, many customers do not want to wait for localisation and instead 

obtain a domestic version. This might impact the acceptance of localised versions and 

                                                      
23 ISO 9126 has since been superseded repeatedly. The current standard for software quality is ISO 25010 
(ISO/IEC JTC 1/SC 7, 2011). 
24 The opposite of simshipping, i.e. localisation after the release of the initial version, is called post-release 
(Zhou, 2011). 
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drive software piracy when a domestic version is not legally obtainable. In extreme cases, 

there is a danger to misinterpret any delay between releases of different locale versions 

as slight or preference of rival locales, leading to reputation loss for company and 

product. For example, Edwards (2012) warns that delays between the release of Hebrew 

and Arabic versions might lead to such sentiments in the locale for which the product was 

released later. 

Simshipping is believed to increase pressure on localisers (Ryan et al., 2009). Estimates 

vary wildly, but it can be assumed that translators can translate between 1,000 and 2,000 

words per day (see Combe, 2011). Because UI texts can easily contain more than 10,000 

words, delaying a product release until translation is finished can cause significant delays. 

On the other hand this parallel working of engineering and localisation is credited with 

benefitting complex localisation projects where application functionality has to be 

localised and engineering can react to input from localisation (Zhou, 2011). However, 

simshipping and parallel engineering and localisation has also been associated with 

increasing the difficulty of estimating cost and time in project management (Sikes, 2011). 

 

Figure 2-1 The project management triangle 

The three factors cost, quality and time map to the so-called project-management 

triangle. The idea behind it is that a project is located somewhere in the triangle spanned 

by the three factors, and can move towards any one factor, or within limits decrease the 

distance to two, but never towards all three. In fact, getting closer to one factor always 

comes at the cost of increasing the distance towards at least one of the other two factors. 

The applicability of this concept to localisation can be illustrated by Collins’ (2001) 

discussion of on-site localisation: Having translators on-site increases quality, but comes 

on budget 

on time on quality 
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at a higher cost than off-site localisation. Dunne (2011) applied the project management 

triangle to localisation, noting that in localisation projects, “[c]ost rules, quality is 

assumed, but in the end, schedule wins” (Dunne, 2011, p.120). 

2.5.1 Localisation Issues 

In the previous subsection, three localisation factors were introduced: cost, quality and 

time: Regular software localisation and internationalisation incurs cost and takes time, 

and delivers a product with a specific localisation quality. This relationship was already 

elaborated on in the previous subsection. This subsection will look at localisation issues, 

i.e. problems related to localisation. These can be separated into product-related and 

process-related problems. 

The most obvious localisation issues are probably product-related problems, i.e. quality 

problems with the software, or in other words, localisation-related bugs. A localisation 

bug is anything in the final software product that can be classified as an error. Localisation 

bugs range on a severity scale from comparatively minor, such as a disputable translation 

leading to a minor aesthetics issue, to serious, such as a malformed placeholder leading 

to abnormal program termination. In between are incorrect, ambiguous, partially 

displayed and missing localisations and translations, incorrect vocabulary, disregarded 

writing conventions such as direction, punctuation, spacing rules, sorting and collation, or 

failure to consider locale-dependent techno-cultural aspects such as character encoding, 

keyboard shortcuts and technical infrastructure (Ryan et al., 2009; O’Sullivan and Hyland, 

2004; Collins, 2001; Pérez-Quiñones et al., 2005; O’Sullivan, 1989). 

Localisation quality has been the subject of various studies examining translation quality, 

consideration of locale requirements, and applicability of the use case for the 

international market (O’Sullivan et al., 2003). Localisation bugs can lead to usability 

issues, and the link between usability and localisation has been discussed earlier. Even if 

no usability issue is apparent, a – possibly subconscious – effect of localisation bugs on 

product acceptance should not be underestimated as the effect of localisation bugs can 

range from inconsequential annoyance to perceived offense. For example, Abufardeh and 

Magel (2010) explains how simple writing mistakes might insult Arabic users who are 

addressed in the wrong gender. DePalma (2006) elaborates that depending on the 

market, perfection for its own sake can determine product success. 
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However, localisation issues can go beyond the product itself and affect the process, e.g. 

in the form of superfluous engineering and localisation efforts incurring unnecessary cost 

and causing unnecessary delay of the final software. Such issues include duplication of 

effort (Hogan et al., 2004), particularly repeated translation of text for which translations 

already exist from previous translations. Additional cost and delay can be caused by 

quality assurance and quality control efforts as a response to localisation bugs. In fact, the 

impact the correction of localisation bugs has on product cost and schedule at one time 

was believed to be so huge that O’Sullivan (2001a) stated that complexity and time for 

fixing localisation bugs is the main cause of localisation costs. However, as discussed 

earlier, as these would be internal localisation costs, it is difficult to separate them from 

other internal costs unrelated to localisation25. 

2.5.2 Role Relationships and Causes of Localisation Issues 

Localisation issues are not of equal concern for each role involved in developing 

international software. Some errors concern engineers, others concern translators or 

linguists, even others concern project managers, and so on (O’Sullivan and Hyland, 2004). 

For example, issues-related localisation concerns from an engineering perspective might 

be whether the application has been properly internationalised, i.e. all locale-relevant 

content has been completely separated from the code, whether all content storage files 

adhere to standardised formats, whether all UI text can display any possible Unicode 

characters, whether all functions processing strings can handle non-Latin languages and 

script, and so on (O’Sullivan and Hyland, 2004). 

Equally, different sources of localisation issues have been identified in the literature. 

Many localisation bugs are caused by incomplete or incorrect internationalisation (Pérez-

Quiñones et al., 2005; Ryan et al., 2009; Hogan et al., 2004; O’Sullivan, 1989). These, and 

localisation bugs caused by lack of contingency for text expansion during translation, have 

been attributed to lack of knowledge of software engineers (O’Sullivan, 2001a; Pérez-

Quiñones et al., 2005). The consequence of lack of knowledge about culture which leads 

to ethnocentric misconceptions in the design of software products in the form that it is 

                                                      
25 The “thousands” of localisation bugs observed by O’Sullivan (2001a, p.7) will probably not occur in 
software developed with today’s technology since arguably many of those bugs are avoided by the use of 
localisation APIs and localisation frameworks. Nonetheless, the link between localisation quality issues and 
cost and time remains. 
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assumed that interpretations and understanding of software functionality are universal 

across different cultures, when they are not26 (Vatrapu, 2011). Accordingly, such 

localisation bugs are not caused by localisation, but are an inherent property of the 

English product (O’Sullivan, 1989). Besides quality, Law (2003) reported an impact on cost 

and time through the need for additional quality assurance and quality control caused by 

lack of understanding of culture. 

A lack of planning, communication and coordination have also been identified as source 

of localisation issues: 

Good translations require communication between translation and engineering roles to 

remove ambiguities of the meaning of the source text (Russo and Boor, 1993; O’Sullivan, 

1989). Usually, this requires the translator to know the context of the text to be 

translated. Context is information informing about the situation of an item, e.g. person, 

place or other object, relevant to the interaction between user and application, including 

user and application themselves (Aryana and Liem, 2011). For example, the term manual 

download might refer either to the download of an instruction manual, or a manually 

initiated download as opposed to an automatically initiated download. Considering that 

not all target languages can cover both meanings with one term, a translator has a 50% 

chance of picking the wrong meaning with merely the text to go on, and thus providing an 

incorrect translation (Freigang, 2000). 

The responsibility for the lack of communication has particularly been assigned to 

localisation agencies, and when designers and programmers were uncooperative towards 

translators with respect to providing context information (O’Sullivan, 1989; Combe, 2011; 

DePalma, 2006; Honkela et al., 1997). 

It is often stated that this kind of communication is handled by so-called localisation kits 

including material giving the translators context for the source content (Honkela et al., 

1997). However, employing such unidirectional communication through localisation kits 

relies on the assumption that there are either no issues for translators to note, or no 

questions for them to have. Neither assumption is correct (Sikes, 2011). 

                                                      
26 Some examples of Western products failing in international markets are given in Chavan et al. (2009). 
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2.5.3 Future Localisation Challenges 

In the development of global application, previous challenges had been identified as the 

adoption of Unicode, and advanced internationalisation architectures (Law, 2003). In the 

literature, the expectation has been voiced that there will be continued pressure to 

reduce localisation cost and time, increasing localisation quality, and that localisation 

volume will continue to increase (Ryan et al., 2009). 

The use of technology, for example of machine translation and computer-assisted 

translation, will equally continue. Increased use of such technology will continue to 

enable the spreading of translation jobs over several translators in parallel. Together with 

translation from updated material, translators can expect to translate more and more 

fragmented source texts (Bikmatov et al., 2013; Esselink, 2003). 

This development also robs translators of context. Accordingly, context provision to 

translators and enabling translators to preview their translations in the eventual 

publication format, e.g. the final UI, have been identified as another challenge to 

overcome (Bikmatov et al., 2013). 

2.6 Facilitation and Support of Localisation 

In the previous sections motivations, scope of localisation, issues, and perceived future 

challenges were discussed. This section will look at practice, existing research and 

development towards decreased cost and time, and increased quality. 

Because the building blocks of computer programs, e.g. source code and UI definition, are 

generally generated on a computer, it is only natural to localise software, i.e. adapt or 

translate said building blocks, using a computer as well. Accordingly, software has 

become a tool to facilitate and improve localisation. Factors facilitating localisation have 

been identified as translation tools, platform support, Unicode and UI guidelines (del 

Galdo, 1996; Vouros et al., 1997). Additionally, this section will discuss outsourcing and 

standards. 
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2.6.1 Translation Tools 

Translation tools refers to software helping a translator to translate. So-called Computer-

Assisted Translation (CAT)27 tools can be categorised into three types of linguistic 

resources (Lenker et al., 2011): translation memories, machine translation, and 

terminology databases. The lines between them are blurring (Reineke, 2005), and these 

linguistic resources are often combined into one application called a translator’s 

workbench or translation editor and include text processing functions such as spell, syntax 

and style checking as well as import and export functions for various file formats, 

including source code and binary files (Vouros et al., 1997; Freigang and Reinke, 2005). 

Since these tools improve the task without changing it radically, Exton et al. (2010) 

classified them as enabling technologies. A case study of CAT tools was conducted by 

Schäler (1994), finding an increase in translation speed, improved consistency in 

translations and therefore improved translation quality, and decreased translation cost. 

Wolff (2006) noted that certain features of translation tools, e.g. automatic spell checking 

and automatic checks for correct punctuation, spacing, and placeholder use, enable non-

native speakers of a language to at least determine what translations require a review, 

thus lowering the workload of translators.  

On the other hand, usage of translation tools comes with its own issues and 

disadvantages. Translation tools require considerable training (Bowker, 2005; Wolff, 

2006; Moorkens, 2012a) but affect work practices and are therefore controversially 

viewed by translators (Wolff, 2006; Stoeller, 2011). Translation tools have also been 

found to impose the tool developers’ interpretation of translation and localisation onto 

translators (Hartley, 2009; Dohler, 1997), introduce new problems into work processes 

that are difficult to mitigate (Schäler, 1994), and the maintenance efforts required to 

ensure their effectiveness is often underestimated (Sikes, 2011). 

Nonetheless, it is expected that the use of translation tools will increase (Yuste, 2005), as 

will their functionality and their adaptation to the needs of translators and localisation 

teams (Irmler and Hartwig, 2000). 

                                                      
27 CAT tools are those tools directly related to translation and localisation. General-use software with 
merely the potential to assist in localisation as a general industrial process, e.g. workflow and content 
management tools, are not discussed here. 
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2.6.1.1 Translation Memories 

A Translation Memory (TM), also called Translation Memory System (TMS) or repetition 

manager, is a software tool that keeps track of previously used translations. TMs store 

source text and its corresponding aligned28 translations in the form of translation units 

into which the text has been segmented, usually along sentences, headings etc. (Bowker, 

2005). The fundamental idea behind TM is that every translation is available for 

subsequent use. This could either be continued use, for example if an already translated 

string is moved to a different file or place, or re-use, for example if a new string has 

previously been translated in a different place or project. Existing translations of identical 

source texts are called 100% matches, and those of similar source texts fuzzy matches 

(Freigang and Reinke, 2005; Bowker, 2005), with a percentage value expressing how 

similar the matches are. 

TM usage comes with the side effect of increasing effectiveness of collaboration between 

translators. It is increasingly common to have multiple translators translate a body of text 

(Munday, 2009), which is perceived to threaten consistency as translations by different 

translators diverge (Vouros et al., 1997; Law, 2003). The ability of TMs to compare 

translations of similar units is supposed to help translators keeping their translations 

consistent. 

Obviously, TMs work best for translation of text with a certain amount of repetition and 

have been identified as tools specifically for technical translation (Hartley, 2009). Their 

use is practically indispensable in localisation for its effected translation speed increase 

(Yuste, 2004; Lenker et al., 2011; Moorkens, 2011), confirmed through case studies (e.g. 

Schäler, 2007; Bauer and Rodrigo, 2004) and experiments (Bowker, 2005). Bowker (2005) 

also gives comprehensive insight into how TMs are used in practice and provides 

numbers: Efficiency gains through TM usage can range from 10% to 70%, with 30% being 

considered a realistic figure. 

Obviously, however, the translation quality within a TM is always dependent on the 

original translator, and TM usage makes most sense when working with repetitive, 

frequently revised or updated text. Further, the efficiency increase requires the overall 

                                                      
28 Alignment is usually done during translation. If done retroactively for existing corpora, this is called post-
translation alignment (Bowker, 2005). 
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context of translations not to deviate much (Bowker, 2005; Moorkens, 2012a, 2012b). It is 

hence recommended to exclude text with uncommon terminology or unique style from 

TMs (Bowker, 2005) and be careful when mixing text from different departments or times 

in TMs. TM efficiency also increases when applying source text standardisation such as 

controlled language (Hudson, 1997; Allen, 1999; Moorkens, 2012a), i.e. language 

restricted in grammar, vocabulary and syntax in order to lower complexity, avoid 

ambiguity and provide consistency (Vouros et al., 1997). 

While the advantages of TM usage are acknowledged, research results also indicate a 

number of limitations and disadvantages: The more analytic a language is, i.e. the less the 

grammar requires words to be modified, the more helpful TMs can be, whereas the more 

synthetic a language is, the more difficult it is to apply such tools. Respective difficulties 

for Baltic languages are discussed by Rusakevičienė and Kriaučionytė (2012). Further, 

Schäler (1994) noted that the tool enforced an inflexible work process on users which is 

likely to slow down experienced translators, and Bowker (2005) found that while use of a 

TM increases translation speed, quality dropped at the same time as translators are 

tempted to be uncritical about translation proposals coming from a TM. Moorkens (2011, 

2012a) identified, categorised and measured consistency in TMs, finding as considerable 

cause clients’ focus on time and cost savings over quality and a wide range of clients’ 

often incorrect assumptions regarding translation practice. These observations confirm 

that TM usage removes context and increases distance between translator and source 

text, requiring additional pre- and post-translation work (Ottmann, 2005). 

Bowker’s study results are discussed by Pym (2008) as manifestation of Toury’s laws of 

growing standardisation and of interference, stating that features of the source text, such 

as metaphors, become a regular target language feature. The law of interference predicts 

the carrying-over of source text characteristics, such as structure, into the translated text. 

In short, Pym concludes that usage of TMs increases standardisation in translations, but 

also properties which are uncharacteristic of the target language. While the former is not 

all bad since it leads to increased consistency in translations, that is, precisely the benefit 

TMs are supposed to produce, Pym criticises the practice of segmentation as such 

because imposing the source text’s segmentation makes a translation more difficult to 

comprehend to the point where limitations of TMs have more influence on the 



46 
 

translation than the actual source text and there would be no net improvement in 

comprehensibility through the use of TMs. 

Bowker (2005) and Moorkens (2012a) also points out that identical source text segments 

can warrant different translations based on the context, i.e. the preceding or succeeding 

segments in the text. Consequently, identical source text can and should not necessarily 

be translated consistently. 

2.6.1.2 Machine Translation 

Machine Translation (MT) is the automated translation of text through software. There 

are two main families of MT methods: rule-based machine translation, also known as 

classical approach or knowledge-based machine translation, based on codifying a 

language’s rules into software, and statistical machine translation, inferring translations 

by statistically analysing a corpus of available parallel texts of source and target language. 

MT currently still has weaknesses considering the context for translations, e.g. non-literal 

meanings such as irony, ambiguity or humour (Morado Vásquez et al., 2011). In software 

localisation, concerns regarding MT revolve around the field’s typical rapid invention and 

change of novel technical terms for which no equivalents exist yet in target languages, 

further the abbreviated UI language with little grammatical structure, single-word labels, 

in particular homographs, and the mix of technical instructions as part of text, e.g. 

placeholders and inclusion of keyboard shortcuts (Hogan et al., 2004; Elsen, 2005; 

Kumhyr et al., 1994). 

Although there is no agreed measurement of translation quality (Lewis et al., 2009), 

various methods of assessing MT quality and MT strengths and weaknesses (e.g. Bohan et 

al., 2000; Vasiļjevs and Sāmīte, 2012) have been examined. Yao et al. (2002) 

computationally measured the quality of software localization-oriented MTs by running a 

number of string comparison algorithms against machine and human translations and 

measuring the string differences, statistically showing computational results to correlate 

with human evaluations. Pérez-Quiñones et al. (2005) examined the quality of a 

commercially available MT software through comparison with crowdsourced and human 

translations, and the suitability of back-translations for the evaluation of MT quality. 
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Nonetheless, there is a trend towards more translation automation (He et al., 2002), with 

MT eventually taking over the task of translating altogether. Enabling good translation 

now might lead to a solid basis for MT in future projects (Irmler and Hartwig, 2000). 

However, even in that case, translators will shift their competences towards terminology 

work, TM maintenance, terminology work29, corpus maintenance, application of 

controlled language, or simply switch to more sophisticated translation tasks not suitable 

to MT and projects requiring careful assessment of cultural issues beyond translation 

(Yuste, 2005). In fact, this practice has already been reported from the industry, e.g. by 

Hudson et al. (1997).  

MT has already found its niche applications in software localisation and globalisation 

strategies, e.g. in online communication, social networking and other applications of what 

Elsen (2005) calls gisting, where quick or cheap availability of approximate meaning is 

more important than a perfect translation (Morado Vásquez et al., 2011). Obviously, 

these are dramatic differences in translation requirements (Lewis et al., 2009; Morado 

Vásquez et al., 2011), and Bauer and Rodrigo (2004) differentiates such receiver-

commissioned translation from the classic sender-commissioned translation where quality 

demands remain high. Examples of respective applications of MT are described in Thicke 

(2012), Stewart et al. (2010), and Porsiel (2008). 

2.6.1.3 Terminology Databases 

Terminology refers to a systematic collection of words and terms and their meanings in 

defined contexts. A terminology database is similar to a glossary, but goes further, aiming 

to increase consistency in source texts and translations by providing a corpus of terms 

and definitions of their meanings for use by source text authors and translators (Bowker, 

2005; Vouros et al., 1997). The need for terminology databases has been identified in 

localisation case studies, e.g. in Law (2003). 

Active terminology lookup during translation is supposed to increase translation quality 

(Bowker, 2005), and managing terminology in a source text is assumed to increase the 

efficiency of MT and TM for during translation dramatically (Bowker, 2005; Moorkens, 

2012a). However terminology databases require a significant amount of setup work and 

                                                      
29 Terminology management is discussed in subsection 2.6.1.3. 
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ongoing and maintenance effort by dedicated staff, translators and content creators 

(Karkaletsis et al., 1995; Bowker, 2005; Bauer and Rodrigo, 2004; Schubert, 2009; Vouros 

et al., 1997). Terminology should be translated before the actual content (Vouros et al., 

1997). The incorporation of a terminology database into product development and 

localisation is illustrated in a case study by Bauer and Rodrigo (2004). 

2.6.1.4 Provisioning Locale-specific Information 

The examination of cultural differences and the scope of internationalisation and 

localisation has been discussed in subsection 2.4. Of course, identifying cultural markers 

and applicable cultural models is only half the work. At worst, it leaves a lot of doubts 

what really needs to be internationalised, and at best, it says what needs to be 

internationalised, but not how.  

A number of authors suggest development some kind of repository containing data or 

information which helps directly or indirectly with localisation. The idea of storing cultural 

information for various purposes is not new. For example, Bumeder et al. (2003) 

presented a repository for improving intercultural collaboration. With respect to software 

localisation, Ryan et al. (2009) focuses on reducing localization costs by a tool called 

Localisation Knowledge Repository (LKR), a library containing development guidelines 

regarding content, presentation, navigation, accessibility, and other issues compiled from 

primary research, secondary research, existing literature and best practice. The intention 

is for LKR to incorporate internationalisation guidelines into the development process 

(Anastasiou, 2009). 

Assumedly, results from culture-HCI studies would feed into such a database as suggested 

by Ryan et al. (2009). Similar ideas also appear in publications of other researchers, i.e. a 

central repository for culture-specific information (Mahemoff and Johnston, 1998) and 

“resource banks of local knowledge so that developers can avoid misunderstandings” 

(Smith and Dunckley, 2007, p.2). 

Hall et al. (2003) argue that guidelines across cultures for the development of UI 

interfaces are not optimal because they are specific to the culture in which they were 

developed. Instead, the authors suggest to use design patterns as an aid to design cultural 

UI because these “encapsulate context” (Hall et al., 2003, p.87). They introduce design 
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patterns as an alternative to guidelines, as a solution to a problem subject to a specific 

situation or context. Patterns all contain a statement of the problem, the context in which 

the problem occurs, and a description of one or more proven solutions in that context. 

The authors emphasize the key difference between guidelines, which are rules-driven, 

and patterns, which are data-driven. Guidelines are hence culturally specific, fail to 

consider context, are difficult to apply to specific cases and have no internal structure. To 

a given problem, there should be a different pattern for each culture. The authors link this 

to Trompenaars and Hampden-Turner (1998) explaining culture as the problem-solving 

strategies of groups of people, with each pattern having been proven to be effective in 

providing a solution for each culture. The authors further suggest a development of 

“pattern calculus” (Hall et al., 2003, p.90) so that unknown design patterns for cultures 

can be calculated from existing design patterns from similar cultures. 

However, the idea of cultural design rules has critics: Collins (2002) points out a drawback 

of design rules, suggesting that any effort to come up with design rules for localization 

will eventually be stereotypical and miss cultural variations. 

Liem et al. (2011) points out that the established design standards, rules and guidelines 

usually fail to address issues relating to culture for two reasons: First, the use of 

standards, rules and guidelines does not guarantee good design to begin with - standards, 

rules and guidelines can just as well justify bad design. And second, cultures are 

inherently subjective and hence cannot be objectively described – they are not 

ontologically objective. Consequently, cultures cannot be objectively described, 

measured, or codified into guidelines. Similarly, Sun (2002) interprets cultural guidelines 

as a manifestation of a positivistic scientific view that is not applicable to culture. 

Kamppuri (2011, p.24) notes that guidelines and checklists for design are a symptom of 

the technical approach to culture in software development.  

Without intending to criticise the notion of databases, guidelines, repositories etc., I note 

that all these papers effectively propose a kind of tool with an objective. All these tool 

proposals imply that the provisioning of cultural information, or of processed cultural 

information in the case of the design patterns proposal of Hall et al. (2003), will improve 

software localisation in some way. 
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However, the integration of these tools, as well as existing tools such as MT, into the 

software development process is not discussed. That is understandable as each software 

development project is different, and the applied method or process in each project 

differs in some way from others as well. In other words, there is no standardised software 

development process, and diversity among software development processes is high, as 

noted by various scholars, e.g. Lindvall and Rus (2000). 

2.6.2 Platform Support 

Platform support refers to existing code that can be exploited by software developers so 

that they do not have to implement respective locale-dependent code themselves. 

Generally speaking, platform support comes on two levels, on the operating system level 

and on the library level. 

Operating system support handles locale characteristics and user preferences, meaning 

Unicode and locale support (Hall, 2000), i.e. the operating system contains scripts and a 

database of locales with various characteristics and provides the respective user settings 

and preferences to an application. Library support generally covers locale-dependent 

input and output handling as well as provision and handling of locale-neutral data, e.g. 

through predefined data types for locales, date, time, currency or Unicode strings. It 

usually comes in the form of an application programming interface (API) and as part of UI 

libraries.  

Requirements and a possible implementation for such API libraries are outlined in Lehtola 

et al. (1997). Many common modern software development frameworks include 

internationalisation support in the form of UI abstraction and resource structures for easy 

externalisation of text and images. This simplifies localisation insofar as it decouples 

software compilation and localisation and allows for easy provision of locale-related 

content. Further, international software support is provided through locale support and 

locale-sensitive UI elements whose locale-dependent functionality is handled internally, 

reducing the need to write locale-dependent code for locale-dependent representation, 

i.e. numerical representation, sort orders, collation and so on (O’Sullivan, 2001a; 

O’Sullivan et al., 2003; Hogan et al., 2004; Hall, 2002). 
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In practice, software developers can create an internationalised application by using 

existing UI elements provided through existing APIs and relying on the API for locale-

specific implementations. In the application, the intended locale is set through calling an 

API function at runtime, setting an application-global variable. The application can then 

use API function calls to instantiate the UI elements, e.g. an item list, and fill it with 

content, e.g. a label and items to be listed. Since the actual UI element, here the list item, 

was implemented by the external party to exhibit different behaviours according to the 

globally set locale, the software developer does not have to implement locale-specific 

behaviour, e.g. locale-dependent sorting rules for lists. What the software developer does 

have to provide, however, is localised content of the list. Modern APIs provide a 

framework for managing such locale-specific content in separate resource files. 

A particular example of a localisation-specific API is the Babel Software Micro-

Crowdsourcing architecture (Exton et al., 2010). Crowdsourcing is the idea of soliciting 

work, often repetitive or comparatively trivial, from a large crowd, often in the form of an 

online community. It is already being applied practically, often to provide or proofread 

translations (e.g. Facebook, 2008), but requires an active community of a certain size, 

which might be an issue for languages, locales and software with a small population or 

user base (Morado Vásquez et al., 2011). The Babel Software Micro-Crowdsourcing 

architecture combines translation-related UI editing ability with crowdsourcing 

management. The text of each UI element can be edited in situ without exiting the target 

application. UI text edits are sent to a remote server for management and coordination, 

e.g. through manual review. 

2.6.3 Outsourcing 

A very common practice in software localisation is outsourcing of text translation and 

other adaptation activities (Dohler, 1997; Immonen and Sajaniemi, 2003a; Yuste, 2004). 

Localisation is predestined for this because localisation projects require extensive 

resources, but only last a limited time (Combe, 2011). Giammarresi (2011) report that 

87% of all companies outsource30 their translation and localisation work. When 

                                                      
30 Strictly speaking, outsourcing refers to transferring activities which previously were conducted in-house 
to external companies. However, it appears that a major part of the literature uses the term in a more 
relaxed fashion as reference to simply contracting out activities, regardless of whether they were originally 
done in-house or not. 



52 
 

translation is not generally part of their core competencies, employment of translators 

only makes business sense for large companies that create enough content to continually 

require translations and have the human resources to manage translators (Combe, 2011). 

Localisation outsourcing works best in a constantly managed, long-term relationships 

with a vendor possessing an appropriate skill level (Papaioannou, 2005). Localisation 

outsourcing can increase efficiency including lower localisation cost and duration, bring 

flexibility in processes and organisational structures, and lower localisation cost 

accounting complexity. However, it also means a loss of control over processes and 

quality, an eventual dependency on vendors due to loss of localisation skills, and the risk 

of increased localisation cost and time through management overheads, communication 

with the vendor, and vendor profit margin (Papaioannou, 2005; Honkela et al., 1997; 

Collins, 2001). 

Because the software company and the language provider are in a buyer-seller or client-

vendor relationship (Combe, 2011; Milder, 2000), localisation outsourcing is often not 

perceived as the long-term commitment or strategy it should be, and the need to involve 

the vendor in the process of creating an international product is often not seen. 

Giammarresi (2011) blames this on the companies’ desire to shed a risk and an activity 

rather than purchasing a service, and laments that vendors are involved too late in the 

process to provide any assistance beyond simple translation. Accordingly, DePalma (2006) 

found that in practice, many software companies give their vendors relatively little 

direction and information through style guides, terminology and context information, 

impacting localisation quality. 

2.6.4 Standards 

A number of industry standards relevant to software localisation, internationalisation and 

translation exist. Some have been defined by the International Organization for 

Standardization ISO. For example, the previously mentioned ISO 639 is a collection of five 

standards for the naming and representation of languages and language groups (ISO TC 

37/SC 2, 2002), ISO 3166 does the same for countries and their subdivisions as well as 

other areas of geographic interest (ISO TC 46, 2013). ISO/IEC TR 11017 defines an 

internationalisation framework, i.e. locale-dependent functionality to be provided by 

applications (ISO/IEC JTC 1/SC 22, 1998). ISO/IEC 14651 defines a method for sorting and 
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ordering text data and a template to define locale-relevant ordering and sorting changes 

(ISO/IEC JTC 1/SC 2, 2011). ISO/IEC TR 30112 defines formats and functionality for the 

description of cultural conventions and character names (ISO/IEC JTC 1/SC 35, 2014). RFC 

5646 by the Internet Engineering Task Force (IETF) defines a language tag format for use 

in internet standards, protocols and documents. Trans-WS is a standard for the provision 

of translation web services, specifying remote function calls for the submission and 

retrieval of source and translated files or localised content. 

The relevance of understanding standards in this research is in how they shape and 

influence the work of developers, e.g. by simplifying and unifying development work in 

the case of Unicode, and localisers, e.g. by providing a localisation process infrastructure 

in the form of file formats. Following, these standards are discussed. 

2.6.4.1 Unicode 

Unicode was developed in order to provide support for international scripts beyond those 

contained in single byte character sets such as the US-ASCII31 character encoding scheme 

and CP-1252. These encoding schemes used 7 or 8 bits to encode characters, which 

means that they can enumerate 127 or 255 characters, which is sufficient for most of the 

characters of the Latin alphabet, but not enough to include other scripts such as the 

Greek alphabet, Cyrillic script, and Japanese Kana and Kanji. To display these scripts, 

applications have to switch encoding schemes or code pages, as they are called in this 

context. For example, the code page defined by ISO 8859-1 (ISO/IEC JTC 1/SC 2, 1998) 

contains all characters for USA and Western European languages, ISO 8859-2 (ISO/IEC JTC 

1/SC 2, 1999a) contains all characters for Eastern European languages, and ISO 8859-3 

(ISO/IEC JTC 1/SC 2, 1999b) contains the Cyrillic character set. Scripts containing more 

than 255 characters are encoded in so-called double-byte code pages, e.g. Japanese in 

CP-932 and Traditional Chinese in CP-936 (Dr. International, 2003). But code pages come 

with limitations such as increased software complexity (Hall, 1998). 

The stated goal of Unicode is to eventually provide support for any script in existence 

without code pages. It is developed in tandem with the standard ISO/IEC 10646 (ISO/IEC 

JTC 1/SC 2, 2014), which defines the Universal Character Set (UCS). Unicode contains the 

                                                      
31 ASCII stands for American Standard Code for Information Interchange. 
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UCS, but additionally contains specifications such as collation, sorting, and bidirectional 

writing, as well as additional properties for each character required by these 

specifications. Characters defined by Unicode can be used through a collection of so-

called Unicode transformation format (UTF) encoding schemes, e.g. variable-length UTF-8 

and UTF-16 or fixed-length UTF-32. All encodings are able to refer to the entirety of 

Unicode code points. 

Ideally, Unicode is supported on the operating system level of a system (Portanieri and 

Amara, 1996). It is supported by all major platforms and in most modern programming 

languages. Adapting existing code-page-based source code to Unicode can be a complex 

and intensive effort depending on the circumstances such as programming language and 

extent of existing Unicode support. An automated conversion technique is demonstrated 

by Peng et al. (2009). 

Prior to the widespread adoption of Unicode, considering code page and script handling 

was an essential consideration in internationalisation (Hall, 1998; Arthur, 1998). Unicode 

simplified internationalisation insofar as software developers do not have to worry about 

code pages and memory footprint limitations of different scripts and can assume that all 

major writing systems are supported (Hall, 2002; Law, 2003). Encoding of different writing 

systems into Unicode is ongoing, with Unicode 8.0 being the current version at the time 

of writing (Allen et al., 2015). Procedural difficulties in encoding scripts arising from the 

interdisciplinary nature of encoding, in particular from conflicts between socio-political 

and technological views, are explored in Hall (1998, 2015) and Hall et al. (2014). 

2.6.4.2 File Standards 

Internationalisation means that locale-dependent information is kept separate from the 

program code. Often, this information is stored in separate files for each locale. For this 

task, a number of proprietary resource file formats have been developed over time. For 

example, Sachse (2005) explores resource file formats for the Microsoft Foundation 

Classes (MFC) and Windows resources, Microsoft .Net and for the Delphi programming 

platform, but also localisation-related open file formats such as the Gettext Portable 

Object Format, Extensible Markup Language (XML) and the XML Localisation Interchange 

File Format (XLIFF). Extensive research has been conducted in the development and 

improvement of these and similar file format standards. Many of these standards are 
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based on XML and were created on initiatives of the Globalization and Localization 

Association (GALA) (GALA, 2015) and the Localization Industry Standards Association 

(LISA)32. 

There are three rationales for developing open standards: First, to provide file formats 

suited for tasks for which no standards exist yet. Second, to improve on drawbacks and 

failures of existing file formats. And third, to allow exchange of localisation-related 

information across organisations and tools regardless of proprietary vendor-controlled 

formats, i.e. to prevent vendor lock-in (Anastasiou, 2009; Anastasiou and Morado 

Vázquez, 2010; Anastasiou, 2010a). 

The majority of standard formats discussed here aim to exchange information and are 

based on the XML, i.e. human-readable text files using so-called tags to define content 

and its properties. Many of these formats include metadata, i.e. information related to 

the content such as author name, creation date and subject matter, which is believed to 

help with translation by providing context to the translator (Esselink, 2003). 

The most prominent interchange format is probably XLIFF, developed to enhance 

interoperability and data exchange between localisation tools (Wasala et al., 2012; 

Morado Vázquez and Mooney, 2010).  XLIFF can store text and binary resources, 

alternative translations, and metadata. Development is ongoing, the current version at 

the time of writing is XLIFF 2.0 (Amaya et al., 2014). Although the adoption of XLIFF has 

been hampered by a lack of awareness, incomplete adoption and the format’s limitations, 

it has already achieved widespread adoption (Wasala et al., 2012; Anastasiou, 2010b; 

Lewis et al., 2009).  

Another widely adopted file standard is Translation Memory eXchange (TMX) for the 

exchange of whole TM databases (Lewis et al., 2009), although differing implementations 

have led to compatibility issues between tools (Zerfaß, 2005). An add-on to TMX called 

Segmentation Rules eXchange (SRX) facilitates the exchange of segmentation rules 

according to which translation units are created from longer texts during alignment. 

Information about these rules is necessary because leveraging of TMs is hampered when 

the tools create different translation units from the same text.  

                                                      
32 LISA shut down on 28 February 2011 (Lingotek, 2011). 
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Other file format standards are TermBase eXchange (TBX) for terminology data, Open 

Lexicon Interchange Format (OLIF) for lexical data, and Global information management 

Metrics eXchange (GMX), a family of three standards, GMX-V, GMX-C and GMX-Q, for 

localisation-related metrics regarding volume, complexity and quality (Lewis et al., 2009). 

A special case is the Internationalization Tag Set (ITS) standard, defining XML tags that can 

be included in any XML file to provide metadata, context and translation instructions for 

content in other XML formats.  

Many open standards lack the adoption in current tools, and the situation is of course 

worse for legacy software which will never adopt these standards. However, 

development for open standards can be comparatively uncomplicated. A good example is 

given by the Work in Context System by Bikmatov et al. (2013), which uses existing 

technology to display source text from XML or XLIFF files along with context information, 

metadata and translation instructions in a browser. 

2.7 Software Localisation Practice 

Only a limited number of comprehensive studies in software localisation not restricting 

themselves to specific aspects or contexts are extant. Some descriptive publications 

regarding internationalisation and localisation practice exist. For example, Hudson (1997) 

describes design, organisation and localisation of seven major software companies. Jin 

(1997) describes the implementation of a word processor based on the API framework 

outlined by Lehtola et al. (1997) and the internationalisation architecture described by 

Kokkotos and Spyropoulos (1997a, 1997b). 

A more analytical study is given by Law (2003), describing internationalisation and 

localisation of a brokerage platform for some European locales including a survey of 

translators which reported demand of effort and time, and lack of suitable software tools. 

Localisation and internationalisation practice has also been part of research that has a 

somewhat different scope. While examining consistency in translation memories, 

Moorkens (2012a, 2012b) conducted interviews with translators, managers and engineers 

on localisation processes as a means to triangulate his research results and identify 

inconsistency sources. 
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Immonen and Sajaniemi (2003a) conducted semi-structured interviews with professionals 

in management roles at six software companies and four LSPs from Finland to determine 

current practices and problems in software localisation with a focus on communication 

and cooperation processes. They found that the main problem seemed to be insufficient 

and limited communication between software developers and language vendors.  

Based on a study of eight software development companies, O’Sullivan (2001b)33 

described a generic software localisation process and its relation to the software 

development process. He reviewed five development phases: functional specification, 

design and implementation, quality assurance, beta testing, and rollout and code review 

and found a large degree of procedural consistency with only minor differences across all 

eight companies. Further, O’Sullivan investigated causes of localisation errors and tried to 

develop an understanding how software can be localised without introducing full-fledged 

bugs into the software projects. 

Ongoing process and software improvements have reduced relevance of some of the 

details described by O’Sullivan. For example, Locale support of operating systems through 

APIs has dramatically increased. Nonetheless, O’Sullivan (2001b) gathered information on 

localisation and internationalisation practice including tools and encountered issues. The 

description of the software localisation process, its interplay with different stages of the 

software development process, the dependencies among the various stakeholders of 

those stages, and the overall impact on localisation bugs presents a comprehensive view 

into the complexity of software localisation. 

Abufardeh and Magel (2009, 2010) and Abufardeh (2008) examined the impact of cultural 

concerns on software development and engineering. 

2.7.1 Interdisciplinary Issues in International Software Development 

What makes software localisation an interdisciplinary effort? Or asked differently, what 

exactly are the interdisciplinary aspects of the development of international software? 

Localisation combines the efforts of a multitude of disciplines (Zouncourides-Lull, 2011; 

                                                      
33 Part of this research has been published in O’Sullivan (2001a) and O’Sullivan et al. (2003). 
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Sturm, 2002; O’Sullivan, 2001b), but the user sees the resulting product as one (Collins, 

2002). 

The development of international software involves professionals from different 

disciplines, but this in itself is not uncommon. It is simple to characterise the 

interdisciplinary nature of the development of international software merely through the 

participation of professionals from different disciplines, here, translators and software 

engineers. But what makes development of international software complex is the need 

for multidisciplinary knowledge and interdisciplinary communication during localisation 

and internationalisation activities. 

The need of cultural knowledge for the development of international software is rarely 

stated as openly as by Abufardeh and Magel (2008b) and Ryan et al. (2009). More often, 

it is implied, e.g. through the need of software engineers to identify and understand 

culture-related requirements (Abufardeh and Magel, 2010; Mahemoff and Johnston, 

1998). Lack of cultural knowledge leads to what Vatrapu (2011) calls ethnocentric 

assumptions, i.e. the assumption that despite cultural differences, members of different 

cultures nonetheless come to the same conclusions judging presentation and 

functionality of software. Localisation and internationalisation also require technical 

knowledge, i.e. about concepts such as locale (Sikes, 2011) and usability (Russo and Boor, 

1993), and about each other’s discipline. 

The need for multidisciplinary knowledge further implies the need to be able to transfer 

this knowledge across disciplines through communication (Bauer and Rodrigo, 2004). As 

Zhou (2011) points out, the need to communicate and coordinate between translators 

and engineers becomes more important the more complex localisation becomes, 

particularly if localisation is to accommodate a user’s cultural characteristics and will 

produce different look and feel, functionality and usability, as discussed in section 2.4. 

Concluding her examination of use of localised products in target locales compared to the 

original locale, Sun (2004b, p.9) writes: 

We need to have an expanded vision of localisation process [...] The 
scope of localisation should go beyond a single stage in the software 
design and engineering cycle (for example, translation and interface 
design) and enter the site of local use and consumption.  
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This touches on another aspect – whether localisation is separate from software 

development, as described by some authors (e.g. Wahle, 2000), or part of it, as described 

by others (e.g. Collins, 2001; Hogan et al., 2004). While Immonen and Sajaniemi (2003a) 

found that software developers consider software localisation separate of software 

development, against intuition they also found that software developers considered 

localisation a software developer's assignment and were likely not to outsource 

localisation unless they lacked time or language skill: 

L10N seems to be considered purely as a [software developer’s] 
assignment, and [LSPs] are used only if [software developers] cannot 
localise all the components themselves. (Immonen and Sajaniemi, 
2003a, p.161) 

The authors concluded that this might be one of the reasons why LSPs are only contacted 

towards the end of the development lifecycle, i.e. when time become short, and further 

concluded that this might be the reason why LSPs are under time pressure. 

2.7.2 Cultural Knowledge for Software Developers 

The importance of cultural knowledge, or cultural awareness, has been acknowledged 

both implicitly and explicitly by various authors. Implicit acknowledgement comes in the 

form of calls to support developer access to cultural knowledge, often in the form of a 

document or database. Smith et al. (2007) call for the development of databases of local 

knowledge to help the developer. Carey (1998) suggests to have a so-called international 

functional requirement document and an international guide for programmers and 

writers. Mahemoff and Johnston (1998) propose a classification of cultural factors 

relevant for software, which they propose as base for a repository of cultural information, 

to be accessed by developers in order to identify and address culture-specific 

requirements. However, Collins (2001) warns that rules could lead to stereotypical views 

misrepresenting cultural richness and variation. 

Alternatively, there are calls specifically of cultural education for developers. Hogan et al. 

(2004) calls for internationalisation and localisation aware developers, and Carey (1998) 

categorically states that all team members need to know about internationalisation 

issues. 
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The strongest argument, however, comes from authors who find that developers are 

required to have cultural knowledge as a direct consequence of the requirement to 

internationalise software (e.g. Liem et al., 2011; Ryan et al., 2009; Abufardeh and Magel, 

2010). Particular emphasis is placed on the statement by Carey (1998, p.449): 

Both internationalization and localization require that the programmers 
be aware of their own culture, language, social values and expectations. 
Localization requires more rigor than does internationalization. This is 
because localization teams tend to discover problems left by the 
internationalization team, but localized products move straight to the 
market upon completion so there is no downstream channel member to 
detect problems. 

2.7.3 Contrasting Engineers and Translators 

It is conceivable that issues in software localisation can be attributed to the collaboration 

of professionals working in different disciplines, i.e. translation and engineering. In 

software development, the impact of distinctness of people has already been identified as 

a potential cause of issues. For example, Quintas (1993) observed differences between 

developers and users, who “tend to inhabit different physical spaces, have different 

career paths and reward systems, organize work differently, and employ different 

specialized vocabularies” (Quintas, 1993, p.5). The same criteria apply for developers and 

translators. 

Existing literature and research has examined and characterised both software engineers 

and translators. Software engineers possess a trial-by-error mentality (Green, 1994) and 

have been attributed with a unique personality profile (Beecham et al., 2008; Capretz, 

2003) motivated by job aspects, e.g. technical success and challenging problems, rather 

than conventional motivating factors such as rewards and recognition (Beecham et al., 

2008). Cooper (2004, pp.93, 106) speculated that software engineers prefer control to 

simplicity, accept to pay with failure for understanding, overemphasize theory over 

practice, and offend easily. 

On the other side, translators have been characterised as craftsmen with a vocation 

rather than a job (Sikes, 2011), a partner conducting cognitive work to aid in the creation 

of a product (Stoeller, 2011), or “nurturers, helpers, assistants, self-sacrificing mediators” 

(Pym, 2008, p.323) to their clients. As a consequence, translators are in a subservient 
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position. Bauer and Rodrigo (2004) attest translators an awareness of cultural differences 

and communication requirements, yet also technological literacy and resourcefulness. 

They are excellent communicators, but also risk-averse due to a lack of certainty in their 

work (Pym, 2008). Their role is generally understood to require domain-specific 

knowledge in the area of their source text documents (Hubscher-Davidson, 2009), they 

also need assistance by domain-specific natives (Sikes, 2011). Szuki (1988) found that 

translators are patient, with a primary interested in art and intercultural contact. 

There have been efforts to understand particular characteristics of software engineers 

and translators through psychometric measurements such as the Myers-Briggs Type 

Indicator (MBTI), developed in the 1940s based on Carl Jung’s theory of psychological 

types (Briggs Myers, 1962). The MBTI is based on the premise that individuals can be 

characterised through the dimensions extroversion (E) versus introversion (I), sensing (S) 

versus intuition (N), thinking (T) versus feeling (F), and judgement (J) versus perception 

(P). MBTI types are coded with letters according to their dimensional preferences, i.e. ISTJ 

would indicate an individual preferring introversion over extroversion, sensing over 

intuition, thinking over feeling, and judgement over perception. However, the MBTI types 

describe an individual’s preferences and predispositions, not aptitudes. 

Based on earlier research that suggested that introversion, thinking and judging are 

predominant characteristics among software engineers, Capretz (2003) conducted MBTI 

tests among software engineers and postgraduate software engineering university 

students (n = 100). The study found a clear relationship between psychological types and 

software engineers, with NT and ST types being overrepresented and ISTJ being the most 

common type among their participants, described as being technically oriented, 

preferring to work with facts and reason rather than people. It was concluded that  

 [T]he software field is dominated by introverts who typically have 
difficulty in communication with the user. […] [Software engineers] tend 
to be poor at verbalizing how the task affects the people involved. In 
fact, the greatest difference between software engineers and the 
general population is the percentage that takes action based on what 
they think rather than on what somebody else feels34. (Capretz, 2003, 
p.214)  

                                                      
34 Gladwell (2015) relates this characteristic as joke about engineers: While playing golf, a priest, a doctor 
and an engineer are frustrated by a group of firefighters ahead of them progressing very slowly. After 
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The MBTI was also used by Hubscher-Davidson (2009) to analyse translator's personality 

traits. The study reported a correlation between intuitive personality types and high 

translation quality, showing a skew towards introvert, feeling and judging types. 

Hubscher-Davidson (2009) did not aim to generate a personality profile of a professional 

population and did not contrast translator personality types with those of the general 

population. The most prominent difference between personality types of software 

engineers and translators is on the thinking-vs-feeling scale, where software engineers 

tend to be thinking types and translators tend to be feeling types. Tsvetkov and Tsvetkov 

(2011) have speculated on how to improve communication in localization project 

management on the basis of the MBTI and associates a thinking-vs-feeling divergence 

with a clash of factual versus emotional arguments during problem solving and conflict 

resolution.  

It must be mentioned that Tsvetkov and Tsvetkov (2011) did not provide any empirical 

findings supporting their conclusions. In fact, although the MBTI has become one of the 

most widely used personality assessment tools and despite its use in research, it has been 

seriously criticised for a number of methodological shortcomings. Among others, it has a 

low re-test reliability, meaning test scores are not time-invariant and there is a high 

probability of obtaining different results from two tests of the same individual. Further, 

distributions along the dimensions are not bi-modal, meaning that distinctions between 

the two extremes of each dimension are statistically not warranted (Pittenger, 1993). 

2.8 Summary 

In this chapter, the need to adapt international software for locales, including scope and 

complexity, was demonstrated through results of empirical research. The activities 

localisation and internationalisation were introduced, and their interdisciplinary and 

multidisciplinary aspects were elaborated. Further, localisation issues were characterised 

and the interdisciplinary character of the development of international software was 

examined. 

                                                      
learning that all of the firefighters have lost their sight while saving the golf clubhouse from a fire, the priest 
states, “I will say a prayer for them tonight.” The doctor states, “Let me ask my ophthalmologist colleagues 
if anything can be done for them.” The engineer asks, “Why can’t they play at night?” 
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The activities of internationalisation and localisation can impact an international software 

product along the dimensions of cost, quality and time. Localisation can be incomplete or 

inappropriate, and both internationalisation and localisation activities can incur 

significant cost as well as delay product releases. These issues have been shown to be 

non-trivial and are conflated in the term localisation issues. 

The particular interdisciplinary character of the development of international software 

has been evidenced in the interdisciplinary character of localisation issues: First, 

knowledge of disciplines, e.g. engineering and translation, is required to create 

international software. Second, the roles are intertwined, e.g. software engineers need to 

identify and understand information about locales, i.e. cultures, and translators need to 

identify and understand aspects of software development. And third, localisation issues 

create differing concerns for each involved discipline, just like the two disciplines differ 

from each other. 

This chapter also gave an overview over research and engineering efforts undertaken 

with the aim of improving software localisation. Among others, the Unicode standard has 

provided widespread availability of the most common scripts. Equally widespread 

Unicode and locale support on the operating system level, the provision of 

internationalisation UI APIs, and the availability of internationalisation frameworks and 

standard architectures have greatly simplified the engineering effort for internationalised 

applications. Translation editors supporting both binary and source files, terminology 

databases, translation memories and other software tools have simplified the translation 

activity while allowing multiple translators to work on one project and helping to avoid 

redundancy in translation and to increase linguistic consistency. Finally, translation 

outsourcing has made localisation into multiple locales affordable even for small software 

companies. 

These are only the most prominent developments and approaches, and some are ongoing 

efforts, e.g. encoding of the world’s scripts in Unicode, improving MT, or the 

development of standards. Through such efforts, creating international software has 

certainly become easier. However, at the same time existing research is profoundly 

limited: The majority of existing research either revolves around a locally contained 

context of localisation and internationalisation, or proposes an approach to improve 
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localisation outcomes based on an architecture model. There is little research on 

internationalisation and localisation practice and general causes of localisation issues. 

To be clear, the development of technical standards, tools and architecture models for 

localisation has certainly improved the state of development of international software 

immensely. Equally, research on what earlier was termed locally contained context of 

software localisation, e.g. tool use and further automation, is useful and constructive. 

My argument is rather that notwithstanding these achievements, there is current practice 

and the underlying presupposition of a separation of software engineering and 

localisation which needs to be examined, but is really under-researched. I find this view 

supported in publications of a number of researchers in the area of localisation: Lenker et 

al. (2011) noted a focus in localisation literature on tools, technology and individual 

activities, rather than general workflow across the activities, manifesting itself in a lack of 

standard workflows for translation and localisation. Sasikumar (2004) suggested to 

conduct comparative studies of different types of localisation efforts, and the integration 

of localisation into the software development process is frequently discussed (e.g. 

O’Sullivan, 1989; Russo and Boor, 1993; Rafii and Perkins, 1995; Collins, 2001; Forssell, 

2001; Hogan et al., 2004; Abufardeh, 2008). 
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Chapter 3 Research Methodology and Method 

The previous chapter reviewed existing related research and literature, leading to the 

formulation of research aims and objectives as discussed in sections 1.4 and 1.5. The 

research questions were as follows: 

1. How is localisation conducted individually and collaboratively by developers and 

localisers, and how does this shape each discipline’s activities? 

2. How are issues caused during localisation and internationalisation? 

3. In what regards are developers and localisers distinct? 

4. What dependencies exist between localisation effort and properties of 

development projects? 

The research methods must fit to the subject area and research questions (Robson, 2011). 

In this chapter, the choice of research methods is reviewed and documented. Section 3.1 

discusses qualitative and quantitative research. Because both paradigms are applied, 

mixed methods and their applicability are discussed in section 3.2. Sections 3.3 and 3.4 

discuss and justify the chosen qualitative and quantitative data collection and analysis 

methods. Section 3.5 reviews sample and population used in this research, and section 

3.6 notes applicable ethical considerations. 

3.1 Qualitative and Quantitative Research 

Qualitative research methods aim to integrate complexity. They are often used in the 

study of social relations and human behaviour (Flick, 2002; Seaman, 1999). Use of 

qualitative research methods acknowledges the complexity of situations that cannot be 

stripped down to trivial and unambiguous cause-effect relationships. Subjectivity of 

participants and perspectives, construction of reality and reconstruction of data, and a 

reflection on the research process as well as the researcher himself feature heavily in 

qualitative research (Flick, 2002). Qualitative analysis relies on finding context- and 

subject-specific descriptive and exploratory schemes in data through interpretative 

discovery of relationships and concepts, referred to by Strauss and Corbin (1998) as 

conceptualising, reducing, relating and elaborating. The data is reduced and visualised, 

and concluded in the form of regularities, patterns, explanations and propositions (Miles 

and Huberman, 1994). 
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Reduction forms a central part in qualitative data analysis and is often done through 

coding. Coding is a largely creative process during which the researcher tries to express 

the conceptual meaning of a section of data, for example a single event or a series of 

events during observation or a section of text in an interview transcription, as objectively 

as possible through a designator consisting of a few key words, a so-called code. Codes 

can be pre-formed, i.e. decided on before coding if the objectives of the study are known 

beforehand, or post-formed, i.e. derived from data in the case of open and unfocused 

studies (Seaman, 1999). 

Quantitative research methods aim to examine a subject as objectively as possible by 

reducing complexity and eliminating subjectivity, e.g. observer and selection biases. 

Subsequently, while the research results should be reproducible, their practical value is 

limited because objectivity requirements impact practical applicability of results (Flick, 

2002). For example, in a laboratory experiment any potentially influencing factors have to 

be carefully controlled in order to ensure that any differences between treatment and 

control group can be ascribed to the intervention, i.e. a change in an independent 

variable. But many phenomena with interest for practice occur only in complex situations 

which cannot be replicated under laboratory conditions or comprehensively recorded 

through quantitative means. 

Quantitative research often aims to test associative and causal relationships through 

calculation of a so-called significance level, also referred to as p-value (Field, 2005). The p-

value is often interpreted as the probability that a research result has been arrived at by 

chance, although this is only correct under specific circumstances. It is better interpreted 

as an arbitrarily chosen value to differentiate research results based on their 

mathematical strength (Nuzzo, 2014; de Groot, 2014). 

Accordingly, qualitative and quantitative methods follow different agendas. Qualitative 

methods are mostly used in exploratory research, to examine social relationships and 

phenomena within a specific context about which not much is known, or when an 

interpretivist or constructivist paradigm applies and what is considered reality is 

constructed by individuals or dependent on their interpretations. Quantitative methods 

are mostly used in explanatory research, to confirm already existing theories about a 
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subject, or when a positivist paradigm applies and reality is considered to be objective 

and measurable (Flick, 2002; Leedy and Ormrod, 2013). 

3.1.1 Mixed Methods 

The combination of qualitative and quantitative research methods in a single study is 

called mixed methods. It is considered to be more effective than relying on only one 

method (Seaman, 1999; Runeson and Höst, 2009). 

A number of empirical software engineering studies employ mixed methods. For example, 

Linberg (1999) explored how software developers define success and failure of a project, 

how failure affects job satisfaction, and how failure was related to individual developers’ 

temperament. Linberg combined qualitative analysis of interviews and project 

documentation, and statistical survey analysis. Espinosa et al. (2002) used a sequential 

approach, i.e. quantitative examination of phenomena via survey from previous 

qualitative interview and archival research, to show how shared mental models, work 

familiarity and geographic dispersion benefit coordination in software teams and shorten 

development time. 

Strictly speaking, it is not application of both qualitative and quantitative methods or 

gathering of both qualitative and quantitative data that makes mixed methods research. 

What really is required is that the data works in conjunction, e.g. as sequential approach 

deriving a framework qualitatively and then testing it quantitatively, or as methods 

triangulation by using both qualitative and quantitative methods to answer similar 

research questions and increase result validity (Creswell and Clark, 2007). 

In this research, qualitative and quantitative methods are applied in isolation to answer 

separate research questions. Hence, although both methods’ results might be combined, 

e.g. by comparing descriptive qualitative results with descriptive statistics, the mixed 

methods moniker is not appropriate. 

3.2 Using Grounded Theory to Explore Software Localisation 

The literature review suggested that software localisation is conducted in a social context 

of software development and is affected by human factors. For such phenomena which 

are difficult to study in isolation, qualitative research is the appropriate approach 

(Runeson and Höst, 2009). Hence, RQ1 and RQ2 are best addressed by qualitative 
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research methods. The part of research that can be examined through testable 

hypotheses is separated out. The question of generalising qualitative research results is 

mitigated by the common view that software development projects are so diverse that 

generalisation is difficult anyway; a notion confirmed by the views of software developers 

themselves (e.g. Umarji and Seaman, 2005).  

To examine how localisation is conducted, how this shapes the activities of localisation 

and internationalisation, and how it causes localisation issues, Straussian Grounded 

Theory is used. The next subsection will illustrate common research methods in empirical 

studies of software development, justify the choice of GT, and discuss its application. 

3.2.1 Selecting Qualitative Methods 

This subsection reviews the choice of data collection and analysis method. The collection 

method must yield data that can answer the research questions and must fit to the 

remaining research method, i.e. analysis. The analysis method must fit format and subject 

of collected data, the research questions, and the intended outcome. 

Some methods were dismissed outright. For example, action research, where the 

researcher joins a team in trying to solve a problem while taking notes for later analysis 

(Christiansen, 2010) was deemed to be unsuitable because it is presumably difficult to 

find software companies allowing this kind of access, and further iterations in iterative 

analysis methods take too long. 

Empirical studies of software engineering often use archival data, observations and 

interviews for data collection, and template analysis, framework analysis or GT. For each, 

advantages, disadvantages and fit to this research are discussed. 

3.2.1.1 Archival Data 

In archival data studies, archival evidence is studied, i.e. existing artefacts created by the 

organisation one wishes to examine, possibly created during or for the activity one wishes 

to study. These artefacts usually come in the form of some kind of documentation. 

Empirical studies of software development seem like a good fit for archival data studies 

because software development by necessity involves the creation of artefacts with 

additional documentation that often is comprehensive and well maintained. For example, 
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it is best practice to store source code in repositories in order to record who conducted 

what changes at what time. Similarly, bug tracking databases keep track of program 

errors and how they were handled. Further information might come from test protocols, 

email exchanges between developers and with customers, and requirements documents. 

Such documentation is regularly used for studies. For example, one of the data sources 

for the research of Grinter (1995, 1996a) on the use of configuration management tools 

were documents and logs of discussions among developers conducted via electronic 

media. Likewise, Espinosa et al. (2002) supplemented the study on the effect of shared 

mental models with archival sources. In the area of localisation, Moorkens (2011, 2012a, 

2012b) used TM databases for his research on consistency. 

Archival data is a tertiary data source, meaning that it has not been collected for research 

purposes (Runeson and Höst, 2009). It allows a view on what happened, but is usually 

restricted in the information it can deliver because it only contains information related to 

the purpose it has been collected for. The effort to extract research-usable information 

from archival data can be considerable. 

In the case of this research, the main archival data sources I expected to find about usual 

localisation work were source code repositories including change logs, bug tracking 

databases, TMs, software design documentation, and maybe communication protocols 

between engineers and translators. There are two reasons why the first four sources are 

unpromising, though. First, they likely contain information on what has been done, but 

not how and why. Second, each likely only contains input from either engineers, or 

translators, but not both. As for communication protocols, their very existence is 

somewhat speculative as a number of literature items in chapter 2 suggest that 

communication between engineers and localisers was lacking. For these reasons, archival 

data was dismissed as data source for this research. 

3.2.1.2 Observation 

In observation methods, the researcher directly observes the object of study. A variant of 

observation is so-called participant observation, where in addition to the observation 

sessions data is collected during interactions between the observer and participants 

(Seaman, 1999). 
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The advantage of the observation method lies in the directness of data acquisition. 

Interviews and surveys require participants to reflect on their activities after the fact, 

which brings the danger of them rationalising their actions upon reflection. For example, 

an amethodical progression of activities might be reported as a methodical process (Truex 

et al., 2000). In fact, e.g. Winter and Rönkkö (2010) noted that many activities in software 

development are not planned and conducted as rationally and sequentially as reported. 

Because observation comes with the advantage of giving the researcher direct and 

unfiltered access to the phenomena under study, it is a strong method for studying 

people’s behaviour and interactions, especially when there is a reason that an unbiased 

account of actual events could not be obtained from participants (Kvale, 2007; Runeson 

and Höst, 2009). Subsequently, observation and participant observation seem to be very 

popular methods in empirical studies of software development. For example, Grinter 

(1995) examined the use of a configuration management tool in organisations, specifically 

how the tool integrated into collaborative interactions between developers through 

analysis of observations, interviews and archival data. Plonka et al. (2011) examined the 

switch between active and passive developer during pair programming through screen 

capture and video recording of developers. Ferreira (2011) examined the combination of 

agile software development methods and UX design through observation and interviews. 

Participant observation in particular seems to be popular in GT studies because they allow 

method triangulation for theory verification, and has been used to that effect by Hoda 

(2011), Martin (2009) and Abdelnour-Nocera (2007). 

Observational studies come with a number of disadvantages and limitations, though. 

Observation works best if at least two researchers can compare their observation to 

ensure completeness and objectivity (Seaman, 1999). It requires considerable amounts of 

time (Hoda et al., 2011) and produces large amounts of data (Runeson and Höst, 2009), 

reducing the number of cases that can be studied and analysed. Further, not everybody is 

comfortable being observed, so it might be more difficult to find participants for 

observation studies. This limitation should be considered particularly for GT studies, as 

the method triangulation afforded by participant observation might come at the price of 

decreased data triangulation. 
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Another difficulty is that opportunities for meaningful observation in software 

development are limited, e.g. to meetings and exchanges (Seaman, 1999). A major part of 

software development is individual cognitive work, often conducted in relative silence in 

front of a computer. Remedial devices such as think-aloud protocols are a considerably 

disruptive cognitive effort in this context. 

The act of observation itself must also be considered as an influence on the participants 

and activities (Seaman, 1999). The most famous example of this might be the Hawthorne 

effect, also known as the observer effect: In an industrial study examining the relationship 

between lighting levels and worker productivity, it was found that productivity increased 

regardless of the direction of change in lighting, but decreased back to normal after the 

study had ended. The productivity increase was attributed to motivational effects 

stemming from attention of researchers (Landsberger, 1958). The Hawthorne effect and 

its interpretation has since been examined critically (e.g. Adair, 1984), but there is a 

general agreement that observation can affect participant behaviour. Hirschheim and 

Klein (1989, p.1204) phrases it more aggressively: 

People have free will and observation is not neutral. […] [P]eople as 
objects of study always 'observe back'. They can perceive the observer's 
plan of study and counteract it.  

Nonetheless, it was initially considered to conduct observation or even participant 

observation due to these methods’ strength to collect unfiltered data on social 

interactions. Contact with a few software companies had already been established, but 

negotiations over the level of access highlighted a particular difficulty with observation 

studies on software localisation. 

The work of engineers and translators in front of a computer does not lend itself to 

observation because most of the work is cognitive and will not leave visual clues, as 

discussed above. This leaves interactions of engineers and translators to be observed. 

Those are likely to be unplanned and unscheduled35. 

                                                      
35 The point can be illustrated by examining the use of the observation method in Plonka et al. (2011): Pair 
programming is a continuous activity. The study is mostly interested in the switch of mouse and keyboard 
control, events that are likely to happen several times in a session. So, each observed session adds useful 
data. In software localisation, this is different. My experience, not disputed by the literature review, 
suggests that it is difficult to know beforehand if any meeting will discuss localisation or a translator’s or 
engineer’s work day will involve communication with the other discipline, if it takes place at all. 
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Hence, pure observation must be supplemented by additional data. Since archival sources 

would require more access negotiation while likely yielding only limited improvement as 

discussed in the previous subsection, the next obvious alternative would have been a 

combination of observation and interviews, or participant observation. 

This led to a critical view on participant observation based on studies and methodology 

literature. The idea behind participant observation is to use interviews to gain additional 

insight into observed events. However, it appeared to me that in a number of participant 

observation studies, the observation cues the interview. Or to put it bluntly, the 

observation serves as a social situation for the researcher to arrange a chat later. I say 

chat because often, the following interviews are informal and short. Additionally, most of 

them seem to be only weakly motivated by any observation, but nonetheless lack an 

overarching interview strategy. In other words, participant observation requires extreme 

discipline when conducting the interviews because by the nature of participant 

observation, preparation for and conduct of the interviews is limited. Similar criticism of 

participant observation is discussed by Hammersley (1992) and Haralambos et al. (2013). 

To that effect, participant observation can easily lead to unwarranted notions of 

informality in both researcher and participants. Since observation alone is unlikely to yield 

relevant data and participant observation seriously limits interviews, it is preferable to 

conduct interviews separately and drop observations and the disadvantages that come 

with it. 

3.2.1.3 Interviews 

In interviews, data is gathered through direct conversation between researcher and 

participant. Interviews can provide an almost arbitrary depth, provided the interview is 

not structured, as it is easy to engage with and react to responses from participants. 

Interviews also present an opportunity to obtain data which is not accessible through 

observation, e.g. attitudes and dispositions of participants. In face-to-face interviews, 

non-verbal cues can help to gain an understanding that not all other data gathering 

methods offer. Further, multiple interviews can help to obtain a wide range of 

phenomena while maintaining replicability and generalisability (Salo and Abrahamsson, 

2004). 
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Interviewing means having to consider unreliability of retrospective accounts on past 

events. Generally speaking, there is a difference between what people do, and how they 

describe it later (Paetsch et al., 2003; Truex et al., 2000). In particular, Perry et al. (1996) 

found that the accuracy of reporting the short and unplanned events and details is 

overestimated. Interviewing can be a very personal affair for both interviewer and 

participant, and due to the time it requires of the latter, recruiting can be difficult. For the 

interviewer, it can be time-consuming compared to some research methods, e.g. surveys, 

but time-saving compared to others, e.g. observation. 

For this research, interviewing was chosen because it enabled the collection of both 

accounts of practice and of insights into participants’ thoughts and opinions. Interviews 

have the potential to reveal what archival accounts cannot: what has been done, how it 

has been done, and why it was done the way it was done. Compared to observation, the 

data limited in interviews is moderate and analysis affordable. Regarding the validity of 

accounts, I chose the discrepancy between participants’ accounts and what really 

happened over the discrepancy of observed behaviour modified by researcher presence. 

3.2.1.4 Template Analysis 

In template analysis, prior to coding, a coding template is created with pre-formed codes 

that the researcher expects to be important in the data. The pre-formed codes are then 

identified during initial coding of a part of cases. Should new themes become apparent, or 

if pre-formed codes turn out to be unimportant, the coding template can be modified 

accordingly before continuing with further cases. This way, the template is developed 

during coding until, after coding is completed, the final template can be used to write up 

findings and interpretations. 

One of the advantages of template analysis is that pre-formed codes can speed up coding, 

and that the researcher has some level of control over the codes, for example if specific 

themes in the topic are already known, or are the subject of the examination, e.g. in the 

context of an evaluation. On the other hand, the more pre-formed codes have been 

defined in the initial template, the more likely is missing important themes for which no 

pre-formed code exists. 



74 
 

Template analysis is often used for interview data and is considered a suitable analysis 

method for software engineering case studies (Runeson and Höst, 2009). For example, 

Zhang (2012) used template analysis for the analysis of interview records in order to 

review tools and practice in prototype design and potential use of virtual worlds for the 

early building construction process. 

For this research, template analysis was discounted due to its focus on pre-formed codes. 

Because the choice had already been made to examine differences between developers 

and localisers, role of cultural competence, and influence of project properties on 

localisation through a quantitative survey, it was considered preferable not to guide the 

qualitative research through preconceptions expressed in pre-formed codes. 

3.2.1.5 Framework Analysis 

In framework analysis, familiarisation with the topic is followed by the choice of a 

thematic framework, which is then systematically applied to the data during coding. The 

framework is further used during a subsequent stage called charting to abstract, order 

and synthesise the data so that concepts leading to an interpretation can be created. 

Despite being a deductive method, some authors have suggested that framework analysis 

is quite similar to the eventually chosen GT, but more suited to answering specific 

questions and examining already identified issues (Srivastava and Thomson, 2009). It is a 

common method in computing, for example Abdelnour-Nocera and Sharp (2008) used 

framework analysis of technological frames of Bijker (1997) to confirm the importance of 

pan-organisational consultation and specific work-step explication during the adoption of 

agile software development processes in large organisations, and further to examine the 

cultural dependence of the usefulness in the context of enterprise resource planning 

systems (Abdelnour-Nocera et al., 2007; Abdelnour-Nocera, 2007). 

Framework analysis was initially considered as analysis method, but eventually the lack of 

a convincingly suitable framework as well as the research restrictions of any framework, 

similar to those of the template method, suggested that a method requiring no 

underlying existing theory is preferable for this research. 
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3.2.2 Grounded Theory 

GT aims to identify and categorise elements and explore their connections (Miles and 

Huberman, 1994). It is based on the premise that interpretation of data is more important 

than the way in which it is gathered. GT is used for exploratory and descriptive research 

and aims to generate theory, i.e. “systematically interrelated categories with explanatory 

power” (Strauss and Corbin, 1998, p.20) and descriptions, the latter of which can lead to 

conceptual order, i.e. organisation of data based on properties or dimensions. The 

research process in GT is iterative, i.e. findings are used at all stages in the process and 

eventually lead to a refinement and narrowing of ongoing research. 

GT is particularly useful in research areas in which previous research has been limited 

(Hoda et al., 2011), as is the case with collaboration in localisation. As a qualitative 

method, GT has the advantage of examining phenomena in context and does not require 

a reduction in complexity to work. Due to its iterative nature and the feeding back of 

findings into the research process, it is a good method for examining vaguely known areas 

(Hoda et al., 2010). 

The drawbacks of GT are a susceptibility to researcher bias, i.e. a researcher’s 

preconceptions and assumptions can easily influence the outcome. Further, GT is a 

relatively cumbersome process as it affects almost all areas of research, including 

participant sampling and writing up (Hoda et al., 2011). The literature review should be 

light to aid in the avoidance of biases. It has also been noted that GT aims for two 

contradicting goals: the examination of situations in context, and the generation of 

abstract theories with the aim of eventually applying them outside of their original 

context (Haralambos et al., 2004; Hammersley, 1992). 

GT is most often applied in sociology and nursing (Adolph et al., 2011). In recent years, it 

has become more popular in computing-related studies examining social aspects of 

computing and software development. Coleman and O’Connor (2008) examined the 

formation of software development processes as a function of best practice models and 

cost in 21 Irish software companies. Dagenais et al. (2010) examined the experience of 18 

newcomers when joining already existing projects, and concluded that successful 

integration depends on the newcomer’s experimentation with, and acceptance of, 

existing project structures and cultures, and feedback on integration progress by the 
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existing project team. Crabtree et al. (2009) conducted GT in a treatment setup to explore 

the dependence of software process description on perspective and context of four 

participants. Hall et al. (2009) examined the non-adoption of localised software in Nepal, 

attributing the lack of success of Nepali-localised software to issues with the actual 

software interface and a socio-economic environment which promotes the use of English 

software. 

GT has also been used in a number of PhD theses in computing. For example, Grinter 

(1996b) applied GT for examining how software development organisations manage 

dependencies in the production of software systems and their technical and social 

aspects. The researcher examined the concept and nature of dependencies, why they 

occur, and how developers and organisations cope with them. Martin (2009) used GT to 

examine customer role, experience, and its role in the requirements elicitation process in 

extreme programming (XP) projects. Hoda (2011)36 created a descriptive grounded theory 

of self-organising agile teams, consisting of roles, practices and factors. 

GT was originally developed by Glaser and Strauss when studying the sociology of dying 

(Glaser and Strauss, 2009). Although initially developed in collaboration, interpretations 

of GT soon forked into two major camps37: That of Glaser, and that of Strauss and Corbin. 

Glaser (1978) continued to develop the concepts of theoretical coding, sampling and 

memos, while Strauss and Corbin (1998) adapted GT to make it easier to use. Accordingly, 

when applying GT, a decision has to be made what particular approach to follow. This is 

important because while the two approaches are generally similar (Adolph et al., 2011), 

care must be taken not to mix aspects that are not compatible, particularly when using 

auxiliary literature that either does not specify which approach it used, or that used the 

other approach. The major differences between Glaser and Strauss are philosophical, 

particularly regarding theory and theory generation and the part of induction, deduction 

and verification. For example, according to Glaser, in the initial coding phase the only 

coding technique to be applied is what he calls substantive coding. Strauss and Corbin on 

the other hand describe two techniques, open coding and axial coding, during the initial 

                                                      
36 Partly published in Hoda et al. (2012). 
37 Further variations to GT are listed for example in Heath and Cowley (2004). 
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coding phase. Both Glaser and Strauss recommend so-called in-vivo coding, where the 

name of the code is derived from a term occurring in the data. 

Heath and Cowley (2004) recommend to choose GT flavour based on the best fit to a 

researcher’s cognitive style. I follow the GT approach of Strauss and Corbin for two 

reasons: Glaser’s writing is arguably more difficult to understand. This might be a matter 

of taste, but some of the instructions border on the mystical. Intentions and meaning are 

often not as clear as in Strauss’ and Corbin’s instructions. Further, Strauss’ and Corbin’s 

approach seems more technical while at the same time being more tolerant towards the 

realities of research. Adolph et al. (2011) report that in software engineering research 

Strauss and Corbin seems to be the favoured approach. 

3.2.2.1 The Research Process in Grounded Theory 

As a research method, GT deviates in several ways from classic quantitative research 

approaches (Flick, 2002). GT is not a linear research process where each phase, i.e. theory 

formation, data collection or data analysis, is executed in isolation and finished before 

moving on to the next. Instead, GT is an iterative process in which the phases of data 

collection, data analysis and theory formation are repeated until the theory is not 

progressed by additional data any more. While quantitative research starts with a theory, 

then collects and analyses data, GT starts with data collection and analysis, which then 

leads to the derivation of theory. It is conducted as follows: 

A case, for example a participant for an interview, is selected based on availability. Ideally, 

cases are selected to broadly cover the research subject. Data is gathered, e.g. by 

interviewing a participant, and then coded using open coding38 and axial coding. During 

open coding, all the data is scrutinised for concepts through line-by-line coding. In axial 

coding, the concepts gathered in open coding are examined for dimensions which relate 

to their occurrence, e.g. causal and intervening conditions, context and consequences. All 

the concepts appearing in the data are coded. The codes are post-formed, i.e. they are 

derived from the data (Seaman, 1999). The aim is to find a structure relating concepts. 

An important part of coding is the so-called theoretical sensitivity, i.e. a researcher’s 

ability to understand subtleties of the data. Theoretical sensitivity can be attained from 

                                                      
38 An interview sample including open coding can be found in Appendix C. 
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experience in the field, e.g. through repeated exposure to, reading about or working in 

the field. Theoretical sensitivity refers to conceptual knowledge about a research topic in 

order to help understand the data. It must be distinguished from concrete assumptions 

that might guide coding and influence the emerging theory and must be avoided in the 

GT process (Glaser, 1978). 

Once coding of a case finishes, the next case is selected, data is gathered and analysed, 

and so on. Any theory derived from a new case is retroactively applied to all previous 

cases. This is referred to as constant comparison, meaning that information from 

incoming data is constantly compared to previously analysed data. New codes, derived 

from the latest case during open coding and thus post-formed, are applied to previous 

cases, and thus become preformed. 

The researcher notes any theoretical insights gained during data analysis in so-called 

memos.39 This process of selecting and analysing a case, constantly comparing new and 

previous cases and writing memos is repeated until a single core category emerges. 

The core category refers to the central aspect of what is being researched. Once the core 

has emerged, the research process changes fundamentally: Open and axial coding are 

replaced by selective coding. Selective coding means that only those concepts are coded 

that relate to the core. The codes are still pre-formed, but must be guided by the core 

category. Constant comparison and writing of memos continues. Sampling should ideally 

switch from exploratory all-you-can-get sampling to theoretical sampling. Theoretical 

sampling means that selection of cases is guided by the analysis of previous interviews. 

Ideally, new cases are selected based on what the researcher assumes will expand the 

theory and aid representativeness (Seaman, 1999). 

This continues until saturation is reached. Saturation is the moment at which new 

interviews merely fit into the existing theory without generating new knowledge. This is 

another deviation from classic tenets in research, which generally assumes that more 

data equates better scientific results. This is not true in GT. On the contrary, it has been 

pointed out that too much data might impede GT for practical reasons, e.g. because it 

makes a thorough analysis more difficult and eventually impossible (Kvale, 2007). 

                                                      
39 An example of a memo is shown in Appendix D. 
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Once saturation is reached, codes, categories and memos derived from the data need to 

be connected and integrated into a theory. In GT, this activity is called sorting. During 

sorting, new ideas can still emerge which in turn have to be written into memos and 

integrated in the sorting process. Once sorting is finished, a rich and grounded theory 

should have emerged. 

Figure 3-1 The research process in Grounded Theory 
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An interview excerpt is shown in Appendix C, a memo example is shown in Appendix D. 

The GT research process is shown in Figure 3-1. Strauss and Corbin (1998) concede that 

deviations from this process might be necessary. For example, research might have to 

progress to the final stages, i.e. theoretical sampling and eventually write-up, through 

lack of funding or time rather than the clear emergence of a core category. The authors 

also concede that theoretical sampling might not always be possible due to lack of access, 

in which case a take-what-you-can-get approach to sampling might have to continue. 

3.2.2.2 Grounding Research – Validity and Reliability in Grounded Theory 

Science needs to be linked to empirical verification and must be falsifiable in order to be 

able to claim finding new knowledge (Ellis and Silk, 2014). In classic research, this includes 

qualifying items such as validity and reliability of research results, but this is difficult for 

qualitative research and a topic of ongoing discussion. Flick (2002) suggests to supersede 

validity and reliability in qualitative research with alternative criteria: trustworthiness, 

dependability, credibility, transferability and confirmability,  

Reliability indicates the absence of selection bias and the potential to reproduce results. 

This can, according to Flick (2002), be partially replaced by demonstrating adherence to 

standards, by training and practicing the methods to be applied, and by reflection and 

exchange about methods and interpretations. Further reliability can be achieved by 

comparing interpretations from one part of the text against other parts, or other texts. 

Finally, Flick (2002) recommends the documentation of procedures and data sources by 

specific separation of raw data and researcher interpretations. 

Validity indicates the absence of interpretation bias. In GT, ensuring validity is called 

grounding research. Flick recommends to scrutinise interviews for strategic interests by 

interviewer and participant and for systematic influences shaping interviews and 

interpretations. Another technique is to ask participants for a review of the interview 

interpretations. However, this is problematic insofar as a dismissal of the interpretations 

by the participant does not necessarily mean that the interpretations were illegitimate. 

Some researchers apply quantitative interrater reliability tests to validate their concepts 

and categories (e.g. Gizaw, 2014). This was not done for this research as it requires 

recruitment of additional coders. 
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3.2.2.3 Previous Knowledge and Pre-Formed Theories in Grounded Theory 

Strauss and Corbin (1998) explain that in GT, a researcher must be free to enter a subject 

area without prejudices and preformed concepts. So, the researcher must not know too 

much about the subject area he is conducting GT in. They do not define a particular 

amount of knowledge or a threshold excluding a researcher from applying GT to specific 

research, but point out that researchers should not have a theory. Instead, the researcher 

should be open to be guided by the data. The authors also recommend not to conduct 

too much literature review prior to data gathering and analysis. 

A concern when choosing GT as research method was whether due to my previous 

occupation I already knew too much about software localisation to apply it effectively. I 

will address this concern below. 

It is unrealistic to assume that a researcher has no knowledge about the area under 

research. Although Flick (2002) assume that a researcher looking into social relations is 

likely to be unfamiliar with the particular situations, that author also acknowledges that 

research questions are often related to a researcher’s biography, as in my case. It is 

further recommended to define key concepts of research right at the start. Strauss and 

Corbin (1998) acknowledge that researchers have previous knowledge about their subject 

areas (see also Miles and Huberman, 1994). In fact, one would expect that a researcher 

has conducted a minimum of a subject area knowledge gathering before even being able 

to conclude that GT is a good choice for a particular research problem. Instead, I put 

forward that Strauss and Corbin (1998) mean to emphasize the exploratory nature of GT 

as opposed to explanatory research. 

Research can be classified into four different types: Exploratory research, descriptive 

research, explanatory research, and improving research (Runeson and Höst, 2009). 

Exploratory research aims to generate new ideas and general understandings of new 

phenomena which have not yet been thoroughly understood. Descriptive research aims 

to describe and classify the state of things, e.g. characteristics or properties of 

phenomena. Explanatory research aims to find causal relationships, that is, mechanics 

explaining the occurrence of phenomena. Improving research aims to evaluate the often 

practical occurrence of phenomena in everyday situations. 
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As discussed earlier, Strauss and Corbin (1998) state that GT aims for exploratory and 

descriptive research. It has the objective of generating theory, e.g. in the form of 

hypotheses. It provides a data-based method for theory generation and liberates the 

researcher from generating for example classification schemes or hypotheses through a 

creative process ex nihilo. However, as GT is exploratory research, generated hypotheses 

are not verified. This is in contrast to classic explanatory research where an existing 

theory or hypothesis is confirmed or rejected based on comparing theoretical predictions 

to results of analyses of actual observations (Perry et al., 2000). In de Groot’s empirical 

cycle of observation, induction, deduction, testing, evaluation, da capo, theory generation 

corresponds to the first three phases (de Groot, 1969). 

In other words, GT can generate theories, but not confirm them. This is because despite 

being data-based or methodological, it is not intended to be inter-researcher-reliable and 

does not follow classical notions of validity, reliability, and generalisability in research, 

which are anyway not considered to be appropriate for social research. Confirming or 

rejecting theories, generated through GT or otherwise, requires explanatory research. 

Thus, the concern should not be how much knowledge a researcher already has in a 

subject field, but whether a researcher already has a theory about a problem. If there is a 

proposition what mechanics might be at play, what influences what, what moderates 

what, or similar, then there is no point in applying GT because it would either lead to the 

creation of an alternative, different theory, or the researcher again arrives at the original 

theory. Arriving at an alternative theory would merely create a new theory qualitatively 

different from the original insofar it was methodologically derived from data. Arriving at 

the original theory however would not confirm it, as GT is not a theory confirmation 

method. The original theory is still not validated and thus in no way, shape or form better, 

more substantial or more confirmed than it was before. 

In other words: If a researcher already has a theory, there is no point in applying GT 

because it is redundant: it can only deliver what the researcher already has, an 

unconfirmed theory. Applying GT nonetheless might lead to a misguided notion that the 

original theory is confirmed or rejected through the result of GT, when it can actually not 

do any such thing. 
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The existence of a theory also stands in the way of theory generation. Such a theory or 

framework might lead a researcher to make assumptions about what is happening and 

what data would be most meaningful to collect (Miles and Huberman, 1994). In fact, 

there is research showing that cognitive processes, i.e. perception, attention, data 

interpretation, data production and memory, as well as scientific communication are 

theory-laden, i.e. influenced by theory. A review of existing studies was conducted by 

Brewer and Lambert (2001), showing among others that comprehension and 

memorisation is greatly improved when a theory or framework for information is 

available. In other words, a researcher is more likely to understand and remember data 

when it fits to an already existing body of knowledge. Incongruous data is ignored or 

forgotten, and thus data is superseded by theory. Uncannily, the effect increases the 

more ambiguous, complex, or degraded the data is. In other words, a pre-formed theory 

will inevitably influence a researcher’s data interpretation, particularly when objective 

criteria are sparse, as in qualitative analysis. 

In the light of the above, I argue that I am applying GT correctly despite any knowledge I 

already have. Previous knowledge itself does not matter. What matters is that I have no 

theory of what is going on in software localisation. 

Now, one could say that I happen to have a theory: I am after all testing whether 

developers have a higher self-efficacy, but lower attitude and lower cultural competence 

in software localisation than localisers. This is true: yes, I have a theory, and I am testing it 

as best as I can. But this is independent of the interviews and my application of GT. 

3.2.3 Application of Grounded Theory 

I was conducting an exploratory, interpretive, flexible design, blocked subject-project case 

study using GT. I tried to understand phenomena occurring during the development of 

international software through interviewees’ interpretations, adding to existing 

knowledge by building theory. The case is a process of developing international software, 

unit of analysis is the individual participant, with potentially multiple units of analysis per 

case. The method of data collection is direct. The selection strategy is both typical due to 

the request for participation, and revelatory due to theoretical sampling. Details of how I 

conducted GT are given in subsection 3.2.2.1. 
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3.2.3.1 Selecting Interviewees 

For open coding, sampling of cases was determined by some a priori decisions: 

interviewees were selected when they had participated in the development of global 

software in a relevant role, i.e. translators, software engineers and project managers. 

While other roles, e.g. terminologist, reviser, DTP specialist, software tester and QA 

manager are mentioned in the literature (e.g. Hartley, 2009; Moorkens, 2012a), these 

were considered less relevant because they assumedly have less influence on 

internationalisation and localisation. 

For the selection of initial interviewees, a convenience sample was deemed sufficient, 

following the recommendation “take what you can get” (Strauss and Corbin, 1998, p.208), 

explicitly allowing convenience samples for open coding. Because GT does not aim for 

initial generalisability of its results, it is of no concern if participant selection is not 

representative of the general population: open coding aims to find codes in context and 

generalisation of the codes is not intended. Once the core category has been found, 

further samples are ideally selected by theoretical sampling, ensuring appropriateness of 

the sample. 

3.2.3.2 Conducting Interviews 

The aim of interviewing was to understand the experience of professionals in the field, 

including meaning, feelings, value judgements, and of course accounts of fact.   

Three types of interviews can be distinguished (Seaman, 1999). Structured interviews 

have pre-formulated and specific questions to be answered by the interviewee. In 

unstructured interviews, the interviewee is the source of both answers and questions, 

which are open and open-ended. In extreme cases, unstructured interviews resemble 

more a conversation than an exchange of questions and answers. For semi-structured 

interviews, a mix of specific and open-ended questions is used, the latter accounting for 

both foreseen and unexpected information emerging during the interview. 

Strauss and Corbin (1998) recommend open questions during the use of GT. Their 

argument is that the more structure there is in interviews, the more likely participants are 

to answer the questions and nothing else. Less structure and open questions on the other 

hand increase the chance of participants soliciting experience and share what they think 
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is important beyond what is in the question. Further, commonality in interviews, i.e. 

structure across interviews, increases comparability and is considered more economic 

(Flick, 2002). Eventually, semi-structured interviews were chosen for two reasons: 

unstructured elements allowed to explore new areas and findings as interviews 

progressed. I believe this is an essential part of interviewing when conducting GT. 

Especially during theoretical sampling, interviews are strongly determined by previous 

findings. However, a certain amount of structure accounted for a minimum of relation of 

accounts from two comparatively different disciplines, software engineering and 

translation. 

While there are few rules and standards for qualitative interviews (Kvale, 2007), Flick 

(2002) discusses five methods of semi-structured interviews, to be selected according to 

appropriateness for research topic and fit to research process: focused interviews, semi-

standardised interviews, expert interviews, ethnographic interviews, and problem-

centred interviews. 

Focused interviews aim to analyse participants’ perceptions of a common, specific 

stimulus, e.g. a known event such as a movie, and potentially to compare it with an 

objective analysis of the stimulus. This method was discarded since this would have 

severely restricted participant selection, e.g. having worked on the same project and 

experienced the same bug. No stimulus universal to the population of participants is 

known. Further, even if enough participants named one it was not actually desired to 

limit the research to a specific event or similar. 

Semi-standardised interviews aim to understand participants’ subjective theories about a 

topic through a series of at least two interviews separated by several days or weeks, 

including visualisation. This method was discarded because, since localisation is a 

comparatively small aspect of their work, developer-generated theories might not be 

comparable to translator-generated theories. I also felt that participant-formed theories, 

while interesting and informative, are less conclusive than a theory formed by data. 

Practical reasons for not choosing this method included an expected difficulty to find 

participants willing to conduct successive interviews, especially as use of a visual tool 

complicates remote interviews, e.g. by phone. 
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Expert interviews aim to obtain views representative for a whole group. I did not use this 

approach as this implies there is a generalisability of accounts for said whole group, and 

further a restriction on specific topics. Insofar, there was a concern that this interview 

style was not open enough. Finally, the research interest was not on expert perspectives, 

but rather general views. 

Ethnographic interviews aim to supplement data from ethnographic observational studies 

by interviewing participants in an observational study as repeated informal conversations. 

As I did not conduct an observational study, this interview type was not applicable. 

Problem-centred interviews aim to collect biographical data towards a certain problem. 

This method was ultimately chosen because it focuses on problems and supports interest 

in subjective viewpoints, facts, social processes, and the aim of developing theory.  

Problem-centred interviews are characterised by problem centring, object orientation, 

and process orientation. It is recommended to start the interviews with a short survey for 

biographical data so that these do not need to be established during the interview. 

Problem-centred interviews follow a time-glass model (Runeson and Höst, 2009), where 

an interview opens with general questions, continues with a phase of specific questions, 

and concludes with open questions. Problem-centred interviews are recommended to 

open with a warm-up phase, followed by a phase for general prompting, then specific 

prompting, and finally ad-hoc questions (Flick, 2002). The latter enabled me to engage 

dynamically with a participant’s account and their role, i.e. project manager, software 

engineer or translator. Overall, the problem-centred interview method combines well 

with GT, particularly with theoretical sampling and coding (Flick, 2002). 

While generally following recommendations, no biographical data survey was conducted 

prior to the interviews since this was likely to introduce redundancy for the interviewees, 

who were assumed to have taken part in the online survey. Further, relevant biographical 

data such as the participant’s role or company etc. had already been obtained during 

interview arrangement and preparation. Unlike the recommendation by Flick (2002), no 

specific, given problem, was focussed on. Instead, any problem as chosen by the 

interviewees was discussed. It was also noted that the dynamics of the interview did not 

always follow the chosen time-glass model, but sometimes had more semblance to the 

funnel model, with open questions first which then narrowed to more specific questions. 
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Data collection was first degree, i.e. interviews were conducted by the author. Interviews 

were recorded provided that interviewees consented. Only minimal notes were taken in 

order to focus on interview content. The aimed-for interview length was 45 minutes. 

During the interviews, recommendations and best practices for semi-structured research 

interviews from Seaman (1999) and Kvale (2007) were followed. Instructions were kept to 

a minimum. Interviewees were reminded that participation was voluntary and that they 

could choose to skip any question for any reason, without giving a reason. It was stressed 

that there are no right or wrong answers. 

It was attempted to steer interviews towards a specific subject initially, but interviewees 

were allowed to steer the interviews to whatever they found relevant. It was aimed to 

leave the thematic part of the interview to the interviewees so that I would only 

participate in the dynamic part, i.e. progressing the interaction. It was attempted to keep 

questions short, to avoid direct questions inviting speculation, and to only ask for 

clarification when needed. Instead, interviews were aimed to be self-reported stories 

with spontaneous information, but little explanation. 

Analysis was conducted in parallel with the interviews as described in the GT research 

process. During the interviews, interviewees were asked to relate their experience in 

software localisation, their general role, how they are professionally related to software 

localisation, and what their day-to-day work activities are. Interviewees were encouraged 

to share anecdotes related to software localisation, e.g. issues they had encountered or 

witnessed themselves. This included the setup of the localisation process, e.g. whether 

localisation is done in-house or through an LSP, what the relationship is between 

members of the development and localisation discipline, and similar, as far as this was 

known by the interviewees. The overarching interests lay on two complexes: localisation 

issues and procedural motivations:  

The first complex dealt with details of localisation issues encountered by interviewees, i.e. 

what exactly the problem was, the underlying mechanics leading to the creation or 

manifestation of the issue, how issues were detected and handled, and what 

consequences, if any, they had on development and localisation going forward.  
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The second complex dealt with underlying assumptions and thought processes, if any, 

having led to the organisational structure, processes, tool usage etc. as encountered in 

the interviewees’ localisation setup. 

3.2.3.3 Tools Used During Analysis 

After the interview, recordings were transcribed using a simple media player and text 

editor40. Non-English interviews were coded in the original language, only quotations 

appearing in the write-up having been translated. 

The necessity to use tools other than writing utilities during the application of GT was 

noted already by its original creators. For example, Strauss and Corbin (1998) suggest to 

conduct sorting with self-sticking notes on a whiteboard or wall. There are a number of 

software tools available to help with the analysis of qualitative data. I originally started 

analysis by coding in Weft QDA, an open-source tool for coding text data. After coding a 

few interviews, a number of technical limitations of Weft QDA such as the inability to edit 

interview transcripts, led to a switch to NVivo, which I used for most open coding. NVivo 

is a commercial software package for qualitative data analysis. It serves as a data 

repository and processing tool and enables researchers to code data and organise, sort, 

link and arrange information and data. The created data structures can later easily be 

modified. NVivo further offers search and query facilities to browse and examine existing 

data, calculate simple coding statistics such as code density, graphically represent links 

and structures, and supports coding and analysis through multiple users. It supports most 

computer media, i.e. text, images, movies and sound recordings. However, for this 

research, imported in NVivo were only interview transcripts and notes. 

Towards the end of open coding, I ceased using NVivo because I found that its use had 

influenced how I understand and process the original data. Specifically, I found my 

thinking about the data to be shaped not by my ideas of the data itself, but by its 

presentation, hierarchical organisation and abstraction in NVivo. A similar observation has 

been made by Hoda et al. (2012), who noted a limiting effect on interaction with the data 

through the use of NVivo. My main worry was that I might begin to rely too much on the 

suggested ways of handling data inherent in NVivo. Incidentally, I had noticed occasional, 

                                                      
40 Details of tools are listed in Appendix F. 
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slight shifts in my codes from the meaning when creating the code, to the meaning 

associated with it when assigning later items, and I attributed that to the way how 

existing codes are presented and selected in NVivo. 

I eventually switched to using text files for selective coding and sorting. While handling 

codes, concepts and memos in text files is much more cumbersome, it forced me to re-

read and engage more with existing data, for example when adding new codes or 

reassigning text selections. Having all data in what effectively is a one-dimensional order 

of which you can only see a limited selection at the same time also made me know my 

data much better. I would have liked to try sorting with self-sticking notes on a 

whiteboard as suggested by Strauss and Corbin (1998), but none was available. 

3.3 Quantitative Research 

RQ3 and RQ4 will be answered through quantitative research. For each research 

question, appropriate hypotheses were formulated. Table 3-1 lists hypotheses and their 

relationships to the research questions. Further modifications and additions are discussed 

during the construction of the survey and choice of statistical tests. 

Table 3-1 List of hypotheses 

RQ ID Hypothesis 

3 

 

H1 Developers score lower than localisers on CQ 

H2 Developers assume a different localisation scope than localisers 

H3 Developers score lower on ATL than localisers 

H4 Developers assume less responsibility for localisation than localisers 

H5 Developers have a higher SEL than localisers 

H6 Cost, quality and time priorities differ between developers and localisers 

H7 Software success factor priorities differ between developers and localisers 

H8 Localisation training is correlated with CQ 

H9 Native English speakers score higher than non-native English speakers on CQ 

4 H10 LE is affected by software type 

H11 LE is affected by user type 

H12 LE is affected by customer-user identity 

H13 LE is affected by number of target languages 

H14 LE is affected by development model 

H15 LE is affected by project commerciality 

H16 ATL is correlated with CQ 

H17 SEL is correlated with CQ 

H18 SEL is correlated with ATL 
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3.3.1 Selecting Quantitative Methods 

Next, relevant quantitative methods and the method selection to examine the 

hypotheses about software localisation practice is discussed. 

3.3.1.1 Experiments and Quasi-Experiments 

Experiments are studies testing causal relationships by applying a treatment to one of 

two identical situations and observing the effect. It is important that the situation 

receiving the treatment is chosen randomly; otherwise, the study is referred to as quasi-

experiment. Usually, experiments are used to test hypotheses and are repeated many 

times to be able to make inferences through statistical analysis. It must also be assured 

that the two situations only differ in the independent variable, i.e. treatment. Therefore, 

experiments are generally conducted in laboratories. 

Experiments have been used in software development research. For example, 

Shneiderman et al. (1977) showed through various experiments that flowcharts are of no 

help whatsoever to software engineers, neither for debugging nor programming nor 

maintenance. Tichy (1982) tested the performance of a revision control system through 

experimentation. Solheim and Rowland (1993) measured effectiveness and efficiency of 

several integration tools and strategies. The results suggested top-down and big-bang 

integration strategies. 

A properly set-up experiment is considered the ultimate test of a theory, but requires a 

testable hypothesis. Experiments as such are not necessarily difficult to set up, but most 

experiments end up having physical requirements that makes experimenting a huge 

effort. Further, the more complex the context of the situation under examination is, the 

more difficult it will be to set up an experiment where all influences are controlled. 

Experiments can be difficult to recruit participants for as it must be sure that all 

participants are comparable. Further, it is often argued that the relevance of 

experimental results is limited due to their laboratory context. 

For this research, experimental methods were discarded due to the expected complexity 

and because no option was apparent how to test the hypotheses within manageable 

experiments. In principle, software development and localisation could be recreated 

within a laboratory environment, but the effort to do so seems extreme. In the case of 
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experiments, it would also require assigning independent variables to the units of 

analysis. This means randomly educating neutral participants to be either developers or 

localisers, and simulating software development projects that only differ in user type, 

number of target languages, etc. Such experiments would have to be repeated many 

times in order to satisfy the requirements of statistical analysis. Some of these issues 

could be addressed by conducting quasi-experiments, but this would create new 

problems, e.g. recruitment of software development professionals willing to spend 

considerable time for no reward. 

3.3.1.2 Survey 

Surveys are a way to identify trends or test hypotheses by inference through statistical 

analysis of samples taken from a population. Survey data can be gathered for example via 

interview, questionnaire or observation. In computing, surveys have for example been 

used by Isa et al. (2010) to confirm the theory of website information architecture as a 

five-factored multidimensional product. Blackburn et al. (1996) studied software 

management practices in Western Europe via survey in order to determine management 

practices supporting higher productivity, and to provide supporting evidence of factors 

reducing cycle time. 

The survey method is comparatively simple to apply. It shares with experiments the 

difficulty of recruiting participants conforming to the requirements of statistical analysis.  

In this research, the survey method was chosen because it was deemed the easiest way 

to confirm the hypothesis questions while avoiding the construction of experiments. 

However, survey construction is a complex field with a number of guidelines to consider. 

Similar to experiments, surveys require a comparatively large number of data points to 

deliver statistically representative results, which disqualified observation. It was deemed 

best to avoid redundancy in data collection methods in order to avoid single points of 

failure. Because interviews were conducted for the GT study, a questionnaire was 

constructed to realise the survey. 

3.3.2 Questionnaire Construction 

The survey was designed as a cross-sectional study. The research questions motivating 

the survey revolve around two units of analysis: for RQ3, it is professionals, and for RQ4, 
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it is software projects. Because it was considered likely that most respondents have 

worked on more than one localised project, they were instructed to answer project-

related questions for the most recent localised project they had worked on. 

To enable statistical analysis, quantifiable data was needed. Accordingly, the survey used 

multiple choice questions. Text entry fields were only provided as alternatives for 

questions where it was considered conceivable that the given options would not cover all 

possible answers. 

The hypotheses require measurements of five constructs. These are Attitude Towards 

Localisation (ATL), Self-Efficacy in Localisation (SEL), Self-Efficacy in Usability (SEU), 

Cultural Competence (CQ), and Localisation Effort (LE). Further, biographical and opinion 

data of the participants needed to be collected. Details on the constructs measured and 

data gathered in the survey are given in the following subsections. The relationship 

between each question and constructs is shown in Table 3-2. The complete questionnaire 

can be found in Appendix A. 

Table 3-2 Relationship between survey questions and constructs 

Q. # Construct 

1 - 5 Biographical data 

6 - 24 Attitude Towards Localisation (ATL) 

25 - 29 Self-Efficacy in Localisation 

30 - 34 Self-Efficacy in Usability 

35 - 54 Cultural Competence (CQ) 

35 - 38 Metacognitive CQ 

39 - 44 Cognitive CQ 

45 - 49 Motivational CQ 

50 - 54 Behavioural CQ 

55 - 60 Project properties 

61 - 68 Localisation Effort 

69 - 71 Biographical data 

72 - 75 Opinions on localisation 

 

3.3.2.1 Biographical Data 

The survey collected biographical data on age (Q.1), gender (Q.2), nationality (Q.4), level 

of education (Q.5), usual role in software development (Q.69), years of experience in 

software localisation (Q.70), and received training in software localisation (Q.71). These 
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items were used to characterise the sample. An additional item asked the participant to 

confirm involvement with the development of international software (Q.3) in order to 

filter out ineligible participants. Usual role in software development was further used to 

sort participants into developer or localiser groups. Training in localisation and nationality 

was used for correlation testing with CQ. 

3.3.2.2 Opinions on Localisation 

The survey further queried participants’ opinions as part of the examination of 

differences in perceptions and attitudes of developers and localisers regarding 

localisation scope and project management. Specifically, participants were asked to 

define their preferred localisation scope from a list of items, to order a number of 

software quality items and project management items according to their personal 

perception of priority, and to state whether they feel responsible for localisation. The 

available options for items to be localised in software (Q.72) was compiled from similar 

lists in the literature (Anastasiou and Schäler, 2010; Ryan et al., 2009; Collins, 2002; Carey, 

1998). The options of priorities in software (Q.73) were inspired by an article of Cook 

(2011) about different software priorities for scientists and engineers. The project 

management options of Q.74 were derived from the project management triangle 

(Dunne, 2011). The question of the participant’s personal responsibility of localisation 

(Q.75) is a straightforward yes/no question. 

Because no statistical test could be identified to test for differences in list sorting, it was 

decided to test the selection chance of each item (H2a to H2g) and the difference of 

selected item count (H2h) depending on participant role. Because there were only three 

options with six possible permutations for the project management triangle items, the 

cost, quality and time priorities could be tested using a Chi-squared test. However, eight 

software success criteria allow 40320 possible permutations compared to a relatively 

small number of participants (n = 120), meaning that a different testing method had to be 

found. Hence, the software success criteria were tested individually with additional 

hypotheses (H7a to H7h). 
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3.3.2.3 Attitude Towards Localisation (ATL) 

Table 3-3 General changes to ACT 

Q. # Change 

11, 13, 17 Replacement of terms, e.g. computer technology with software localisation 

6, 8, 9, 10, 15, 

16, 19, 23, 24 

Slightly rephrased to account for the differences of the tool computer 

technology versus the concept or process software localization 

7, 12, 14, 18, 

21, 22 

Adaptation of a stated use of computer technologies to a purpose for software 

localization 

20 Adaptation of an explicit motivation for an emotional response 

 

Table 3-4 Semantic changes to ACT 

Q. # Class ACT ATL Source 

7 
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f 
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Communicate with others 

in order to be more 

effective on the job 

Applying knowledge in 

software localization to 

create more effective 

software for international 

users 

Dohler (1997) 

12 Create materials to 

enhance the performance 

on the job 

Increasing the user base of 

the software projects one is 

working on 

Kumhyr et al. 

(1994), McKethan 

and White (2005) 

14 Use word-processing 

software to be more 

productive 

Increase the usability for 

software one is working on 

for international users 

Aryana and Liem 

(2011) 

18 Access many types of 

information sources for 

one’s work 

Necessity for software 

projects to adhere to local 

laws and customs 

Ryan et al. (2009) 

21 Assist in work organization Avoid misunderstandings 

and offenses for the 

software one is working on 

Anastasiou and 

Schäler (2010) 

22 Learn new skills Improve software for 

international users 

- 

20 

em
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 Anxiety towards missing 

knowledge how to handle 

errors 

Anxiety towards loss of 

control 

- 
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Table 3-5 Examples of semantic changes to ACT 

Q. # ACT ATL 

9 Using computer technologies in my job 

will only mean more work for me. 

If the software project I am working on is 

localized, this will only mean more work for 

me. 

20 I am anxious about computers because 

I don’t know what to do if something 

goes wrong. 

I am anxious about software localization in my 

projects because it might interfere with my 

efforts or ideas. 

21 Computer technologies can be used to 

assist me in organizing my work. 

Software localization helps avoid 

misunderstandings and offenses for 

international users of the software I am 

working on. 

 

The instrument measuring attitude towards software localisation consisted of 19 items, 

Q.6 to Q.24, which were adapted from an instrument to measure Attitude towards 

Computer Technology (ACT) that had originally been developed to measure attitudes 

towards computer technologies of students and education professionals, but had later 

been adapted for general use (Kinzie et al., 1994). Its 19 items contain both positive and 

negative phrasings and measured the constructs usefulness and comfort/anxiety with 

regards to computer technologies. Usage of this questionnaire as a template for our own 

quantitative research seemed appropriate because of the approach to understand 

attitude towards computer technology as being made up of the subscales of usefulness as 

reported by the participant and comfort/anxiety. Both are subjective perceptions and 

seem appropriate measures of the instrumental nature of software localisation. It was 

also considered to be suitable since software localisation is considered a particular facet 

of the broader term computer technology. 

Computer technology in the sense in which it was used by the authors of the original 

questionnaire refers to a concrete use towards an end, e.g. to communicate with others 

(item 1 in the original ACT), or to learn new skills (item 17 in the original ACT). In that way, 

it was deemed very similar to software localisation, just with different ends. However, in 

the original ACT, computer technology is treated as a tool that can be applied directly by 

the participants. In contrast to that, the adapted questionnaire looks at software 

localisation as a concept that is part of the participant’s work, and at its most concrete 

might be a process the participant is integrated in. Hence it was not possible to simply 
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replace each occurrence of computer technology with software localisation in all items. 

Instead, four different kinds of changes were made as described in Table 3-3. Some were 

superficial, others affected the semantics of items. The latter changes are described in 

detail in Table 3-4 and Table 3-5. The original ACT item ordering was retained in the ATL. 

3.3.2.4 Self-Efficacy in Localisation (SEL) and Self-Efficacy in Usability (SEU) 

Ten items measured the two constructs Self-Efficacy for Localisation (SEL) (Q.25 to Q.29) 

and Self-Efficacy for Usability (SEU) (Q.30 to Q.34). In general terms, self-efficacy is a 

person’s perception or confidence in how far it can exert influence in what happens 

around said person, or towards a specific subject or task (Agarwal and Karahanna, 2000; 

Bandura, 1977). The measurement of SEU was created as a control measurement to 

control that a specific score for SEL is not part of a general self-efficacy trend. Usability 

was considered to be a good subject for this because, similar to software localisation, it is 

a concept without immediate application. In comparison, user-centred design is a well-

defined method, and usability testing is a specific process. Both are related to the concept 

of usability and are procedural manifestations of the concept, without explaining the 

concept in full. Two additional hypotheses were created: H5a states that localisers score 

lower on SEL than developers, and H5b states that SEL is correlated with SEU. 

New items measuring self-efficacy for software localisation and self-efficacy for usability 

were created based on the self-efficacy for computer technologies test by Kinzie et al. 

(1994). For each construct, five common work steps associated with software localisation 

and usability were identified and the confidence of developers to do these was queried. 

For software localisation, these were applying localisation functionalities of UI 

frameworks (Q.25), gathering context information for translators (Q.26), identifying 

software elements to be internationalised (Q.27), handling translated or localised content 

(Q.28), and using Unicode (Q.29). For usability, these were creating a clear UI (Q.30), 

conducting usability tests (Q.31), formulating error messages (Q.32), analysing usability 

test results (Q.33), and implementing changes suggested by UI experts (Q.34). 

3.3.2.5 Cultural Intelligence (CQ) 

An existing validated instrument was chosen to obtain Cultural Competence in Q.35 to 

Q.54. What was needed was a measurement of cultural competence relevance to 
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software localisation, i.e. what aspects in software need to be adapted for various locales. 

The principal appropriateness of cultural assessment in the context of software 

engineering to improve product localisation was noted by Linna and Jaakkola (2010). 

A wide range of cultural assessment tools for selection and development purposes are 

available41, and a number of tools were reviewed for use in this research. Matsumoto et 

al. (2001) developed the Intercultural Adjustment Potential Scale (ICAPS), a tool 

predicting cultural adjustment, but this was specifically aimed at Japanese sojourners to 

predict their working success in foreign locales and thus not applicable. Albir and Alves 

(2009) and Malmkjaer (2008) discuss the concept of Translation Competence, but the 

competence to translate or localise something goes beyond what is expected of 

developers – that’s why the roles of localisers and developers exist in the first place. For a 

time, it was considered to use the test of Thomas et al. (2012) to measure cultural 

intelligence as a construct consisting of knowledge, skills and metacognition, i.e. a self-

reflective aspect. Ultimately, the Cultural Intelligence Scale (CQS) by Ang et al. (2007) was 

adopted because it fits with the research purpose, is easy to apply, and is readily 

available. Further, the inclusion of motivational aspects were considered to be an 

advantage, and not a distraction, as suggested by Thomas et al. (2012). Ang et al.’s 

interpretation of the concept of cultural competence seems close to the understanding 

relevant for software localisation, particularly because it is further broken down into four 

sub-constructs and is designed to handle “an individual’s ability to grasp and reason 

correctly in situations characterized by cultural diversity” (Ang and Van Dyne, 2008, p.4). 

With the CQS, Ang et al. (2007) aimed to create an instrument to measure a construct 

they called Cultural Intelligence (CQ), described as the “capability to function effectively 

in culturally diverse settings […] arising from differences in race, ethnicity and nationality” 

(Ang et al., 2007, p.335). CQ is supposed to predict cultural judgment and decision making 

as a cognitive process, cultural adaptation in terms of sociocultural adaptation and well-

being, and task performance as the conduct of prescribed activities. Although the test is 

aimed to predict functioning within cultural context foreign to the subject, Ang et al. 

understand this as a cognitive process, requiring conscious understanding, perception and 

processing of cultural differences. Hence, it was considered that Ang et al.’s definition of 

                                                      
41 A comprehensive list is given in Linna and Jaakkola (2010). 
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CQ would also be relevant in the context of cultural competence for internationalisation 

and localisation. 

Ang et al. measure CQ through four sub-constructs: Metacognitive CQ refers to mental 

processes to acquire and understand cultural knowledge, describing the ability to 

understand one’s own cultural preferences and the cultural preferences of others. 

Cognitive CQ refers to knowledge of other cultures’ preferences such as conventions and 

customs. Motivational CQ means intrinsic interest in learning about other cultures. 

Behavioural CQ is the ability to exhibit appropriate cross-cultural behaviour, respectively 

control one’s own behaviour accordingly. 

Ang et al. developed the CQS to be unaffected by the cultural background of individuals 

taking the test, and to be reliable, valid, and stable over time. For this research, the 

instrument was adopted without changes so that validity and reliability are retained. It is 

expected that behavioural CQ and motivational CQ are not as relevant to software 

localisation, whereas cognitive CQ and metacognitive CQ, i.e. the actual knowledge of 

other cultures and the ability to think about other, unknown cultures in an abstract way, 

for example in order to anticipate reactions, are obviously relevant for successful 

internationalisation and localisation. 

In order to test the sub-constructs metacognitive CQ, cognitive CQ, motivational CQ and 

behavioural CQ as well, hypotheses were added to applicable tests on CQ, e.g. H1 

“Developers score lower on CQ than localisers” was followed by H1a “Developers score 

lower on metacognitive CQ than localisers”, H1b “Developers score lower on cognitive CQ 

than localisers”, and so on. It was further decided to test the correlation of cultural 

competence, attitude towards localisation and self-efficacy in localisation, creating 

additional hypotheses (H16 to H18). 

3.3.2.6 Project Properties 

Project properties were surveyed in order to answer RQ4. The respective hypotheses test 

whether there is a correlation between given project properties and localisation effort. 

The project properties are software type, user type, whether users and customers are 

identical, number of target locales, development methodology, and project 

commerciality. 
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The options for software type (Q.55), user type (Q.56) and development models (Q.60) 

were generated from my own understanding of what would be clear and unambiguous 

options covering the subject area as wide as possible, but influenced by respective 

discussions in Ryan et al. (2009). Options for customer-user identity (Q.57) and project 

commerciality (Q.58) were straightforward confirmations or rejections, where customer-

user identity also allowed a mixed option. 

Rather than asking for target locales, the survey question asked for target languages 

(Q.59) to avoid confusing participants unfamiliar with the term locale. It was assumed 

that in this context, number of locales and number of languages would be identical 

anyway. Participants were asked to choose from a range of options rather than input an 

integer into a text field because not all participants were assumed to actually know the 

exact number of target languages. In order to minimise guessing errors, the answer 

options were designed broadly and the number of options was limited to four. The upper 

distinction limit originated from a general impression based on the literature that few 

software projects localise into more than 30 languages. The rationale behind the 

thresholds, 5 and 15 languages respectively, was the assumption that participants are 

more likely to know the number of target languages when this number is small, i.e. the 

fewer target languages there are, the more likely participants are to take note of or 

remember. 

As applicable, options to specify unknown or other values were added. For example, as 

answer options for number of languages covered everything from 1 to infinity, no other 

option was applicable, and software type had no unknown option as participants should 

have a general idea what they are working on. 

3.3.2.7 Localisation Effort (LE) 

The construct LE was operationalised based on efforts, i.e. activities, processes or tools, 

identified in the literature to lower localisation cost, increase localisation time, and 

shorten localisation duration. Origins and support for each item (Q.61 – Q.68) are 

identified in Table 3-6. The items were further selected to have a reasonable chance to be 

known by participants from both the developer and localiser group. 
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Table 3-6 Origins of LE items 

Q. # Localisation Effort (LE) item Source 

61 Clear localisation requirements Law (2003) 

61 Best practice guidelines Giammarresi (2011)  

61 Glossary Giammarresi (2011) 

61 Translation storage and re-use Freigang and Reinke (2005), Bowker (2005) 

61 Dedicated localisation engineers Giammarresi (2011) 

61 Possibility for all developers to 

compile localised versions 

author’s experience 

61 Simshipping Ryan et al. (2009), Hartley (2009), Kahler (2000)  

62 Emphasis of localisation quality Law (2003) 

63 Localisation scope Cyr and Trevor-Smith (2004), Ryan et al. (2009) 

64 Translation source Morado Vázquez and Mooney (2010) 

65 Localiser communication Law (2003), Collins (2001), Russo and Boor (1993) 

66 Localisation file format Law (2003), Sachse (2005), author’s experience 

67 Context information DePalma (2006), Honkela et al. (1997) 

68 Quality assurance efforts author’s experience 

 

Q.61 queried a number of nominal scale items, with each selected item contributing to 

overall LE. Q.62 to Q.68 offered options that were considered on an ordinal Guttman 

scale (Guttman, 1974) so that the more laborious an option is, the higher a score it 

contributes to overall LE. For example, Q.64 asked where the translations for the project 

originated, with MT assumed to indicate low LE and hence counting least, and full-time 

employees assumed to indicate high localisation effort and hence counting most. Each 

individual LE item was tested separately (see H10a to H10f and H11a to H11f). 

3.3.3 Survey Presentation and Pilot 

The survey was implemented as website using the questionnaire software LimeSurvey42. 

It was structured in seven web pages: 

1. Introduction, informed consent and instructions 

2. Part 1: Biographical data 

3. Part 2: ATL, SEL, SEU 

4. Part 3: CQ 

5. Part 4: Project properties 

                                                      
42 Details of tools are listed in Appendix F. 
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6. Part 5: Additional biographical data, opinions on localisation 

7. Opportunity for feedback and registering for results 

The questionnaire was piloted with ten individuals considered to be typical study 

participants, i.e. software engineers, project managers and translators. The pilot study 

was conducted in order to check for ambiguity in wording, unexpectedly high response of 

the default option, and any other potential problems. In addition, pilot participants were 

asked to time how long it took them to complete the questionnaire so that a good 

estimate for potential participants could be provided. 

The pilot participants did not report any significant issues with the questionnaire so that 

the only changes were corrections of typos and odd wording. The average completion 

time was ca. 15 minutes. 

3.3.4 Survey Analysis 

The constructs and scales used for the analysis are listed in Table 3-7. Statistical analysis 

was conducted using the Statistical Package for the Social Sciences (SPSS)43. SPSS is a 

statistical analysis software allowing researchers to calculate descriptive, analytical and 

predictive statistics. SPSS handles data in the form of tables, with rows representing cases 

and columns representing variables. Common statistical measures have been 

implemented and can be applied to the data. SPSS further features extensive data 

management features for variable naming and scaling, outlier handling and data filtering, 

and offers a number of options to output descriptive and analytical results as tables, 

charts or graphs. 

There are no interventions and the survey is not a longitudinal study. The statistical 

analysis therefore has three different objectives: 

The first objective is to test whether averages, nominal variables and ordinal variables 

between two groups, e.g. developers and localisers, differ. To test differences of 

averages, an independent-samples t-test or a Pearson correlation test is used. To test 

differences of ordinal and nominal variables, the Phi coefficient correlation test is used. 

To test differences of groups of variables, the Chi-square test is used. The second 

                                                      
43 Details of tools are listed in Appendix F. 
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objective is to test whether averages between multiple groups, e.g. software users, differ. 

To test this, an analysis of variance test (ANOVA) is used. The third objective is to test 

whether two variables are correlated. To test correlation of two ordinal variables, the 

Spearman rank correlation test is used. For all tests, the SPSS standard implementation is 

used. All used tests fall under Fukuda and Ohashi (1997) standard tests. 

Table 3-7 Scales of constructs 

Construct Scale 

Cultural Competence ordinal 

Attitude Towards Localisation ordinal 

Self-Efficacy in Localisation ordinal 

Self-Efficacy in Usability ordinal 

Nationality nominal 

Role in Software Development nominal 

User Type nominal 

Software Type nominal 

Customer-User Identity nominal 

Project Commerciality nominal 

Number of Target Languages ordinal 

Development Methodology nominal 

Localisation Effort ordinal 

 

The survey unit and the analysis unit for parts 1, 2, 3 and 5 of the questionnaire was the 

participant. For part 4 of the questionnaire, the analysis unit was most recent project the 

participant had worked on. Participants were categorised into two groups: software 

engineers, UI designers, project managers working on engineering projects, and other 

participants with a focus on work in and around software engineering or in software 

companies were categorised as developers. Translators, technical writers, or other 

personnel working on localisation or in translation companies were categorised as 

localisers. 

3.4 Population and Sample 

Considering what kind of sampling method is used is an important aspect for quantitative 

research because it has a strong influence on generalisability. A sample is either a 

probability sample, where each element of the population under examination has a 

known probability to be selected, or a nonprobability sample, where at least some 
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elements of the population have an unknown or no probability to be selected. The 

advantage of a probability sample is that the sampling error is known, which ultimately 

allows for inductive inferences about the entire population. Nonprobability samples, on 

the other hand, must be considered non-random samples without information about the 

sampling error. Hence the representativeness of the sample for the entire population is 

limited or dependent on assumptions made during sampling. 

Target participants for the study were professionals with experience in contributing to 

international software. Respondents were expected to have actively contributed to such a 

software project, for example in the role of software engineer, translator, UI designer or 

project manager, in line with localisation contributors described in the literature (e.g. 

Hartley, 2009). By leaving the target group relatively unrestricted, it was hoped that as 

many points of view as possible could be examined. For example, it is conceivable that a 

project manager has different views on the importance of a localisation project than a 

software engineer, or a UI designer might have more knowledge about cultural 

differences than a system analyst. However, only professionals were recruited, i.e. people 

who in principle contribute to software for a living. For example, a marketing staff 

member is not assumed to directly contribute to the development of a software product. 

Requests for participation were published on different media related to software 

development and localisation: 

 13 mailing lists 

 Internal communications (e.g. newsletters) of six topical organisations 

 17 Facebook groups 

 16 newsgroups and internet forums 

 16 twitter targets (accounts and hash tags) 

 Two print magazines (one non-topical) 

Additionally, study participation was further promoted in person at three industry fairs, 

four research conferences, and five workshops. More than 200 individuals were mailed 

individually, mostly as follow-up to responses from the listed recruitment activities. 

The applied sampling method has to be considered convenience sampling. Convenience 

sampling, also referred to as accidental sampling or opportunity sampling, usually refers 
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to a sample chosen for relatively easy access. However, it is a non-probabilistic sample. 

Therefore, the sample might contain unknown biases and care must be taken before 

generalisation. For example, it is conceivable that developers with a positive attitude 

towards localisation or with an increased cultural competence were more likely to 

participate in the survey than those with a negative attitude towards localisation. In that 

case, the test for correlation between localisation role and attitude towards localisation 

or cultural competence might have been foiled by the bias. 

Despite the disadvantages of convenience sampling over other sampling methods, 

especially with regards to generalisability of survey results, it was nonetheless considered 

useful. Convenience sampling is suitable for qualitative data, in particular when 

comments are sought on rich and meaningful topical statements. With the previously 

discussed restraints on data gathering, it provided a realistic and adequate sampling 

method. 

No attempt was made at avoiding multiple sampling because I could not conceive of a 

way to do so reliably and without in some way involving the identity of the participant. 

Early on it was considered to introduce some kind of unique identifier constructed by 

participants themselves from their date of birth, name and company name. This would 

have added the possibility of noticing when two survey participations referred to the 

same company. However, eventually neither accidental nor intentional contamination of 

survey data through repeated participation seemed probable or plausible. Subsequently 

ensuring participants’ anonymity was preferred to involving their identity and to risk 

affecting answers or discouraging participation. 

Obviously these considerations apply only to the survey. In the interviews, multiple 

sampling would have been apparent. Further, the sampling considerations in this section 

applied to the interviews only during the initial phase of the GT research process, i.e. 

during open coding and axial coding. In the later phase, theoretical sampling was applied, 

which means that some participants were actively sought out.  

3.5 Ethics 

The research was conducted based on the ethics codes of the UWL Faculty of Professional 

Studies (UWL, 2008), the code of ethics of the Association for Computer Machinery (ACM) 
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(Anderson et al., 1992), and the ethics code of the British Sociological Association (BSA) 

(BSA, 2002).  

All participants were formally briefed about research purpose and methods, their right to 

anonymity and the possibility to discontinue participation at any time. Participants were 

informed of any data gathered. In particular, interview recordings were only made with 

the participant’s expressed consent44. Participants were treated fairly, honestly and with 

respect. If desired by the participants, they receive a report on the research findings.  

Care was taken to handle specifically cultural aspects sensitively and to avoid open, 

hidden or unintended racism, offenses and cultural discrimination against. Any data 

gathered during this research was treated confidentially. This includes data gathered 

through case studies or other research methods in and from companies, including those 

acquired from its employees. 

3.6 Summary 

In this chapter, two research approaches for the research objectives were developed: a 

GT approach fed from interviews will empirically examine the practice of software 

localisation in order to understand how developers and localisers collaborate and 

influence each other, and how localisation issues are caused in this collaboration. An 

online survey is conducted to determine differences between developers and localisers, 

the role of cultural competence, and connections between product properties and 

localisation. The next chapter will introduce the results. 

                                                      
44 The consent sheet is shown in Appendix B. 
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Chapter 4 Qualitative Results 

To examine how localisation is conducted in practice, what shapes this practice, and how 

issues are caused during this practice, interviews with developers and localisers were 

conducted and analysed using GT. This chapter discusses the results of this analysis. First, 

the interview population is reviewed. Then, it is described how the GT process played out 

during this research, including an overview of the evolution and emergence of the core 

and the resulting theory. Finally, the chapter presents a grounded theory of 

interdisciplinary collaboration in software localisation which describes collaboration 

strategies and conflicts as a reaction to external constraints, which in turn influence each 

other. Following recommendations by Wisker (2008), excerpts of the interview data on 

which this theory is founded are presented and discussed in the light of both existing 

literature and theories, and ramifications for this research. In following with GT practice, 

(Strauss and Corbin, 1998; Hoda et al., 2011), this includes theories of a wider scope such 

as software development, collaboration, sociology and organisational psychology which 

were not previously discussed in the literature review. 

4.1 The Research Process 

Section 3.2 described GT and the rationale to choose it as research method for this 

research, i.e. to understand software localisation as a socio-technical situation for which 

no suitable theory or framework is known yet. In this section, the participants and the 

process of interviewing is elaborated upon. Further, the progress of coding and 

emergence of the core is illustrated and deviations from the formal GT process are 

identified. 

4.1.1 Participants and Interviewing 

28 interviews averaging 58 minutes were conducted in total, with the shortest interview 

being 31 minutes, and the longest 2 hours 17 minutes. Table 4-1 gives an overview. 

Interviewee nationalities were well mixed. 6 Interviewees were female and 22 were male. 

The interviews focused on work activities both conducted and observed by interviewees, 

the scope of localisation within their projects, their knowledge and educational 

background, and most prominently their experiences and encountered issues. 
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Table 4-1 Interviewees 
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In order to contrast accounts from different disciplines and roles, interviewees were 

grouped as developers and localisers. Within each group, it was further distinguished 

between management and non-management roles. The eventual possible permutations 

were developers, development managers, localisers, and localisation managers. 

Developers are mostly conducting hands-on software engineering activities, e.g. writing 

program code, designing software architecture, creating user interface layouts, etc. 

Localisers are primarily translating content, or creating content in foreign locales. 

Development managers and localisation managers differ insofar as they have to conduct 

management, i.e. forecasting, planning, organising, commanding, coordinating and 

controlling (e.g. Bocij et al., 2008), of activities of other developers and localisers. 

The groups were assigned after the interviews, based on the job description given by the 

interviewees and a description of their tasks, but for consistency without their direct 

input or confirmation. 

In all cases, the management role seems to have been inclusive, i.e. managers also 

engage in development and translation in addition to their management activities. It 

appears that no members of the development group had any professional or educational 

linguistic background. On the other hand, some members of the localisation group had a 

professional programming background. 

Unless otherwise noted, the interviews were conducted face to face and recorded with a 

dedicated recording device45. Phone interviews were conducted with voice-over-IP (VoIP) 

software and recorded with a recording plug-in. With two exceptions, all interviewees 

agreed to be recorded. In one instance, the dedicated recording device failed from the 

start. In one instance, the recording plug-in failed halfway through the interview. 

Sampling was limited by the volunteers who answered the call for participation, but 

covered the subject of software localisation sufficiently to assume saturation once the 

interviews ceded to provide new insights. 

Noticeably, the majority of interviewees in the localisation group chose to be interviewed 

at work and via phone, whereas many interviewees in the development group chose their 

                                                      
45 Details of all tools used are listed in Appendix F. 
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spare time to meet in person. I suspect this is because the latter were often recruited at 

face-to-face events, which already indicates geographical proximity. The former, on the 

other hand, were recruited via the internet or other indirect means.  

It would have been interesting to interview more members of the localisation group face-

to-face to see if the opportunity to e.g. sketch on a piece of paper would have made a 

difference. Further, it would have been interesting to speak to more translators, but 

although the effort was made to recruit more, either I did not find the right channels, or 

translators are more reluctant to participate in such research. 

4.1.2 Core Emergence and Implementation of the GT Process 

Most interviews were conducted during 20 months from early 2011 until late 2012, with 

two interviews for clarification of individual points late in 2013 and early in 2014. 

Interviews were conducted following the GT process described in subsection 3.2.2.1. 

Although incoming survey data was reviewed irregularly to estimate data collection 

process and survey acceptance, it is not considered an additional data source since no 

statistical analysis took place until mid-2013, when most interviews had been completed.  

It can be argued that I might have had too much experience with and knowledge of 

software localisation to actually apply GT as intended and could not possibly have come 

to the research process without preconceptions. During data collection and 

interpretation, I reflected regularly on the influence my experience might have. Hence, 

my professional experience should be categorised as theoretical sensitivity as discussed in 

subsection 3.2.2.1, rather than existing theory as discussed in subsection 3.2.2.3. 

Sampling and coding followed the GT research process described in subsection 3.2.2. An 

interview excerpt with a sample of high-level codes derived from open coding is given in 

Appendix C. In the excerpt, a participant in the role of project manager describes how he 

obtains translations for his software product from the customer, and describes the 

rationale behind the process and how it might be applied, e.g. if translations for new 

features were necessary. Among others, the sample of high-level codes in the excerpt 

code training as the source of knowledge about localisation processes and infrastructure, 

and further code the explication of a localisation process, specifically localisation by 

customers. Also, the deferral of responsibility to the customer is coded. All these codes 
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apply to only short sections of text, i.e. between one or more words and a few lines. 

Another code not explicit in the excerpt relates to the entire excerpt: the replacement of 

localisation quality with customer involvement. As these codes were derived from open 

coding, they are more or less exclusive to this interview. Yet another code not explicit 

relates to the entire interview: the reported localisation scope. This last one is a code 

shared with virtually all other interviews, as localisation scope is an almost universal 

metric in this context. 

In GT, a theory is derived by developing and evolving the codes across interviews. For a 

better understanding, a hierarchy or generalisation of codes can be developed, as 

happened here with the coding of localisation process and localisation through the client, 

which is a specification of the localisation process. Further, new codes can be 

retroactively applied to old interviews. In this instance, the code for responsibility deferral 

prompted a review of older occurrences where responsibility had been deferred by a 

developer to the customer or other entities. This eventually developed into the task focus 

strategy featured in the final model. Likewise, the code for reported localisation scope 

originated from earlier interviews. It allowed to code for variability by comparing across 

different interviews, here by comparing the localisation scope reported in the excerpt in 

Appendix C to that of other interviews, for example the excerpt in Appendix D. This 

prompted the insight that a wider localisation scope, i.e. a more general 

internationalisation, requires more coding work during localisation. 

Figure 4-1 shows the hierarchical node structure that developed during initial open 

coding, in which of course all the previously mentioned codes or their generalisations can 

be found, e.g. localisation scope, localisation process, and responsibility assignment. 

Following a number of interviews, the core, i.e. the central concern in the interviews, 

appeared to be emerging as issues, more specifically an aggregate of bugs, delays and 

procedural problems. While the initial node structure had organised localisation issues 

according to type, the interviewees seemed to be more concerned about the apparent 

causes. A comparison of issue causes led to the categories internal transgressions, 

external constraints, institutional bottlenecks and developer-localiser gap. Figure 4-2 

visualises these descriptive categories. Further interviews and selective coding and, as far 
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as possible, theoretical sampling did not contribute any new insights to the descriptive 

categories, suggesting that saturation had set in. 

 

Figure 4-1 Initial coding node structure 

 

 

Figure 4-2 Descriptive categories of software localisation issues 

Strauss and Corbin (1998) defined a number of criteria for grounded theories. A theory is 

empirically grounded if it includes systematically related, well developed concepts leading 

to conceptually dense categories with many dimensional properties. The theory should 

allow for explained variation and lead to findings potentially significant outside of the 

original context. 
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Based on these criteria, the descriptive categories of software localisation issues were not 

satisfactory in three regards. First, the core, i.e. the aggregate of issues, confounds a 

number of different topics into a vague and undefined central theme. Second, the 

relationships between the concepts and categories were considered thin and the entire 

result primarily descriptive. And third, the concepts and categories are very specific to 

software localisation and thus less significant in other contexts. 

This realisation prompted a revisit of the data. Re-reading the interview transcripts, it 

became apparent that the core of many accounts were not actually localisation issues. 

Instead, the interviewees’ main concern was how they facilitated and perceived their 

interdisciplinary collaboration regarding software localisation. Because this insight came 

from the existing data, it was decided to sort and categorise it again without conducting 

more interviews. 

The importance of external influences and strategies was already part of three of the four 

descriptive categories. In order to avoid another descriptive categorisation, existing codes 

were examined for variability and properties. Further categorisation based on similarities 

were avoided, and instead sequential activities or implied causalities were considered. 

Directness of contact was identified as dimension. Eventually, the reordered and new 

categories led to a grounded theory of interdisciplinary collaboration in software 

localisation described in the next section. 

4.2 A Theory of Interdisciplinary Collaboration in Software Localisation 

In this research, it was found that for the interviewees of this research, their work in 

software localisation centres around the facilitation of interdisciplinary collaboration, that 

is, the main concern identified in our research is the interviewees’ focus on conducting 

their work while directly or indirectly collaborating with members of another discipline. 

The work is critically directed by external influences on software localisation, i.e. those 

conditions, limitations and parts of the environment which the interviewees cannot 

affect. These influences also affect the choice of strategies to facilitate interdisciplinary 

collaboration employed by interviewees. Finally, interviewees experienced conflicts of 

interdisciplinary collaboration, which have their origins in part in the chosen strategies 

and the external influences. 
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During the research, the grounded theory emerged bottom-up, that is, from interview 

data which was processed, reduced and organised. The theory is presented here top-

down as a chain of evidence. Figure 4-3 gives an overview of the grounded theory of 

interdisciplinary collaboration, with circles signifying categories, boxes signifying high-

level concepts, lines indicating relationships, and arrows indicating influences. Following, 

each of the categories, external influences, conflicts and strategies is described in detail, 

including concepts and narratives from which they emerged. 

4.2.1 External Influences 

The work of software developers and localisers is influenced by factors outside of their 

control. These are referred to here as external influences, which does not necessarily 

mean that they are external to the organisation or business unit developers and localisers 

work in. Figure 4-4 gives an overview of the specific concepts in this category. 

 

Figure 4-4 Emergence of the category External Influences 

The importance of external influences lies in their impact on strategies and potential to 

create conflicts. For example, cost can control processes in interdisciplinary collaboration: 

LM7: Between the first version and following [versions], new texts are 
developed and written all the time. For these, new translations would be 
needed continuously. So, you need to point out to the software 
development department, “You cannot just send two or three texts to 
the translation agency. You might be able to do it once, and because 
they try to please you, they translate it, in 17, 18, 19 languages. But you 
cannot do it continuously.” […] A translation agency has overhead 
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handling work as well, so you have minimax prices [n.b.: minimum 
charges]. And when I tell the [development department], “Sure, I can 
have two texts translated, but that’s 400 €”, they ask, “Well, why?” 
That’s always a problem, you need to collect new texts and wait until 
there are 20, 30, 40 texts, until it is effective to send it to translation. Of 
course you have to communicate that internally, and of course there are 
difficulties with that. 

Author: Was that a problem, to communicate that? Or was the problem 
solved eventually? […] 

LM7: This happened regularly, yes, of course. So, specifically things like, 
“Ok, now, we need to put in this new function, we need five texts for it.” 
And that was no problem. But [the translation agencies] eventually sat 
us down and said, “Sure, we can translate that for you, that’s 400 €.” 
And the [development] project leader had to decide: Is it worth it, or is it 
not? So that was a clear judgment call. In the beginning it is difficult, but 
after you do it a few times, it catches on with the project leader. So they 
need to judge it based on their budget and say, “Ok, that’s worth it, we 
want this functionality in as fast as possible, it must be in tomorrow, 
please have these five texts translated for that price”, or they said, 
“Never mind, it is not that urgent, next week more [texts] will be added, 
and then we will do it.” […] Afterwards, the awareness was there that 
this is simply a process with costs that takes time. 

Another example how the influences described here impact strategies is illustrated by the 

relationship between context inquiries and remuneration for translators. 

Some accounts suggest that lack of tools or inappropriate tools can lead to conflicts and 

eventually affect strategies by forcing manual work or transgressions. Likewise, discipline-

specific processes have been shown to lead to activity conflicts. 

The impact of external influences, such as standards, practices, and even the eventual 

user, on translation is well known. It is not restricted to translation as a product, but 

extends to translators’ activities. The initiator as well as processes preceding translation 

play a vital role here (Moorkens, 2012a), and this fits well to the category of external 

influences. Schubert (2009, p.17) has discussed the “controlling influence” from outside 

on the work of technical translators, and lists many of the influencing factors found in this 

research, included document management processes, job specifications, initiators and 

consumers, source quality, standards, and even best practices of collaborating disciplines. 

Combe (2011) implies influence categorises processes, and tools including programing 

languages and authoring tools. 
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In software development, conditions set outside of the development organisation 

similarly determine activities of developers and outcome of development (Quintas, 1993; 

Grinter, 1996a, pp.115, 188). Ferreira (2011, p.200) noted that collaboration or 

separation of developers and designers in the context of HCI “depend on the values 

endorsed by the organisations in which the developers and designers are embedded.” 

Maybe the increased dependency between interdisciplinary collaboration and the 

environment, respectively the conditions, is that the latter do not only affect a discipline’s 

work in itself, but also mediate the influence of the collaborating discipline. Within the 

sociology of work and work psychology, the influence of the environment and external 

conditions is of course acknowledged. Work, conditions of work, activities and results 

continuously affect each other. Thus, changes in any single item, e.g. in the conditions, 

immediately affect activities and work results, and particularly the subjective experience 

of any conditions, changes etc. by the worker. Insofar, attempts to control work by setting 

conditions are conditional to the workers’ subjective experience of them (Baron, 1995; 

Hacker, 1986). This seems to be true particularly for interdisciplinary work. 

Analysis of the interviews led to four categories of external influences: General and 

discipline-specific success criteria, tools and processes. These are illustrated and 

discussed next. 

4.2.1.1 General Success Criteria 

The interpretation of general success criteria by each discipline shapes their 

professionals’ activities. Success criteria for a software product are an important factor in 

shaping the work of both software developers and localisers. They are general insofar as 

they can be observed in both disciplines, but each though each discipline might interpret 

and prioritise it differently, or try to achieve it in different ways. In any way, general 

success criteria drive activities within a discipline and thus affect both localisation process 

and outcome. 

4.2.1.1.1 Efficiency 

Efficiency refers to achieving the most possible benefit at the least possible cost or effort. 

The pressure to minimise cost is felt throughout all aspects of software development. 
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Cost minimisation influences recruitment choices, processes and activities. And cost in 

particular can apparently serve as powerful corrective. 

For an LSP, on the other hand, efficiency includes planning translation processes for 

multiple projects and keep the pipelines for translators and revisers full: 

The most important of all is planning the translation/revision process in 
a way that there is no way to miss a deadline, both translator and 
reviser have enough time to do their best but also not to engage them 
too long so as they will be ready for new assignments as soon as they 
are finished. (LM6) 

LM6  goes on to emphasize that it is vital for translation agencies to build a good 

relationship with its freelancers, that is, to always provide them with enough work so that 

they will be constantly available. This drive for efficiency is also noted among translators, 

who are very conscious of the relationship between the time they spent on a particular 

piece of translation and their hourly rate. 

4.2.1.1.2 Quality 

In localisation projects, there are different perceptions of quality, and accordingly, quality 

as criterion guides software localisation in different ways. 

Among software developers, quality is predominantly understood as a part of usability. As 

DM3 puts it: “You screw localisation, you screw usability. As simple as that.” DM5 had 

also equated localisation with usability and accordingly felt that it was appropriate to 

apply usability principles, e.g. consistency across locales. Similarly, DM5 named 

Hofstede’s cultural model for guidance on locale differences. Clearly, localisation and 

usability are related. However, there might be a danger that this view limits the 

understanding of localisation, which should be a bit more comprehensive, e.g. 

considering the question of acceptability. It might be that developers prefer considering 

localisation quality in terms of usability due to a lack of metric for acceptability. LM5 

noted the vagueness of localisation requirement definitions: 

They say, [localisation] has to be adequate, and that’s it. But there is 
nothing about what criteria exactly to apply. (LM5) 

There seems to be little in the way of concrete quality criteria. As LM5 added later, unlike 

localisation quality, time and particularly cost requirements are well defined. Further, in 



118 
 

his experience, if localisation is considered a technical software aspect without specific 

requirements, it just will not be made properly. DM3 made a similar observation: 

Developers couldn't care less about financial regime or financial 
processes that goes in a given country. […] [Localisers] have to be able to 
translate it into functional requirements that are understood by the 
developers. (DM3) 

Localisers’ idea of localisation quality is different, aiming more for linguistic quality and 

cultural appropriateness. For example, LM 4 states: 

[I]f I localise a product, the ideal case is that you do not notice that it has 
been localised. That’s the ideal case, right? […] It does not come across 
as translated. (LM4) 

LM1 elaborated that some of his customers obtain localisations not out of direct concern 

for their international customers, but instead aim to satisfy legal requirements of 

providing translated content for each locale. He experienced the customer’s attitude 

towards linguistic quality accordingly: 

It can be said that certain companies place more emphasis on having 
high quality translations made. And other companies […] say, “Well, […] 
will not be read anyway”; there is that opinion, and [they] put less 
emphasis on it. That is very, very variable. (LM1) 

A similar lack of customer engagement with quality aspects of localisation were noticed 

by L1. As LM1 further puts it, not all customers obtain localisations for their products out 

of concern for their customers. Instead, they need to oblige legal requirements of 

providing translated content for each locale. 

Notably, software quality criteria are debatable. For example, Glass (2002) lists reliability, 

human engineering, efficiency, testability, portability, understandability and modifiability 

as ultimate software quality criteria. Localisation quality could contribute only minimally, 

and maybe developers do not assign much attention to it for that reason. 

The effect different quality criteria can have on localisation quality might be best 

illustrated by the worry several localisers and localisation managers had regarding the 

linguistic quality of the source texts they were translating. It was noted that the link 

between quality of source and translation is not apparent to their developer colleagues. A 
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translation cannot be better than the source, and if the source is unclear, translation will 

not be able to fix this for the target language. 

4.2.1.2 Discipline-Specific Success Criteria 

Interdisciplinary collaboration is also shaped by each discipline’s specific success criteria, 

here cost, time, context-sensitivity, consistency, and localisation scope, which they bring 

into the overall product and process. There is a chance that other disciplines need to 

share these success criteria, or are involved in them in some other way. Sharing, or at 

least clear definition and communication of success criteria, is important as it is essential 

to a clear understanding of the expectations in one’s work. However, Green (1994) points 

out that it is counterproductive for collaboration to impose one discipline’s success 

criteria on another discipline.  

4.2.1.2.1 Time and Cost 

The efficiency pressure in software development has already been brought up earlier. In 

fact, software developers emphasise cost minimisation as a major success criterion. 

Accordingly, L2 experienced software projects where developers deliberately chose the 

cheapest translation source because otherwise they “would make less of a profit.” 

However, localisation seems to be even more affected by time constraints: For example, 

despite his company having in-country specialists for each target culture they develop 

software products for, D1 related how actually consulting these specialists to determine 

localisation requirements would take too much time for the development process: 

Author: You do not contact the [translators] for that, either? 

D1: Well, no. No. We might have questions for [the translators], but in 
principle, I've, I've never had that happening. […] It takes forever. It 
takes way too long. 

 Author: Are they so slow? 

D1: Well, there's twenty of them. 

D1 admits that there is a case to communicate with translators, in this instance to ask 

questions about localisation requirements. But it is not done because contacting all the 

translators separately takes too much time for a developer. 
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D3 related an experience where a complex subtitling function had to be built into a 

multimedia web portal because there was not enough time to translate and dub the 

video files directly. 

LM1 related his experience of the general expectation the customers of translation 

agencies seem to have. In addition to translation, LM1’s LSP offers proofreading services. 

[The customers rarely book proofreading services] not because of the 
costs, but rather […] because they do not have time for that, or they 
need the translations so soon, that […] there is no time for that. That’s 
more often the difficulty for us, because we often have to do things 
under time pressure. (LM1) 

Similar prioritisations of cost and time over quality were observed by developers, e.g. 

D10. The priority of speed and low cost in software development is widely known and its 

impact on quality discussed in the literature of both localisation (Papaioannou, 2005; 

Kahler, 2000) and software development (Boehm, 2006). 

4.2.1.2.2 Context-Sensitivity and Consistency 

In translation, a part of quality is determined by context and consistency. Context 

information, i.e. information clarifying otherwise ambiguous terms and statements, might 

be the single most important factor for translation quality. Its importance was discussed 

already in the literature review. Practically all interviews in the localiser group stressed 

the importance of context information for translation and at the same time had 

experienced difficulty in obtaining said information from the developers or customers. 

Some localisers trace the lack of context information to a lack of awareness of its 

importance by developers. This is supported by the observation that few developers 

brought it up. In a rare instance, DM6 pointed out the destruction of context information 

by alphabetically sorted strings in Excel files. On the other hand, there is a certain 

implication that a business-motivated reluctance for localisers exists not to educate 

developers about context information. 

Similarly, the importance of consistency seems to be mostly exclusive to the localiser side. 

LM7 elaborates: 

Not only must this term be consistent throughout the company, it also 
has to work with the customer. I must be certain that when the 
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company talks about a ‘fax switch’, then everybody within the company 
must know that a ‘fax switch’ is the thing that separates a telephone call 
from a telefax. But I need to communicate this to the customer as well. 
And I have to call it ‘fax switch’ consistently. I cannot use the term ‘fax 
separation’ in one instance, and whatnot in another. (LM7) 

Lack of context has been one of the most prominent issues in software localisation for 

quality (Aryana and Liem, 2011; Reineke, 2005; Forssell, 2001). Although there have been 

numerous technical attempts to address this lack through technology context storage in 

translation file formats (Bikmatov et al., 2013), lack of context is still an issue. In part, this 

might be explained by the progress, or lack of progress, in adapting respective localisation 

tools. Alternatively, a lack of knowledge may be involved. 

4.2.1.2.3 Localisation Scope 

L1 related that in his experience, localisation scope in software projects was always 

constrained to language translation and related items, specifically adapting formats and 

units of measurement. The account suggests that in the minds of most customers, 

localisation is practically superimposable to translation. If pointed out, customers will 

understand that the scope is actually larger and expands text translation to include text-

related aspects such as formats and units. However, in practice as experienced by L1, 

localisation scope never includes completely language-unrelated items such as colours or 

symbols. 

This is supported by LM1 and LM4, who also never encountered instances where symbols, 

colours or anything decidedly beyond language had to be localised. Both expressed the 

belief that localisation of, for example, colours and symbols are part of comprehensive 

localisation, but they never encountered the need in practice. LM4 further believed that 

compared to his domestic customers, international customers might be more interested 

in comprehensive localisation beyond text. However, he explicitly pointed out that this is 

an assumption on his part. 

On the other hand, a tendency was observed among developers to classify the 

localisation scope as translation only, including necessary adaptations to layout, e.g. to 

account for text expansion during translation, or additional voice recording for e-Learning 

or implementation of subtitle functionality for multimedia applications. D1 faced issues of 

making a software project time-zone aware, specifically having to address the fact that 
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some countries spread over more than one time zone. One could argue that time zones 

are not obviously cultural and instead can be understood as a technical property. 

4.2.1.3 Tools 

Interdisciplinary collaboration is shaped by the use, or non-use, of each discipline’s special 

tools which they bring into the localisation process. Adoption of specialised tools and 

standards was not a topic in the interviews and were only touched upon in the context of 

problem causes, e.g. use of Excel or insufficiencies of existing tools. In software 

development, tools have been recognised as source of improvement as well as 

constraints (Grinter, 1995) and an influence with consequences for interdisciplinary 

conflicts and strategies, previously discussed in the context of increased efficiency and 

lowered effort (Schubert, 2009; DePalma, 2006; Law, 2003), although for some tools, a 

reduction in localisation quality has been suggested (Bowker, 2005). 

4.2.1.3.1 Tool-Originating Restrictions 

A number of tools and utilities are used in software development with the aim of making 

software engineering simpler, faster, more efficient, and more effective, and so on. 

Similarly, localisation tools with the same aim exist. However, both classes of tools come 

with requirements and ramifications and can have an impact on the work and activities of 

both developers and localisers. DM6 noted instances of this in various development tools, 

for example Microsoft’s programming framework .Net, a collection of APIs to facilitate 

software development: 

That happens comparatively often for us, yes? The dependency, we have 
a prime candidate here, that is .Net, because, because when using .Net 
we require an incredible amount of information from the code. That 
means this classical concept, separation of resources from code and 
caring only about the resources [n.b.: internationalisation], is reduced to 
absurdity. (DM6) 

Similarly, DM6 criticised some aspects of Java programming language API, i.e. that 

java.text.ChoiceFormat package allows developers to increase the complexity of 

placeholders by turning strings into state machines, i.e. interpreted code where the 

behaviour is determined by a number of states it can be in, as defined by the 

programmer: 
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A part of it is […] realised as state machine, the rest is free text. And all 
the way down at the bottom [of its documentation] it says do not use 
because […] translators cannot handle it. (DM6) 

On the other hand, LM6 criticised the opposite development in the Windows 

Presentation Foundation (WPF) from Microsoft, where developers are tempted to over-

separate content into code, layout, and localisable content: an Extensible Application 

Markup Language (XAML) layout file for designers containing references to a XAML string 

table for localisers, all held together by a code written by developers. Such over-

separation leads to even less context available for translation and repeated referencing of 

one and the same string in many occurrences for which more than one translation might 

be necessary. 

Similarly, the usage of localisation tools can affect the work of developers. For example, 

many translation systems now offer an integrated visual translation environment, 

implementing a what-you-see-is-what-you-get philosophy where the translator can see a 

string within the UI while it is being translated. Often, for it to work, this technology 

comes with specific requirements in the way the application is programmed, i.e. following 

a generic standard. If a project strays from these requirements, for example by using an 

unsupported third-party UI framework, the visual technology can fail. 

A similar issue was noticed by LM4, who related an occurrence where developers 

apparently expected localisers to adopt technical work and build a version control for 

resource IDs in addition to providing translations. Resource IDs are internal identifiers 

used within programs for reference and distinction of different strings. LM4 was 

particularly baffled because controlling resource IDs seemed to be exactly the opposite of 

separation from code and content, which is one of the basic principles of localisation and 

translation work:  

They asked us to […] access [resource] IDs and to know what ID referred 
to what content. From release to release. Whereas actually we can only 
[…] work based on text, meaning that we intentionally mask all IDs, all 
code, meaning that translators have only text. […] Those end up in our 
database, a translation memory. So, of course we have all old resources 
saved and archived. (LM4) 
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While arguably translators working with resource IDs might be wrong to begin with, 

LM4’s work process was prescribed by the string database tool, which would not allow 

certain operations, i.e. storing of string IDs. 

The requirements accompanying some tools are often underestimated. LM6 noted that 

some of his customers, i.e. software development teams, set up their own translation 

memory system, but fail to maintain it. They also do not place it at the disposal of their 

translators, who subsequently cannot fall back on it when providing translations. 

A number of accounts discussed the rectification of manual work processes, either 

through straightforward automation, or through a change in processes or systems that 

made manual steps obsolete. Interestingly, the resolutions usually address concerns of 

developers, e.g. inefficiencies they would have to deal with. For example, D3 describes 

how automation was introduced in order to avoid having to touch program code for 

changes to localisation. Usually what happens is that developers implement what is called 

a content pipeline, i.e. a series of automated work steps that brings received content in 

proper format to its correct location. Few accounts relate the rectification of unnecessary 

manual workload for localisers, including efficiency and quality issues. Many localisation 

processes and tools tend to evolve over time to address developer concerns because they 

are the ones to modify them according to their understanding and their agenda. 

As was shown in the literature review, there is an almost a fanatical obsession with 

improving localisation and translation through the use of technology. While the successes 

of tools, and specifically of CAT tools, are many, there are critical views. Stoeller (2011) 

acknowledges that use of technology in localisation, specifically technology simplifying 

collaboration in translation, has enabled smaller LSPs to compete with their larger 

brethren. On the other hand, Stoeller also warns that technology is seen as a replacement 

for proper communication and other human-related issues.  

4.2.1.3.2 Usage of Inappropriate Tool 

Some interviewees reported usage of tools that might be considered inappropriate or 

insufficient for the task at hand. This was often in the context of obtaining culture-specific 

information. For example, D3 reported his usage of Google’s MT service Google Translate 
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for fixing translations, and D5 reported basing locale-dependent UI design decisions on 

information found in an online encyclopaedia. 

A recurring theme was the use of generic tools and file formats to handle translations and 

Unicode texts, particularly spreadsheet software to handle translations (e.g. LM7, DM6, 

D9). And apparently many software companies are unaware that such file formats are 

unsuitable for localisation (LM4). In short, spreadsheets are difficult to maintain and their 

use encourages inefficient and error prone manual labour such as copy-and-paste. They 

also discourage provision of localisation context and even lead to its removal when 

sorted; as DM6 puts it, “to really remove any context relation”. Spreadsheets further 

complicate string management, too: 

And for us it can happen by all means, those 10 Text-IDs that are 
completely different for developers because they appear in different 
places in the code, in a completely different hierarchy, for example 
“Auflösung”, “resolution”. […] [T]he Excel-sheets from predecessor 
projects were continued, taken over, meaning that there was just one 
Excel-sheet, that was stupendously huge, and the developers did not go 
to the trouble of looking, somehow, “I need a new Text ID now, that has 
text behind it, does the text maybe somehow exist already and I can 
simply copy the line and link in a new Text ID”, instead if in doubt they 
just created their new text ID and wrote in “Auflösung” [German for 
“resolution”] for the one-hundred-and-tenth time. Right, because text ID 
centric work […] is easier for him, rather than somehow looking if the 
text already exists. With the result that obviously the Excel sheet was 
sent to us for the tenth time with the request to have “Auflösung” 
translated into all languages. […] This is to say that we really had to do 
it, that we simply sent these Excel-sheets to the translator and said, yes, 
so we simply have to translate it for the tenth time. And when I translate 
a text for the tenth time, there is a great danger that it is translated 
diversely, or differently. (LM7) 

LM7 elaborates on the difficulty encountered when using Excel files and continues: 

What you have to keep in mind, no matter what solution you are using, 
regardless whether a database or Excel or whatever [is the] appreciation 
[…] source text [vs.] translated text, […] if I change a source text, of 
course inevitably I will have to change the translated text. For the 
developer, it does not change. The ID stays the same, but the text behind 
it is suddenly no longer “resolution”, but is called, whatever, “contrast”. 
And the developer changes it in German, and at best in English, because 
he sees, “resolution“ is not “contrast“, but in the remaining languages 
have already been translated as “resolution” and remain unchanged. 
The tester for German-English will not see it. And if he tests Portuguese 
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or Finnish, he will not see it either, [to know whether it should be] called 
“contrast” or “resolution” in Finnish, you have to be a specialist. [One 
must keep track of source] text changes, so that one marks it to have 
changed. (LM7) 

Basically, LM7 describes that the choice of spreadsheets as exchange format comes with a 

consequence: either a strict procedure to update source text changes and translations 

accordingly, or a stringent localisation testing regime. LM7 goes on: 

Sometimes, developers […] have taken the derived Excel sheet, derived a 
text file from it, then made text changes in those text files, sent the text 
file to us, asking us to reintegrate the changes into the Excel file and 
translate them. It is an Excel sheet of 15 MB. The developer has it, then 
he changes something, he copies that somewhere, and now you have to 
run from one developer to another to find out who had it last, where the 
latest current version is, well. That’s unsatisfactory for everybody. (LM7) 

4.2.1.3.3 Lack of Tools 

While many different tools exist to facilitate software localisation and the development of 

international software, these are often not used. The need for tool support, e.g. when 

handling XML files or Unicode, is not always immediately obvious and has sometimes 

been noticed only when a project was well underway, as reported by DM4 and D10. 

Lack of tools is often compensated through manual work for comparatively mundane 

activities such as copy-and-pasting text from one file to another. Several developers, e.g. 

D6 and D9, reported manual copying and pasting of translated strings into an image file in 

a graphics editor because the UI had been designed to display image files, not text. In 

some cases, this is done so that scripts other than Latin characters can be displayed 

without having to adapt code towards Unicode-compliance. 

It does not require a lot of imagination to understand how the overhead effort through 

copy-and-paste can be immense when, as in the case of D6, one has to create and 

maintain hundreds of image files for each of the 14 different locales. Extended copy-and-

paste activities like this are also prone to errors if concentration fails and a string is not 

highlighted correctly before copying, or pasted into the wrong file. 

Further, as expressed by LM5, many “atrocious translations” are caused by the use of 

deprecated and unsuitable tools in the localisation process while failing to utilise state-of-

the-art localisation tools specifically tailored for this purpose. 
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4.2.1.4 Processes 

Interdisciplinary collaboration is shaped by each discipline’s activities and processes, 

which are brought into the localisation process. Localisation is strongly affected by 

preceding production activities (Sikes, 2011). An example how the influence of one 

discipline’s process might be perceived by the other discipline is given by LM4: 

I believe the customer sometimes complicates his own life unnecessarily. 
Maybe due to ignorance, and even if you educate them, their internal 
processes are so sluggish and cumbersome that [it is difficult] to push 
through new things when know-how is not internal and not utilised 
externally. (LM4) 

4.2.1.4.1 Terminology Management 

Terminology management is a significant aspect of translation, especially when 

translating technical documents in a corporate environment. LM7 dives into its intricacies 

while relating plans for creating a text and translation database: 

[…] Structuring and separating information into modules had just 
become second nature for us. And it was a style of work which 
absolutely resonated with me personally. I think this is how one should 
work in a technical editorship, because it is just not about unconstrained 
poetic prose, but it is about structured information, which on top of it 
has to be well phrased and to the point. […] It was also obvious to us 
that the topic of [UI interface texts] was closely related to terminology 
management. If you think about it, it is nothing more than breaking an 
operation down to a single term. Not only must this term be consistent 
throughout the company, it also has to work with the customer. I must 
be certain that when the company talks about a fax switch, then 
everybody within the company must know that a fax switch is the thing 
that separates a call from a telefax. But I also must communicate this to 
the customer. And I have to call it fax switch consistently. I cannot use 
the term fax separation in one instance, and whatnot in another. (LM7) 

According to LM1, translations for technical terms or otherwise extraordinary or special 

vocabulary should be decided by close collaboration with the customer, but few 

customers are engaging in this. 

4.2.1.4.2 Accommodating Changing Requirements 

The need for software development projects to adapt to changing requirements is 

noticed during localisation. Both D3 and D11 noted detrimental effects and the challenges 

of repeated changes to application requirements and localisation scope, especially when 
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localisation requirements come into a project when the overall software architecture 

already is in place. The account of LM3 seems to suggest that this is a consequence of a 

trial-by-error approach to software development: 

So, you know, it is basically, a lot of companies are like that. They will 
not really listen until they have an incident where it really affects them. 
And then they understand what the issues are. (LM3) 

Similarly, L1 suggested that the trial-and-error approach permeated in software 

development: software testing is an integral part of software development, which is 

reflected in the development process. Developers follow a trial-and-error paradigm as 

“optimistic technologists” (Green, 1994, p.328) that cannot work for localisation as 

linguistic testing in most projects does not take place. 

4.2.2 Conflicts 

When working on international software, all interviewees sooner or later experience a 

number of conflicts. These are rarely personal conflicts. Rather, these are conflicts 

created by actors in different organisations following different guidelines and using 

different tools in order to achieve different goals, although they might share an overall 

end. Figure 4-5 gives an overview of the specifics concepts in this category. 

 

Figure 4-5 Emergence of the category Conflicts 

Such social conflicts have been characterised by Thomas (1992) as a dynamic 

development that can either be constructive, e.g. by initiating changes and clarifying 

relationships, or destructive, by escalation and standstill. Unfortunately, existing empirical 

studies suggest that overall, conflicts go down the destructive path (De Dreu and 

Weingart, 2003). 

Cross-Discipline Conflicts

•Knowledge Conflicts

•Tool Conflicts

Human-Factor Conflicts

•Communication Conflicts

•Activity Conflicts

•Confrontation
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4.2.2.1 Cross-Discipline Conflicts 

Both localisers and developers encounter a number of social conflicts in their work 

through their knowledge and tool use when these are influenced by their discipline. 

Although social conflicts often include some kind of direct interaction, they often appear 

to be hidden and participants seem to be unaware of either the conflict itself, or its 

source, or its ramifications. LM4 reflected about it in the following way with respect to an 

unsuccessful localisation project: 

I believe [the project] failed due to certain individuals, who maybe 
sometimes were beyond their abilities, or who asked for things we could 
not deliver, where you often talked past each other, and eventually 
everyone involved was dissatisfied. (LM4) 

4.2.2.1.1 Knowledge Conflicts 

Some conflicts appear to have their roots in the often unspoken assumption that one’s 

own knowledge is shared by all collaborators. But in some cases, it is the outright and 

known lack of knowledge awareness cannot remedy that causes problems. For example, a 

few developers assume that translators can understand certain aspects of source text 

formats, e.g. that they can interpret XML files or recognise and leave alone C-style 

placeholders. However, these technical skills should not be assumed. 

From the point of view of localisers, the most apparent knowledge gap is that developers 

do not know what precisely localisers, translators and technical writers are doing in the 

first place, and what happens during the localisation process: 

The problem is that developers often do not even know what I am doing, 
or what information I need. I sometimes suspect that I know more of the 
technical process than they do, and that is bad, because I have no 
technical background. (LM2) 

DM3 attempts to describe the knowledge difference from a more neutral point of view: 

The persons who do the translation, they do not sit well on both sides of 
the barricade. They either... they may be fantastic writers, they may be 
linguists, extraordinary linguists, but then they do not understand 
usually the nature of the application or the system they try to localise. 
(DM3) 
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This lack of knowledge regarding localisation as activity and process is probably most 

prominent in the ignorance about consequences a lack of context has on translation 

quality, which is also discussed as a discipline-specific quality criterion. LM2 illustrates this 

relationship between lack of context information and lack of localisation process 

knowledge when relating what the biggest problem during localisation is: 

No doubt number one: No context. It has improved with those 
[developers] I spoke directly to, who were up here and saw how I 
translate and how it works. Because in meetings, it is often said that I, 
“he up there in software localisation”, am just not good at it. And those 
[developers] who learn how I work then say, “he can’t, because he does 
not see it [in context].” (LM2) 

Similar observations, i.e. developers lacking knowledge and awareness about linguistic 

processes and requirements, were made regarding a wide range of localisation issues, 

such as a lack of awareness regarding the link between source text quality and translation 

quality, the need to manage terminology, or how localisation prices are calculated. 

By the end of the literature review, among others, two problems had been identified: a 

lack of cultural knowledge by developers, and missing integration of localisation into the 

software development process. Participants of the localisation process have expressed a 

preference for cultural knowledge for developers in this research as well as other 

empirical research (Immonen and Sajaniemi, 2003a, 2003b). In fact, some participants on 

the developer side did mention efforts to acquaint themselves with cultural knowledge or 

integrate cultural sensitivity into their work products, particularly if the frontend or UI 

was part of their responsibility. Repeatedly, the previously discussed model by Hofstede 

was mentioned in this context. On the other hand, some interview accounts showed that 

existing cultural knowledge was apparently not necessarily recalled when necessary. For 

example, DM7 had witnessed a native English-speaking product manager who, without 

consulting translators or DM7 himself, planned to substitute names in UI strings 

automatically without human review despite conflicts with English grammar46. 

Although the interviews gave examples where lack of cultural knowledge of developers 

caused localisation issues, it appears now that understanding the activity of translation 

                                                      
46 Specifically, the planned substitution was going to introduce errors where the indefinite article “a” would 
have had to be changed to “an” because the new name started with a vowel. 
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plays a larger role. This has been implied before. For example, the dependence between 

translation quality and the source quality is underappreciated (Bauer and Rodrigo, 2004; 

Russo and Boor, 1993), and Combe (2011) suggests that a lack of understanding of 

localisation as a process is responsible for collaboration problems between localisation 

and development. 

4.2.2.1.2 Tool Conflicts 

During the work on their tasks, localisers and developers use various tools, which are 

already considered as an influence on the localisation process. At times, tool usage can 

also be conflicting. 

DM6 noted how API frameworks at times conflict with internationalisation, i.e. the idea of 

strictly separating code and content, or other linguistic requirements such as provision of 

context information or consistency. 

There seems to be an overall push towards using localisation tools that allow the 

localisation of compiled binary files directly, thus avoiding the file exchange problem 

completely. However, tools for localising binary files directly come with other risks. LM2, 

using one such tool, noticed a discrepancy between the representation of UIs in his 

localisation tool compared to the developer’s product or the final software.  

Even if it looks good in my tool, when the developers have it on their 
screen, it might be that it does not look right anymore, and then they 
come to me and I have to change pixels. (LM2) 

Basically, he has to guess what his adaptations will look like in the final product. 

Originally, the idea had been for the translator to see and translate text in the context of 

the UI (see e.g. Freigang, 2000; Esselink, 2006). However, what is now the problem is that 

the localiser could not reliably edit the context of the string, i.e. the position of the UI 

elements. The expectation to have localisers edit the UI indicates that the role shift for 

localisers from mere language processor to editor, as described by Yuste (2005), is already 

in progress. 

On the other side, interviewees experienced difficulties with combining localisation tools 

and processes with software development tools. DM7 related his considerations whether 

string translations should be stored in a source code repository: On one hand, it is 
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desirable to store all sources and resources centrally so that any changes can be tracked 

and any version be rebuilt. On the other hand, DM7 noted that storing translations in a 

code repository is incompatible with storing and maintaining them in a translation 

memory. 

In the literature, it has been noted how localisation and internationalisation APIs have 

simplified software localisation (e.g. Immonen and Sajaniemi, 2003a; Kalliomäki et al., 

1997). It is noteworthy that many issues reported in somewhat older publications, e.g. 

around string length limits, code page and character encoding (e.g. Law, 2003; Carey, 

1998), were not mentioned during the interviews, suggesting that certain standard 

developments, e.g. the ongoing improvement and proliferation of localisation APIs and 

Unicode, has indeed improved localisation. However, considering the localisation scope in 

the literature and the influences of tools, and here specifically APIs, one wonders if 

today’s localisation scopes and localisation requirements are determined by the API. On 

one hand, when referring to the localisation requirement survey suggested by Kalliomäki 

et al. (1997), there can be fewer illustrating examples how much APIs have simplified 

localisation in the last 20 years as many aspects of the survey, e.g. regarding encoding, 

internal data representation, and locale-independent operating system functions, have 

become moot. On the other hand, no participants reported elaborate localisation 

requirement elicitation processes as described in the literature, e.g. a translatability and 

market suitability analysis described by O’Sullivan (2001a), and one wonders about the 

impact following localisation APIs blindly can have for product quality. 

4.2.2.2 Human-Factor Conflicts 

Whereas cross-discipline conflicts were directly related to the collaboration of two 

disciplines, some conflicts appeared to be more related to general human aspects of 

collaboration, even though these appeared to be shaped indirectly by the different 

disciplines and their relationship between or within organisations. 

4.2.2.2.1 Communication Conflicts 

Communication between translators and developers is not always smooth. Some 

localisers feel that developers do not like to communicate much to begin with. 

Communication further appears to be prone to error, especially when it is indirect. L1 
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explicitly contrasts communication through an LSP with direct customer communication: 

In the first case, localisation issues forwarded through translation agencies have a “fifty-

fifty chance” (L1) of the LSP bringing it up to the customer. If they do not, there is a curt 

reply to translate what’s written and not bother about the rest. Anyhow, L1 describes 

communication through intermediaries as “incredibly long and complicated” (L1) and 

leading to loss of information along the way. 

The failure of communication via LSP is also noticed by developers. The following 

misunderstanding was reported by D2 when writing software for the control of 15-

segment LED displays. D2 was acutely aware of the limitations of such displays, in 

particular when it came to translations: 

D2: With 15 segments you can get letters as well. You cannot get any 
accents, […] there's nowhere there for a sort of an accent on a letter. 
There's just no possibility at all, […] there's no chance. And the problem 
there, one, in the Spanish, was a bit when we got a bit about the date. 
Because the Spanish translator sent things back with tilde on, and so on. 
And I had to say, no, you know, it is not that we do not want to do that, 
it is we can’t. […] And, for example, year is “año”. [Writes año.] That's 
how you spell “year” in Spanish. So I was saying, no, not with that you 
can’t. On that. [Strikes out the diacritic so that it now says ano.] 

Author: And did the translators agree that this is still acceptable? 

D2: Well, no. I was going through the agent, and the agent said, [he has] 
to check with the translator. And the translator came back and said, 
that's totally unacceptable because that spells differently and has a 
different meaning. 

Author: Does it? 

D2: Well it means... [Points into his rear.] 

Author: Does it. 

D2: Yeah. [laughs] This is why it was totally unusable. […] There was a 
communication problem first. Because. You know, I did clearly say, you 
know, we cannot do accents. […] And then I get a response that is with 
accents! There was a fault in communication there. […] But all that... 
obviously I had not got that message all the way down to the person 
that needed to hear it. […] I thought I explained it properly to the agent. 
But, between me explaining it to the agent and the agent explaining it 
to the translator, you know, something got lost. And having two stages, 
I never spoke to the translator. 
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Vis-à-vis, LM2 reported: 

LM2: We once had Russian, that was completely Unicode, no context 
information whatsoever. On top of that with length limit. And as length 
limit, the colleague told me, it could be line-wrapped47. And that’s what I 
communicated on. And [the translators] really did it one below the 
other, the same way I understood it. But what the colleagues had had in 
mind was “blablabla-hard hyphen” in one line, and after the hard 
hyphen some more text. A complete misunderstanding. 

Author: Just that I understand this right: In the mind of the translators, it 
was a hyphenated break? 

LM2: Exactly. But it was in one line. Now, if somebody says “line-
wrapped” to me, I’d interpret that as one below the other. With a line 
break. But I was not told. So I did not communicate it on correctly. And 
then the problem duplicated into all languages. 

Communication does not always have to break down. At times, it is simply a matter of 

what needs to be communicated. LM7 describes this while relating an instance where he 

needs to talk to developers about a specific piece of text in software: 

LM7: [T]he developer knows his [resource] IDs. [You ask] him: ”Listen, 
the ID yadda yadda, XYZ, what did you mean by that?” And then he 
would know […] that is in the code at that location, and then he knew 
[the answer]. For them, communication via IDs is important. You have to 
mention them. […] And then he usually already knows. Or he quickly 
looks in the code and finds it. 

Author: So, […] that implies […], if you had asked the developer [about] a 
button called ‘Select’, then he would not know what you are talking 
about? […] 

LM7: That happened, yes. [re-enacts conversation] 
“You have a text in the web interface, that is called […] ‘search LAN 
network’, or something like that?” 
“Yes, where is that?” 
“That’s in the third mask in the lower left.” 
“Well, no idea.” 
“It has the resource ID so-and-so.” 
“Oh, right, wait, I’ll check quickly.” 

D3 notes a similar experience, but from the developer side: text changes are 

communicated by giving the original and the changes to developers, but the developers 

                                                      
47 LM2 uses the word “zweizeilig”, i.e. “two-lined” (Scholze-Stubenrecht et al., 2005, p. 850). Here, the 
translation “line-wrapped” was deemed more appropriate due to the focus on the hyphen. 
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have to identify the text’s location within the application or source themselves, usually by 

searching through an Excel file. 

LM5 summarises the communication issues as follows: 

It is a fundamental principle that the two disciplines cannot 
communicate with each other if they do not acquire a common register. 
[…] But it is common that the disciplines do not understand each other, 
meaning that translators do not understand anything from the 
developer and the other way round, and the project manager does not 
understand why the developer reacts in a certain way, and the other 
way round, and so on. So there is only one way to resolve this, by 
developing a common register. (LM5) 

These excerpts illustrate how fraught with misunderstandings and communication 

obstacles the communication between developers and localisers can be, and further how 

these lead to localisation issues such as incorrect translations and delays. 

The so-called standard view of communication understands the communication process 

as exchange of a message encoded by the sender and decoded by the receiver. This 

primarily technical model explains communication difficulties due to lack of precision of 

the message and message degradation during transmission (Thompson, 2003). Such 

degradation could occur for example though indirect communication via intermediate 

managers as described by some interviewees. Other than that, if the message is precise 

and not degraded during transmission, the model does not account for the failure of 

communication observed here. 

Barnlund (1970) proposed a transactional model, which accounts for reciprocal 

communication between two sender-receivers. Barnlund’s model considers that 

communication includes the encoding and decoding of so-called cues, some of which are 

public yet can be modified by the environment, some of which are private and depend on 

each sender-receiver’s understanding of the world, their experiences, education and so 

on. If the sender-receivers’ schemata for encoding and decoding are not identical, then 

the decoded message does not hold exactly the originally encoded meaning and 

communication is compromised. Some of the accounts on communication from the 

interviews seem to exhibit this issue, and a common understanding of the cues might be 

what LM5 refers to as “register”. Green (1994) examining the interdisciplinary 

collaboration of psychologists and software engineers, suggested to form an interface 
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between psychologists and developers by creating a boundary vocabulary specific to this 

collaboration.  

In software development, communication has been identified as an important and crucial 

aspect (Brooks, 1995). Perry et al. (1996) examined more formal aspects of 

communication of software developers and found that they spend up to 75 minutes a day 

communicating, mostly in frequent, quick, informal and improvised exchanges. The study 

also found developers to be shunning email because it is perceived as a broadcast 

medium, does not fit with an iterative resolution process required by software 

development, and simply is slower than just walking over and talking. Informal 

communication seems to be subject-specific to software development. Herbsleb et al. 

(2000) found that specific software development aspects, e.g. requirements 

documentation and requirements changes, are commonly communicated informally 

because of the unsuitability of formal means. Similarly, Herbsleb et al. (2001) found that 

in software development, distance decreases communication and increases delays. 

Specifically, communication in cross-site projects takes longer compared to same-site 

work, and requires more people. Additionally, in cross-site projects participants are less 

likely to receive help overall and more likely to experience delays. Partly, this might also 

be explained with the lack of informal communication in cross-site projects. 

Such a finding implies that software developers communicate more if they can simply 

walk over and talk, i.e. that communication distance and communication volume 

correlate. In fact, Herbsleb et al. (2001, 2000) and Espinosa et al. (2002) showed the 

positive influences of co-location on team coordination and development time. Allen 

(1977) reports that with increased distance between engineers, communication 

frequency decreases, up to a distance of 30 metres between offices. At increased 

distances, even up to miles, communication does not significantly drop any more. 

Herbsleb et al. (2001) compared same-site and cross-site projects, i.e. projects where 

developers were co-located and projects where developers were spread out over several 

sites. The study found that despite constant willingness to help in both kinds of projects, 

developers in cross-site projects are less likely to receive help and are more likely to 

experience delays getting help. The authors concluded that help over distance is relatively 

ineffective. Accordingly, Herbsleb et al. (2000) presents a number of examples from 
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various disciplines showing how co-location improves collaboration, efficiency and quality 

of work even when this was not the primary reason to co-locate workers. 

The particular importance of communication between different roles in software 

development has been emphasized by Brooks (1995). Accordingly, the localisation 

literature abounds with the need of and recommendations for constant and direct 

communication between developers and localisers (e.g. Giammarresi, 2011; Bauer and 

Rodrigo, 2004; O’Sullivan, 1989). 

4.2.2.2.2 Activity Conflicts 

Sometimes, best practices of one discipline are in conflict with another: In programming, 

resource items can be any number of things, often parts of the user interface such as an 

image, a dialog, or a link. Each resource item has a unique ID, which is used in the 

program code to refer to it. As such, the actual item behind a resource ID is not directly 

accessible or visible in the code. This is good practice in software development because 

the actual resource items do not have to be finished at the time the code is written. It is 

also good practice with regards to localisation as items behind a resource ID can be 

replaced at run time in order to display values for different locales as required. 

Often, cross-discipline activity conflicts seem to be related to discipline-specific processes. 

For example, LM4 noticed final content sent for translation, then being changed and sent 

for translation again, incurring unnecessary cost. This might well be a consequence of 

iterative development, where it is difficult to find a place for translation (Combe, 2011). 

DM7 noted that because his projects’ development process did not freeze strings that 

had been sent to translation, it happened regularly that belatedly changed content 

remained untranslated in the published version, causing serious customer acceptance 

issues in areas where Latin script or English language stands out, e.g. in South-East Asia. 

Similarly L1 noted that the trial-and-error approach permeates software development: 

software testing is an integral part of software development, which is reflected in the 

development process. 

The conflict between translation and its need for static documents, and agile 

development processes and its aims to eliminate static documentation or products, has 

been discusses by Combe (2011), who noted the impact of agile processes specifically 
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with regards to translation accuracy and completeness. To facilitate translation 

nonetheless, large content volumes have to be processed late in the development cycle 

instead, increasing schedule pressure on localisers. 

However, activity processes are more general, as related by LM4, who noted an 

occurrence where developers apparently expected localisers to adopt technical work and 

build a version control for resource IDs in addition to providing translations. This 

particularly baffled LM4 because it seemed to be exactly the opposite of separation from 

code and content, which is one of the basic principles of localisation and translation work.  

They asked us to […] access [resource] IDs and to know what ID referred 
to what content. From release to release. Whereas actually we can only 
[…] work based on text, meaning that we intentionally mask all IDs, all 
code, meaning that translators have only text. […] Those end up in our 
database, a translation memory. So, of course we have all old resources 
saved and archived. (LM4) 

The project did not end well: 

I believe it failed due to certain individuals, who maybe sometimes were 
beyond their abilities, or who asked for things we could not deliver, 
where you often talked past each other, and eventually everyone 
involved was dissatisfied. (LM4) 

Similar to communication conflicts, activity conflicts quickly lead to delays, and further to 

quality issues such as bad or missing translations. 

In fairness, it is misleading to suggest that developers are not interested in improving 

localisation quality, e.g. by answering questions or providing additional information. In 

some interview accounts of localisers, developers are very forthcoming, answer 

questions, provide additional information, or even proactively inquire about the cultural 

compatibility of their software. In others, they are not helpful and will not even look up 

existing terms before submitting new ones for translations. In yet others, they simply 

seem to be clueless. DM7 told of an incident where he had pointed out to a colleague 

that placeholders in strings require additional context information so that translators 

know how to translate them. Instead of writing any documentation on the placeholders, 

the developer in question instead split up the strings a the placeholders and 

concatenated them at runtime with variables, believing that he had solved the problem, 

when he had made it worse since the context of the partial strings was now also missing.  
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A major aspect seems to be whether developers and localisers work for the same 

organisational entity. Unsurprisingly, developers and localisers working for the same 

company seem to communicate more, possibly because they share the same business 

goals. 

This becomes most apparent when developers and localisers do not work for the same 

business unit, i.e. when localisation is not conducted in-house, and they may have 

differing business goals. A software company, after all, aims to deliver software. 

Localisers might be more interested in satisfying their own customer expectations, as 

opposed to the expectations of their customers’ customers. LM4 sums up the 

expectations of localisers’ customers, i.e. developers, as follows: 

My impression is that […] [developers] like to have it the following way: 
“Here you have the stuff, work with it, and we want finished language 
packs back, and in the best case we have nothing else to do with it.” 
(LM4) 

LM4 even tried to improve the localisation process by pointing out improvement 

opportunities: 

Well, when I addressed [causes of recurring localisation problems] with 
some customers [i.e. developers], I got excuses or stories that they 
cannot do it any other way. Naturally, in the end, we do what the 
customer wants. Although I do not quite understand why they want it. 
(LM4) 

In the end, LM4 concentrates on his bottom line by satisfying his customer’s expectations. 

Another example of localisers concentrating on their business interests might be the 

proliferation, or lack thereof, of knowledge about the translation process. While 

previously it was established that software developers do not know about the importance 

of context information for successful translation, in an outsourcing environment, there 

seems to be reduced incentive to actually educate them about this problem, as noted by 

LM5: 

Author: [D]o translators bring up […] that they need to know the 
context? 

LM5: Less. They look after lines of text and words. That’s what their rate 
goes by. 
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L1 supports this by pointing out that inquiring about context and conducting research 

eats into his net rate. Since freelance translators and LSPs are usually for words instead of 

time, there is little reward for them to educate their customers towards a better quality. 

L1 also reported finding context-related errors in existing translations where other 

translators had obviously taken a guess when translating. When L1 inquired whether 

those translators had ever pointed out the problem with the source text, the LSP claimed 

that it had never been informed by other translators about the issues.  

It appears that there can be a conflict of interest for localisers, both freelancers and LSPs, 

due to their business goals, manifesting itself here as lack of information exchange. 

Dunne (2011) refers to this as “temptation - or pressure, as the case may be - to allow 

urgency to trump other constraints when developing and managing project schedules and 

to move into the realm of post-heroic project management” (Dunne, 2011, p.149).  

Although this is not a communication problem per se, applicable theories exist in the area 

of communication in work organisations. According to Tubbs and Moss (2003), Dennis 

(1975) describe four categories of organisational communication: Downward, upward, 

horizontal and informal communication. Horizontal communication refers to 

communication between departments for the purpose of task coordination, problem 

solving, information sharing and conflict resolution, and should be the communication 

mode between developers and localisers. Although horizontal communication itself can 

be affected by rivalries between inter-organisational entities, it may be dramatically 

affected if hierarchy is perceived and it changes to upward and downward 

communication. If for example the localisers should perceive developers as hierarchically 

higher, then their upward communication is informed by what is in their own interest. 

This would explain the observed communication differences between in-house and 

outsourced localisation scenarios. 

4.2.2.2.3 Confrontation 

During localisation, developers and localisers can experience confrontation. Grinter 

(1996b) suggested that for each technical dependency, a social relationship exists that 

needs to be managed. This social relationship at times can become personal. LM2 relates 

that when localisation issues are discussed “in meetings, it is often said that I […] am just 

not good at [localisation]”. DM7 felt that developers are even more likely to resort to 
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blaming when localisation is outsourced. Such attitudes seem to have consequences. LM7 

suspected that asking for missing context information might be interpreted as being 

clueless. 

LM3 felt that developers appear to worry about control over software. In discussions on 

cultural awareness he has to convince developers that he’s not the political correctness 

“police” and not one of the “suits” (all LM3) either, but a confederate of developers with 

a passion for software development. A case study reported by Tuffley (2003) resonates 

here, where a technical writer had to create the requirements specifications for a 

developer of a non-global software development project. The developer perceived the 

technical writer as a threatening influence and was initially unwilling to collaborate. 

Some publications suggest that it can be difficult to establish a working relationship to 

software engineers (Cooper, 2004, p.106), who at times might be unwilling and 

“recalcitrant” (Combe, 2011, p.321). Deal and Kennedy (2000) have identified four 

predominant types of organisational cultures, referred to as tough-guy-macho culture in 

risky and dangerous settings, work-hard-play-hard culture in financially competitive 

companies, bet-your-company culture in businesses with large upfront cost and slow 

return, and process culture in bureaucracies or companies with little risk and little return. 

The process culture as type of organisational culture model might apply most closely with 

the situation of a freelance translator. Translators are relatively remote from the results 

of their work and the LSP acts like a bureaucracy. Developers, on the other hand, might 

work in various different organisational cultures. Tubbs and Moss (2003) list IBM as 

example for an organisational work-hard-play-hard culture, and NASA and Boeing as 

examples of organisational bet-your-company cultures. Software development plays a 

major role in each of those examples. 

Hence, unless a localiser’s client happens to be situated in an organisational process 

culture, the developer-localiser collaboration is likely to take place between 

organisational cultures. On top of that, as different developers might work within various 

organisational cultures, the nature of the cross-organisational-culture collaboration is 

prone to change with each client. From a localiser’s point of view, not only is the client’s 

organisational culture different, but chance is that the nature of the difference changes 

with each client. 
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4.2.3 Strategies 

It was established earlier that at the core of interviewees’ experiences and efforts is the 

facilitation of interdisciplinary collaboration, either through defining clear interfaces, 

processes and deliverables, or by establishing direct interaction. Accordingly, the 

strategies employed and reported by interviewees could be distinguished between 

integrating localisation into the software development process, and separating the two. 

Figure 4-6 gives an overview of the specific concepts in this category. 

 

Figure 4-6 Emergence of the category Strategies 

In the context of configuration management, although software engineers tend to view 

them as fundamentally technical, “software dependencies are […] relationships among 

code, people, and organizations that have technical and social aspects” (Grinter, 1996a, 

p.3). In other words, behind each technical dependency, there is a social dependency. 

This also holds for localisation. Internationalisation is a way to manage technical 

dependencies, but leaves the social dependencies unaffected. There is still the aspect of 

collaboration, described in this theory. This view supports the notion that the actual 

issues in software localisation are actually “existing gaps in the organizational structure 

and competencies” (Giammarresi, 2011, p.22) or manifestations of the so-called “silo 

effect” (Sikes, 2011, p.262). 

4.2.3.1 Separation Strategies 

Many activities and strategies employed by developers or localisers cause or imply 

working separately within each discipline. Several interview accounts reveal a lack of 

collaboration and communication, particularly for linguistic work such as provision of 

style guides or terminology management, supporting claims in the literature, e.g. 

DePalma (2006). 

Separation Strategies

•Single Point of Contact

•Translation by Proxy

•Task Focus

Integration Strategies

•Transgression

•Direct Contact

•Trans-Disciplinary Knowledge
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Arguably, separation starts with the practice of internationalisation. Hudson (1997) 

derives the separation of localisation and software engineering processes from 

internationalisation, what originally should have been an architectural choice to allow 

separate maintenance of code and localisable content. O’Sullivan (2001b, p.5) 

distinguishes between process model and architecture model of software localisation and 

recommends the latter because it would presumably be more difficult to adapt work 

activities and processes. So, separation strategies are motivated by a desire to keep 

working as if other disciplines were not included. Software architecture becomes a stand-

in for process. This strict separation and no or minimal communication has been called 

the mono-directional mode of technical localisation (Schubert, 2009) and tends to reduce 

localisation to translation (He et al., 2002). 

However, localisers also try to separate their concerns. LM7 at first considered to 

integrate the UI designers and software developers into their workflows and give them 

access to the database, but soon decided against it: 

Originally, it had been considered that software developers can browse 
the database whether the text they are looking for already exists. But 
we quickly said goodbye to that idea and thought, “No, we rather do it 
ourselves, it will not work.” [laughs] […] [They] had not gone to the 
trouble of looking for existing strings within the Excel-sheet [n.b.: the 
previous way of storing strings and their translations], so looking 
through a database or so, they simply did not bother. (LM7) 

4.2.3.1.1 Single Point of Contact 

Almost always, outsourced localisation has one or two sequential single points of contact 

handle all traffic between developers and localisers, including communication and 

documents. LM4 describes the translation process from the point of view of an LSP: 

In the function as project manager [...] I maintain the relation to specific 
customers, and organise all the projects from the beginning. We get the 
files from the customer, we make a quote, we select the respective 
translators and we hand out the files and work to our freelancers and 
also small agencies. (LM4) 

This relay communication is retained for any communication: 

Our point of contact, we [...] get questions from our translators, I collect 
them, send them to our contact person on the customer side, and that 
person traverses the company and asks the developers or so, and the 
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customers answer from the side of the developers. [...] Especially with 
regards to technical questions, and that is important, and that works 
quite well. Most of the time. (LM4) 

LM4 anticipates one of the detrimental consequences of such a single-point-of-entry 

strategy. It can easily lead to disadvantages, specifically regarding the issue of translation 

context and how to obtain it. Nonetheless, LM4 sees the approach working well. This 

view is supported by LM1, working at a different LSP. He feels that there is little to no 

need for translators and customers to communicate: 

As a rule, everything is clear, those are all translators that know their 
area of expertise very well, bring technical competence, and very rarely 
have any questions. (LM1) 

On further inquiry, LM1 subsequently implied that translation errors related to lack of 

context are generally caused by faulty source texts, particularly texts not written by 

trained technical writers. 

Similar setups were reported by other interviewees. L1 describes such communication 

through intermediaries as “incredibly long and complicated” and leading to loss of 

information along the way. D4 had worked in projects were all localisation questions 

were answered by project managers, who were neither translators nor localisation 

specialists. The exact workflow might differ from LSP to LSP and apparently even from 

customer to customer. 

L1 sees the single point of contact as strong contrast to direct customer communication: 

With single points of contact, localisation issues forwarded through translation agencies 

have a “fifty-fifty chance” (L1) of the LSP bringing it up to the customer. Otherwise, L1 

suspects that the LSP does not even approach the customer because the translator 

merely receives a curt reply to translate the source material and not bother about the 

rest. 

In software development, the dangers of indirect communication is known. For example, 

in the related discipline of requirements engineering and eliciting respective information 

from customers and users, Paetsch et al. (2003) recommend to avoid knowledge transfer 

chains and talk to the responsible persons directly. Nonetheless, funnelling 
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communication between developers and localisers through a single point of contact is a 

recommended approach (e.g. Sikes, 2011; Combe, 2011). 

4.2.3.1.2 Translation by Proxy 

The separation of disciplines and the single point of contact is further enhanced by a 

strategy where a whole organisation is behind the single point of contact between 

developers and localisers. This setup is intentionally and explicitly implemented as 

bottleneck: 

[T]hat is a bottleneck. And that's how it is supposed to be. That is, it is a 
bottleneck on our side, and ideally on the customer side also a 
bottleneck, let me say it like that. One person who is responsible, on the 
customer side, for communication with us, and who has all the know-
how connected to translation, and virtually is in touch with the 
developers on customer side, and marketing, and so on, product leader, 
product manager, whatever. And, well ok, the context information [...] is 
hard to get by for software. (LM4) 

Accordingly, L1 characterises the role of translation agencies from his point of view as 

freelance translator as an organisation that takes the software out of their customer’s 

hand, extracts the strings, brings them into a translatable format, patches them back into 

the code, and sends it back to the customer. In some instances, part of the workflow 

might be executed by the customer. In each case, the LSP selects a translator, decides the 

relevant technical aspects such as what translation memory tool and exchange format is 

used in the communication between translator and LSP, and finally has the translator 

translate the text. 

There are variations to translation by proxy. For example, instead of translation agencies, 

some interviewees (e.g. D3, D11) reported that translations were provided by the 

customer organisation that had commissioned the software as well. However, there are 

complaints with such a setup, as it does appear to cause delays. Comparing projects with 

employed translators, D3 found that proxy translation “takes too long”. 

In a proxy setup, the work patterns of developers and localisers likely differ considerably. 

The former have a nine-to-five job, whereas translators work task orientation regulated 

from the outside (Haralambos et al., 2004). Stoeller likens translations by proxy via 

translation agencies to an assembly-line approach to localisation “where team members 
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rapidly switch from project to project to complete individual tasks” (Stoeller, 2011, 

p.308), lacking the big picture, i.e. the product, and losing commitment to and 

engagement with quality and client in the process. 

As the interviews confirmed, localisation outsourcing is quite common. It is usually done 

because localisation is neither the core concern nor the core competency of software 

companies and developers (Esselink, 2006; Yuste, 2004). Outsourcing often comes with 

single points of contact and translation by proxy wrapped in one package. Unfortunately, 

such constellations run the danger of focussing on deliveries and neglecting processes 

(Stoeller, 2011). In such a business system one wonders whether the collaboration with 

the client is informed by a traditional work regime in the Weberian sense: Max Weber 

distinguishes between traditional action, motivated by established custom, and rational 

action, continually re-examined towards increasing efficiency (Gerth and Mills, 1991; 

Haralambos et al., 2013). While there certainly is a continuous efficiency pressure within 

a software company or an LSP, it appears that the work organisation with the client is 

more traditional. 

4.2.3.1.3 Task-Focus 

As discussed earlier, internationalisation is often viewed as either separation of locale-

dependent and locale-independent software elements, or as developing a culture-neutral 

software core, or finally as designing software to be configurable for various locales. 

Some interview accounts suggest that developers seem to turn a blind eye on issues that 

they feel are outside of the technical domain. 

Most of the developers have a feeling if something goes wrong [in 
localisation]. […] At least for crass blunders. I think a basic sense for it 
exists. Certainly not in its intricacies […] But I believe that they notice 
when something goes badly wrong. But it is also my experience that in 
their mind, it is clearly not their task to work on it. (LM7) 

At the least, developers simply do not want to be engaged with localisation, as also noted 

by LM4. Similarly, L2 mentioned that a collaborating developer straightforwardly stated 

his lack of interest in localisation quality. For him, only software quality mattered. This 

manifested itself by a focus on the code part of internationalisation, e.g. how to load 

different resources into the software. Apparently, the developer felt that he was 
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accountable for code, not for translation quality or required effort, for which he refused 

to contribute. 

In a variation, some developers prioritised adherence to development processes over 

localisation quality despite known quality problems. The conflicts between development 

process and localisation quality were noticed, but according to the motto ‘it cannot be 

what must not be’, acknowledged correspondingly by remarking that the process had 

been signed off by the client. 

In all of this, it needs to be considered that developers are usually also the ones who 

decide on internationalisation scope and processes. If not individually, then as a group, 

they draw the line that they later consider the border of their responsibility. 

Losing sight of client and user concerns in software development is not a new 

phenomenon. In fact, customer inclusion is what agile methods have been designed to 

combat (Winter and Rönkkö, 2010; Vinekar et al., 2006; Larman and Basili, 2003). 

4.2.3.2 Integration Strategies 

In software localisation, the practice of developers and localisers benefits considerably 

from unencumbered communication and direct access. LM2 hinted a number of times at 

the difference between association and disassociation, when developers “were up here 

and saw how I translate and how it works” and who “learn how I work” as opposed to 

when developers “do not even know what I am doing” (all LM2). The benefits were also 

clear with regards to communication and scheduling. Several authors have pointed out 

the need for direct collaboration between developers and localisers (e.g. Anastasiou and 

Schäler, 2010; Law, 2003; O’Sullivan, 1989). For translators, the ability to work with 

professionals of other disciplines and be integrated, ideally on-site, is clearly beneficial 

(Albir and Alves, 2009; Yuste, 2004). 

4.2.3.2.1 Transgressions 

A common occurrence during software localisation is a transgression across disciplines, 

i.e. that a member of one discipline does work that in principle belongs to the other.  

Often, developers decide on the scope of internationalisation and localisation, e.g. D5 

basing internationalisation decisions on entries in online encyclopaedias. Other reports 
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have developers set the localisation schedule without feedback from actual localisers 

(LM2), and several participants worked on projects where developers had conducted 

linguistic testing of translated strings without defined quality criteria or an understanding 

of translation testing. D3 conducted translation fixes for languages he did not speak using 

online translation tools. Last but not least, a practice so common that it does not raise 

any eyebrows is the creation of texts by developers rather than linguists or technical 

writers (LM1). 

It appears that transgressions can also be indirect, if developers apply software 

engineering paradigms on localisation, e.g. by equating translations with resource IDs 

(L1). In some processes, though, resource IDs were generated by technical writers and 

had to be implemented accordingly by developers (LM2). LM2 pointed out that he feels 

he knows more of the technical localisation process than the developers. 

In a way, transgressions can be considered a contradiction to internationalisation as the 

concept of separating locale-dependent from locale-independent aspects of software 

while equally separating development and localisation activities. It is not always clear why 

transgressions occur. In the interviews, it often seems like a matter of convenience or 

opportunity and not worth the hassle of contacting another discipline about.  

Immonen and Sajaniemi (2003a, p.161, 2003b, p.30) have found a preference in 

engineers to conduct translation tasks if they know the language. They suggested that this 

is in order to save cost; this is arguably unconvincing as a developer’s time should be too 

valuable for such tasks. Instead, when developers take over tasks that translators should 

or could do, it might be a lack of appreciation of translator skills, or even a drive for 

control. 

Transgressions can, however, also have serious consequences. For example, an 

incorrectly planned internationalisation can pervade the remainder of the entire project 

or require expensive re-engineering. It can also obscure the goals and criteria of 

successful localisation. In an account of DM5, a usability expert had been tasked with 

responsibility for localisation, but conducted these according to usability principles 

instead of localisation principles, for example by emphasizing consistency despite cultural 

inappropriateness. 
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Transgressions of localisers were also reported, often in the shape of adapting UI layouts 

to handle text expansion through translation, left-to-right languages or fond size 

increases for Asian languages. Hartley (2009) predicts that engineering-related tasks 

would increasingly be handled by translators, and this might be what Yuste (2005) 

referred to as translators slowly taking over activities of editors. However, DM7 pointed 

out that localisers editing UI interfaces, even in visual editors, is problematic because 

sometimes interface layouts are complex and require knowledge of the underlying code 

to edit them. UI elements may overlap and be aligned so that only one element at a time 

is visible at run time. In interface editors, such aspects are not apparent. Accordingly, 

Anastasiou (2009) assigns such tasks to localisation engineers.  

4.2.3.2.2 Direct Contact 

An apparently very important factor for the shape of the collaboration of developers and 

localisers is the possibility of direct contact. Interviewees related different degrees, 

ranging from tele-communication via email or phone to face-to-face meetings. Some 

accounts suggest that it is particularly effective when developers can observe how 

localisers work. The limitations of localisation tools or the need for translation context 

then becomes obvious, as this remark by LM2 illustrates: 

[The lack of context] has improved with those [developers] I spoke 
directly to, who were up here and saw how I translate and how it works. 
Because in meetings, it is often said that I […] am just not good at it. And 
those who learn how I work then say, “He can’t, because he does not see 
it [in context]” (LM2) 

Accordingly, interviews who were able to directly contact developers or localisers 

respectively noted this as a great boon to their work, and most interviewees working in 

the same organisation with collaborators from other disciplines usually treated direct 

access as an opportunity for efficient, speedy collaboration. Direct communication does 

not only allow localisers and developers to ask and answer questions and avoid 

miscommunication, it also simplifies feedback and thus process improvement (Sikes, 

2011). 

The effects of co-location, direct contact and open communication have been examined 

in the context of teamwork and team performance, where a team is a group of 

professionals consisting of at least two persons and working in direct interaction on a 
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common task over a longer period of time. Among others, teams have been attributed 

with accomplishing tasks beyond the reach of individuals due to increased motivation and 

commitment of team members. Research shows that team work becomes more efficient 

as a feeling of togetherness forms (Tuckman, 1965). Seeking direct communication 

between developers and localisers, e.g. LM2 inviting developers to see how she is 

working and what defines her work, might therefore be seen as an attempt to form a 

team, or at least to become part of a group. 

Regardless of in-house or outsourced localisation, no interviewee described a 

collaboration setup where the team definition applied. In the case of translation via LSPs, 

developers and localisers are usually physically and organisationally separated, although 

sometimes it happens that localisers are sent to work on location at a client’s 

organisation. Nonetheless, as discussed previously, developers and localisers do not share 

success criteria or responsibilities. Yet, they still form a work system, a social unit on a 

project. 

4.2.3.2.3 Cross-Disciplinary Knowledge 

Developers and localisers attempt to educate their collaborators about those parts of 

their own jobs that they feel are relevant. For example, some developers proactively 

write comprehensive explanations of placeholders and control characters for localisers on 

their own initiative (DM7). Localisers trying to educate developers without a particular 

triggering event, e.g. a specific localisation issue, are significantly rarer. 

It also appears that knowledge proliferation attempts are often foiled by framing the 

subject based on one discipline. For example, despite the explanation on placeholders, 

the developer did not provide context information for the translation. One might 

presume that localisers understanding placeholder syntax makes more sense for 

developers than localisers needing context information for translations. 

Professionals with knowledge of both development and localisation appear to be very 

valuable for an organisation, yet do not always receive the acknowledgement they 

deserve. A number of localisation research papers mention localisation engineers (e.g. 

Wasala et al., 2012; Anastasiou, 2009), but not many localisation engineers participated in 

the interviews. It appears that LSPs prefer to hire project managers with a translation 
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background, and software companies who have the foresight to assign an engineer to 

localisation usually do not blindly follow the agency model, but either employ translators 

or manage freelance translators themselves. 

Ironically, interviewees which appear to fit the job title of localisation engineer report 

that they at times encounter the same incomprehension from their developer colleagues 

that otherwise is experienced by localisers. For example, colleagues focused on their 

engineering tasks and still failed to provide context information. This provokes the 

question whether an interdisciplinary barrier is a barrier between representatives of two 

disciplines, i.e. developers and localisers, or between the two subjects itself.  

4.3 Discussion 

The results of the GT analysis were presented in the shape of a theory of interdisciplinary 

collaboration in software localisation, which can be seen as a model to explain the 

behaviour reported in the accounts of interviewees. This model explains what happens 

during the collaboration of developers and localisers. A number of models have been 

proposed to describe the behaviour of individuals and organisations in business settings. 

Identifying existing models fitting to the data will conclude the presentation of qualitative 

results. 

4.3.1 Borrowing of Models and Concepts across Disciplines 

A frequent technique of interdisciplinary collaboration is “borrowing for instrumental 

purposes” (Klein, 1990, p.86), yet cross-disciplinary borrowing can be problematic: 

borrowed material may be misunderstood and distorted, it might be used out of context, 

or it might be controversial or abandoned in the source discipline – borrowers accordingly 

bear the “burden of comprehension” to obtain a basic understanding of whatever model 

is borrowed (Klein et al., 1990, p.88). Failure to do so can lead to considerable problems, 

as observed in this research's data. 

An immediate reflex might be to look for instances where development borrows models 

and concepts from localisation or translation studies, but it appears that this happens 

rarely, and there are no applicable models of translation studies for developers to borrow 

from. However, it was observed that localisation, and there in particular tools and 

processes, borrow models from software engineering and development. 
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4.3.2 Interdisciplinary Work as a Social System 

In existing research, the collaboration of workers from different disciplines has been 

examined in the context of team work. Colloquially, team work seems to be understood 

as any number of people working as a unit, but most publications imply a stricter 

definition. People merely working together form a group, whereas a team has a common 

goal and has usually been selected specifically to combine certain skills, but also for 

strategic purposes such as representing all departments of a company in order to obtain 

overall commitment (Maylor, 2010). Further, teams are generally assumed to work in the 

same physical space, a central ingredient for forming group commitment and cohesion, 

and have the authority to manage their own work. 

In project management, this concept has been proliferated as cross-disciplinary team 

work. Despite the understanding of team as an organisational unit, they can include 

members from outside the organisation such as customers or providers. Social factors of 

cohesion, group conformance and group pressure are intended to increase team 

efficiency and effectiveness of individuals. Interplay between the social component of 

collaboration and cross-functional cooperation outcome forms a feedback loop as goals, 

rules, procedures, and accessibility are influenced by the former and determine the latter 

(Pinto, 2015). Cross-functional teams often aim to optimise solutions by comparing 

different views of multiple disciplines on the same problem. In localisation the disciplines 

complement each other, but don’t collaborate on the same specific work steps as such. In 

fact, the primary mode observed in this research was not that of developers and localisers 

working as organisational unit, but rather the control of the localisation process by 

software developers, similar as discussed by Cooper (2004, p.207). This often went hand 

in hand with minimal communication, although communication has been identified as a 

crucial method to combat the often paradoxical and contradicting nature of 

interdisciplinary collaboration (Donnellon, 1993). 

Some of the aspects of cross-disciplinary team work apply to the collaboration in software 

localisation, e.g. the combination of translation and software engineering skills. On the 

other hand, the implied physical access is mostly not realised due to outsourcing. Stoeller 

(2011) refers to this as virtual team, although this might be a misnomer as virtual teams 

in the scientific literature never account for the sometimes total lack of communication 
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encountered in the interview accounts of localisers and developers. And even in virtual 

teams, it seems critical to uphold team cohesion in order to access the cognitive 

processes associated with being the member of a group (Ale Ebrahim et al., 2009). Even 

more critically, localisers often have no input into the management of their work. 

A theory of interdisciplinary collaboration that does not rely on the assumption of a team 

structure is that proposed by Sverre Sjölander (in Klein, 1990, p.71), who has proposed 

ten stages of interdisciplinary collaboration. Initially, colleagues from different areas stick 

to their own discipline (stage 1) and colleagues from other disciplines are seen as having 

nothing to contribute to the project (stage 2). First interdisciplinary discussions are 

exceedingly abstract, increasing the chance of first agreements on very basic levels such 

as an agreement that product quality is important (stage 3). Then, the colleagues start 

forming a common vocabulary (stage 4), followed by first successful concrete discussions 

(stage 5) and a further construction of interdisciplinary jargon (stage 6), interrupted by 

frustration and failure due to the complexity of communication and the task (stage 7). 

Only when this stage is overcome can collaborators start seeing beyond their own 

discipline (stage 8), engage with different disciplines (stage 9), and finally become true 

interdisciplinary collaborators by examining their common task from all possible angles 

without blinders (stage 10). 

A group of co-workers can get stuck in any of the mentioned phases. Sjölander’s model 

emphasises social aspects of interdisciplinarity that were found in the interview accounts 

of developers and localisers, such as communication, negotiation and development of a 

common jargon. Where this fails, participants instead remain focused on their own 

discipline, and what happens is what O’Donnell et al. (1997) call multidisciplinary group 

work instead of interdisciplinary collaboration. This, too, was observed during this 

research. A particular observation might relate to the hierarchy implied within a 

perception that another discipline is not contributing, to be discussed next. 

4.3.3 Dominance of Software Engineering 

The relationship between software engineering and other disciplines in software 

development has been identified as “interdisciplinary challenges of software practice” 

(Andelfinger, 2002, p.200). Hirschheim and Klein (1989, p.1212) conclude that 

“information systems development approaches are influenced by assumptions from more 
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than one paradigm. However, the influence from one paradigm is typically dominant.” 

Software engineers impose their understanding of a different discipline's subject matter 

when trying to tackle it in software. In doing this, they are prone to overestimating the 

practical use of the deterministic paradigm, mathematics and logic, and conceptual 

notions such as users, role and processes, and apply their own paradigm on collaborating 

disciplines regardless of fit (Low et al., 1996; Green, 1994; Fetzer, 1988; Leith, 1986). This 

leads to a focus on technical aspects at the disadvantage of other aspects. Software 

engineers “see the world in terms of a computational model and fail to stand outside that 

model” (Leith, 1986, p.552). In fact, there is even a certain internal rivalry between 

software development’s three sub-disciplines computer science, software engineering 

and information systems (Glass et al., 2004). 

Evidence of a dominance of software engineering was found in the interview data, 

specifically in statements implying that technological solutions to handle different cultural 

expectations are sufficient representations of culture itself, or the notion that translation 

is equivalent to a mathematical mapping. 

This dominance of engineering in software development has been examined repeatedly 

in the context of HCI and UX design. Illmensee and Muff (2009) conducted a study how 

agile development methods affected user-centred design (UCD) and UX design. UCD 

processes were observed to be too cumbersome and slow to fit to agile processes 

(Detweiler, 2007), and it was concluded UCD and UX need to adapt to engineering. 

Abdelnour-Nocera et al. (2007) found that the quickly iterating process can make it 

difficult for developers to consider user needs. 

In a practical case study, Sy (2007) contrasted UCD processes in waterfall and agile 

environments. A particular problem was that iterations were too short to prepare a 

design, conduct testing, and provide results in time. Sy proposes staggering UCD tasks 

across multiple iterations so that through advance planning, testing of a design skips one 

iteration. The study is an illustrative example of the influence software development 

models have on related non-engineering processes because it illustrates the wide range 

of consequences and necessary adaptations following a change from linear to iterative 

development. 
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Zhang et al. (2003) examined the role of HCI design in software development and 

concluded that HCI aspects are not considered sufficiently in development models 

because these are based on organisational needs, not human needs, along with a 

misconception that HCI only concerns the visible interface design such as screen and 

menu layout, colour choice and icon design. 

But accessibility, usability and hedonistic enjoyment of software sit at the boundary 

between social aspects of computing and software development and are quite different 

from software engineering (Low et al., 1996): software engineers prefer to tackle hard 

problems (Robinson et al., 1998), but UX matters are soft problems. Software engineering 

is based on finding commonalities by ignoring differences, whereas UX is based on 

ignoring commonalities and examining differences towards improvement (Christiansen, 

2010). 

Accordingly, there have been calls to further integrate UX and HCI development into the 

overall development process (e.g. Zhang et al., 2003; Maxwell, 2002), just as other 

activities which are used during software development (Kruchten, 2005; Bunting et al., 

2002). These mirror similar calls mentioned in chapter 2 regarding an integration of 

localisation into software development, reported integration problems of non-

engineering processes (e.g. Smith et al., 2004), and calls by Andelfinger (2002) to 

integrate disciplinary, methodological and procedural practice of other disciplines into 

software development. This aligns to the research results of Kim and Kang (2008) who 

surveyed 243 managers of cross-functional teams and identified trust, cohesion, and an 

alignment of goals, visions and professional culture as success factors. Randall et al. 

(1993) have equally suggested an examination of interdisciplinary work during systems 

design, but considered the interdisciplinary gap between software engineer and user. 

Does that mean that dominance of software engineering extends to the development of 

international software, including localisation? Klein (2005, p.44) asserts that in 

interdisciplinary collaboration, “status hierarchies and hidden agendas will […] interfere”, 

and indeed localiser interviewees certainly report a feeling of little control over the 

quality of their work, and Pym (2008) refers to localisers being in a servile position. As 

discussed, many accounts imply a tendency to consider translation a technical concept 
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and localisation a larger feature to be implemented through technology. Insofar, 

localisation encounters the same problems as UX design. 

One of the ways in which the dominance establishes itself is via a locus of power. The 

interview accounts show that internationalisation choices, e.g. if and how to 

internationalise, is made by developers due to their ownership of the source code. 

Organisational decisions are made not necessarily by developers themselves, but 

certainly on the developer side. Further, localisers depend on context information and of 

course sources from developers in order to localise software. 

The results show not only the apparent hierarchy here, they also illustrate different 

consequences depending on how developers act, for example when choosing outsourcing 

or refusing to provide additional information. 

4.3.4 Authority and Hierarchy 

French and Raven (1959) define five types of power: legitimate power derived from a 

hierarchy, reward power obtained through the ability to reward, coercive power obtained 

from the ability to punish or use force, expert power obtained through specialist skills or 

knowledge, and referent power obtained through social support. 

If one accepts that the customer-provider relationship between developers and localisers 

might create a hierarchy, then the power that developers hold over localisers would be 

legitimate power. Otherwise, since customers generally reward as similar to that between 

a customer and a provider, then this might be a relationship of reward power. However, 

assuming that the previously discussed dominance of software engineering is at work, a 

coercive power relationship is indicated. In each case, developers drive activities of 

localisers that are understood to be less than optimal for localisation. 

A dominance of software engineering might explain the underappreciation of linguistic 

processes or that requirements of linguistic quality might not receive as much concern as 

needed in a larger software development process. However, the interview results also 

showed localisers apparently conforming to this hierarchy, e.g. by silently accepting a lack 

of context information or engaging in an organisational structure detrimental to the 

quality of their work. These cannot be explained by a power advantage on the side of 

developers alone. 
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Research exists on the potential effects of hierarchy and authority on behaviour. Arguably 

the two most prominent might be the agentic state theory and the authority gradient. 

The agentic state theory was developed to explain results of Stanley Milgram’s 

experiment on obedience to authority figures (Milgram, 1963), in which participants were 

led to act immorally through nothing else than perceived authority. The agentic state 

theory says that people may enter an agentic state, i.e. act on another person’s will or as 

another person’s agent, if that other person is seen as legitimate authority that will take 

responsibility for the action (Milgram, 1974). 

Authority gradients have been used to explain observed behaviour in the context of 

medical operations and airplane operations (Hagen, 2013; White, 2012; Cosby and 

Croskerry, 2004), when operating team members and crew accepted errors of authority 

figures or superiors without contradiction despite discerning the error, sometimes with 

fatal consequences for others or even themselves. The authority gradient refers to a lack 

of communication of hierarchically lower team members in order to avoid being in 

contradiction to authority. 

Both agentic state theory and authority gradient have been developed in much more 

severe and critical contexts than the development of international software generally is, 

and with arguably much more stress for the hierarchically lower individual than was 

apparent from the interview accounts. 

Yet both theories fit interview accounts. Some accounts suggest that in an outsourcing 

setup, localisers might perceive a hierarchy gradient in the customer-provider 

relationship and thus an authority relationship in the sense of the agentic state theory. 

While Milgram’s original experiment bears no resemblance to what happens during 

localisation, the agentic state theory merely defines conditions under which an individual 

will act unconditionally on another person’s orders, which fits to e.g. a localiser following 

unsuitable processes. Further, it is reasonable for localisers to think that since the 

unsuitable process is the choice of developers, they will also take responsibility for 

consequences such as detrimental quality. 

However, there are problems. The agentic state theory seems to have been derived 

inductively, and its fit to actual observations is a matter of debate (Nissani, 1990). 
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Further, the agentic state theory explains conformity behaviours merely through 

authority. 

The authority gradient, on the other hand, is an explanation of obedience in a 

professional work relationship and based on behaviour observed in practice. Developers 

are still the erring authority and remain undisputed by the specialist in a hierarchically 

lower position who wants to save his status. In the interview accounts, the status would 

be the business relationship between developer and localiser. While not being a perfect 

fit as localisation issues seem to be blamed on the localisers after all, it arguably aligns 

with the passivity of a customer-is-king or work-to-rule attitude noted in a number of 

accounts. 

However, there is yet another theory that might explain the observed social dynamics 

while completely doing away with the assumption of authority or dominance. 

4.3.5 The Theory of Agency 

The theory of agency, also referred to as principal-agent relationship, refers to the 

behaviour of agents and principals with different interests and asymmetric knowledge. 

Principals employ agents to act on their behalf, but the agent can use his advantage in 

knowledge or information to keep the principal in the dark (Jensen and Meckling, 1976). 

This theory has been widely applied in many economic contexts. In software 

development, it has been applied to explain loss of quality through developers taking 

shortcuts in order to alleviate schedule pressure (Austin, 2001) and to develop incentive 

schemes to overcome unaligned goals of software companies and its employees (Banker 

and Kemerer, 1992). 

Primary conditions of a principal-agent relationship are differing incentives for agent and 

principal and an information advantage of the agent. The development side is the 

principal, who is a customer of a localisation side, i.e. a freelance translator or LSP, in the 

role of an agent. The development side is incentivised by paying the localisation side for a 

good localisation. In some instances of principal-agent relationship, the agent is 

incentivised to keep profit up. Here, localisers are incentivised to keep cost and effort 

down and fulfilling the developer’s expectation not to be bothered. This is achieved by 

not conducting research and not asking for additional information. The information 
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advantage of localisers towards developers is the developers’ inability to 

comprehensively test localisation quality, understand translation complexities or evaluate 

localiser activities. The general reduction of individual effort in a group setting is called 

social loafing (Latane et al., 1979). The specific dynamic suspected here has been referred 

to by Alchian and Demsetz (1972) as shirking in group work enabled by the 

disproportionate cost of metering each group member’s performance. And indeed, it has 

been established that localisation testing is effortful. It seems to align with Durkheim’s 

(1893, in Haralambos et al., 2004) organic solidarity in an industrial society where 

specialisation has rendered social solidarity based on similarity ineffective. In such a 

society, self-interests of individuals need to be regulated by rules and contracts. 

4.3.6 Organisational Control in Software Localisation 

Initially, the terms localiser and developer in this research referred to individuals. 

However, as this present discussion progresses, they have come to include software 

companies and LSPs. It sets a different context for an understanding of the potential 

difficulties observed in the agency model. LSPs are not linked to a specific project in the 

same way software companies are. They have little attachment, and move from one 

project to the next with little guarantee of continuity. And if it is the customer’s 

expectation to ‘protect’ developers from interacting with translators, then an LSP will 

inadvertently act as a filter, despite better knowledge and with all the conceivable 

limitations this brings with it. LSPs and freelancers judge their work as vendors aiming at 

customers’ contentedness. In that function, actual localisation quality is a secondary 

priority. The strict separation of translation and development leads to localisation issues. 

This could be resolved easily by reducing the separation. So why is this insisted upon? 

During research of the Tavistock Institute, it was observed that in two groups of miners, 

productivity of the social group, where workers knew each other across shifts, was 25% 

higher and absence from work 60% lower compared to a group where workers did not 

know each other and work had been partly automated. The difference was explained 

through a lack of trust which affects the work habits of people who know they work in a 

highly risky business and whose wellbeing is dependent on the conscientiousness of their 

co-workers (Trist and Murray, 1990). So, once miners did not know their colleagues from 

other shifts anymore, they double-checked work done in previous shifts before working 
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themselves in order to ensure their own safety. Bafflingly, it was found that neither 

management nor unions were interested in the superior aspects of social, autonomous 

groups with less automation, concluding that the partialised system, as it was called, 

sacrifices efficiency for control and power. 

Similarly, it has been suggested that automation and computer usage at the workplace 

leads to the loss of skills, so-called de-skilling, on the side of workers (Smith, 2013; Kling, 

1996a, 1996b). Braverman (1999) and Zuboff (1988) have suggested that this is a 

deliberate attempt by management to minimise work of skilled workers and strengthen 

existing hierarchies in an implementation of scientific management: as much work-

specific knowledge as possible is moved into the organisation, its processes and tools, so 

that eventually the workers are dependent on it for work. 

There is no quantitative evidence how much a more inclusive approach to translation 

would improve efficiency. There are interview statements suggesting that translation 

would be faster and more efficient if the separation between translators and engineers 

were less strict and there would be less bureaucracy. However, some accounts might also 

be interpreted to mean that the disadvantages of the LSP model, i.e. strict separation and 

automation, are deliberately ignored. So, the findings of this research fit into the pattern 

already discovered in the Tavistock studies, and it can be hypothesized whether their 

conclusions, i.e. a drive for management control overriding operational efficiency, holds 

in software localisation as well. 

In fact, it is not hard to imagine that CAT and MT technologies take over more and more 

work aspects in translation and lead to a de-skilling of translators, as argued by Séguinot 

(2007) and reported by translators themselves (LeBlanc, 2013). The controlling effect of 

mechanisation, automation and in this context also information technology has been 

widely discussed (e.g. Orlikowski, 1991; Browne, 2005). Even software engineering has 

been suggested to be subject to de-skilling as a consequence of division of labour and 

increasing use of programming aids that fragment the work, e.g. structured or object-

oriented programming (Glass, 2005; Friedman, 1993). 
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4.4 Summary 

This chapter presented and discussed the findings from the qualitative part of our 

research. Based on interview accounts, a grounded theory of interdisciplinary 

collaboration in software localisation was created. Interview accounts and the theory 

were discussed in the light of literature on software localisation and software 

development previously discussed in the literature review, and additional research and 

literature on organisational relationships and the sociology of work. Those findings allow 

return to those research questions prompting the interviews. 

RQ 1 asked how localisation is conducted individually and collaboratively, and what 

shapes the activities of developers and localisers. Analysis of the interview accounts show 

a broad range of activities and processes employed to localise software. Besides their 

main activities, e.g. programming or translating, interviewees’ activities with regards to 

localisation were focused on integrating their work, including the required input and the 

resulting deliverables, into the overall software development by organising or facilitating 

the collaboration with the respective other discipline. In this, the work of developers and 

localisers is strongly influenced by the strategic choice of conducting localisation in-house 

or out-of-house. Activities are shaped by external influences such as success criteria, 

limitations and affordances of tools, and limitations and tasks specified in the processes 

prescribed in the overall organisation. Additionally, the activities are modified to avoid or 

handle conflicts, i.e. failures and impasses, previously experienced or expected in 

localisation. 

RQ 2 asked how localisation issues are caused during localisation and internationalisation. 

According to the theory generated from the interview accounts, localisation issues can be 

results of the hierarchical relationship between developers and localisers and potentially 

unaligned goals. Developers, as guardians of the code and possible customers of 

localisation in an outsourcing model, enjoy a privileged position compared to localisers, 

extending to the developers’ priorities. As a consequence, their relationship with 

localisers can easily develop towards a dysfunctional regime in which processes and tools 

cater more and more for developers and development, and ever less for localisers and 

localisation. The more dysfunctional the relationship is, the less localisers request 

necessary information from developers, notify developers of potential issues, or 
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eventually focus on the localisation projects’ goals, and the more they shift their work 

and activities towards their unique interests, and vice versa. Eventually, developers and 

localisers settle into a relationship in which localisation factors have been superseded by 

alternative interests of the collaborating professionals. Those goals of software 

localisation which are not among their priorities are compromised and cost, quality or 

schedule issues occur. 
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Chapter 5 Quantitative Results 

In the introduction, it was found that an examination of the distinctness of developers 

and localisers (RQ3) and dependencies between localisation effort and properties of 

development projects (RQ4) lends itself to the use of quantitative methods. Chapter 3 

discussed a research method to examine these through a survey gathering biographical 

data of participants, project-related information, and instruments measuring cultural 

competence, attitude towards localisation, self-efficacy in localisation, and localisation 

effort. Hypotheses, survey construction and analysis methods were detailed in 

subsections 3.3.2 and 3.3.4. This chapter will present the results of the statistical analysis. 

5.1 Sample Description 

Of 301 respondents who started the survey, 175 did not complete it. As a convenience 

sample was used, both non-responses and non-completers are anonymous so it was not 

possible to contact them about their reasons for cancelling. Of the 126 survey 

completions, 6 were ruled out because the respondents had no experience in the 

development of localised software. This left a total of 120 survey submissions for analysis. 

The sample is sufficient with regards to the intended statistical tests. The balanced role 

distribution allows comparison of information from respondents in technical roles to 

those in non-technical roles. Equally, respondents’ native languages are balanced enough 

in the sample to allow comparisons between native English and non-native English 

respondents. There is no perceivable skew that would invalidate a cross-sectional study of 

continuous variables such as cultural competence and attitude towards localisation.  

Beyond this, biographical details suggest that the sample is generally not homogeneous. 

There is, however, a clear limitation regarding nationality: most respondents are either 

German, British, or US-American. Accordingly, the sample exhibits a clear skew towards 

the German and English language. Despite major offshoring destinations such as India 

virtually not being represented in the survey, the results should still be representative 

since Europe and the USA are among the dominant industry players in software 

development and IT spending, and house the top 25 software companies (United Nations, 

2012), hence it must be considered that the majority of development and design 

decisions are made in these nations. 
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5.1.1 Respondents 

The average age of respondents was 38.4 years, with the youngest respondent being 17 

and the oldest 63 years old. 89 respondents (74%) were male. On average, respondents 

had been working on international software for 9.0 years, ranging from 1 year to 35 

years. Most respondents were German (27%), followed by British (19%) and US-American 

(10%). Three respondents (2.5%) did not identify a specific nationality. The remaining 

respondents were from 24 other countries. 

Table 5-1 Nationality of respondents 

Country Frequency Percent 

Argentinian 1 0.8 

Austrian 2 1.7 

Belgian 2 1.7 

Brazilian 3 2.5 

British 23 19.2 

Canadian 1 0.8 

Chinese 3 2.5 

Danish 2 1.7 

Dutch 2 1.7 

English 2 1.7 

Finnish 2 1.7 

French 3 2.5 

German 32 26.7 

Hungarian 1 0.8 

Indian 4 3.3 

Indonesian 1 0.8 

Irish 2 1.7 

Italian 2 1.7 

Malaysian 1 0.8 

Nepalese 1 0.8 

Palestinian 1 0.8 

Polish 4 3.3 

Russian 2 1.7 

Spanish 5 4.2 

Swedish 1 0.8 

Tunisian 2 1.7 

unknown 3 2.5 

US-American 12 10.0 
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The most common highest education level was a master’s degree or equivalent (53%), 

followed by a bachelor’s degree or equivalent (30%), a doctoral degree or equivalent 

(10%), and a high school degree or equivalent (8%). For the roles, multiple responses 

were possible. 37% of the respondents described their usual roles in software 

development as software engineer, 24% as user interface designer, 27% as software 

architect, 10% as business analyst, 38% as project manager, 32% as translator/localizer, 

and 10% as technical editor. Overall, 70 participants were grouped as developers and 50 

as localisers. 

Table 5-2 Highest level of education of respondents 

Degree Frequency Percent 

High School, Grammar school or equivalent 9 7.6 

Bachelor's degree or equivalent 35 29.7 

Master's degree or equivalent 62 52.5 

Doctoral degree or equivalent 12 10.2 

 

Table 5-3 Role of respondents 

Role N Percent Percent of cases 

Software engineer 43 20.8 37.4 

User interface designer 28 13.5 24.3 

Software architect 31 15.0 27.0 

Business analyst 12 5.8 10.4 

Project manager 44 21.3 38.3 

Translator/localiser 37 17.9 32.2 

Technical editor 12 5.8 10.4 

Total 207 100.0 180.0 

 

Table 5-4 Localisation training of survey respondents 

Knowledge source N Percent Percent of cases 

Literature about localization 56 26.4 46.7 

Literature partly about localization 49 23.1 40.8 

Informal training 62 29.2 51.7 

Formal training 22 10.4 18.3 

None of the above 23 10.8 19.2 

Total 212 100.0 176.7 
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18% of all respondents had received formal training about software localisation, 

compared to 19% without any training. This, however, strongly depended on role. When 

considering only respondents in a development role, the numbers for formal training 

decreased by almost half to 6% and the numbers for respondents with none of the listed 

educational measures increased by almost half to 15%, whereas the numbers for the 

remaining options stayed within 10% of their value for all respondents. Most of the 

formal training was received by translators. 

5.1.2 Projects of International Software 

Many items asked participants about properties of their most recent localised software 

project. 71% of these projects were application software, 33% were websites, 19% were 

system software, 16% were mobile applications, 9% were video games, and 7.5% were 

firmware. Typical users of these projects, as reported by the respondents, were 

companies (56%), followed by private end-users (54%), educational institutions (22%), 

government institutions (20%), software developers (15%), and finally scientists (13%). 

Table 5-5 Software types of reported projects 

Software type N Percent Percent of cases 

Application 85 45.5 70.8 

Video Game 11 5.9 9.2 

Website 40 21.4 33.3 

Mobile App 19 10.2 15.8 

System Software 23 12.3 19.2 

Firmware 9 4.8 7.5 

Total 187 100.0 155.8 

 

Table 5-6 User types of reported projects 

User type N Percent Percent of cases 

Private end-users 65 30.1 54.2 

Software developers 18 8.3 15.0 

Scientists 16 7.4 13.3 

Companies 67 31.0 55.8 

Government institutions 24 11.1 20.0 

Educational institutions 26 12.0 21.7 

Total 216 100.0 180.0 
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Of interest were also the frequencies of what parts of software were localised. In almost 

all projects (95%), the user interface text was localised. About two thirds of all projects 

also localised data formatting (68%), and units of measurements (63%). Other forms of 

localisation are much rarer, with about a quarter of all projects localising functionality 

(29%), navigation and layout (26%), followed by colours, images and sounds (19%), and 

feature sets (18%). 

Table 5-7 Localised software elements of reported projects 

Localised software elements N Percent Percent of cases 

User interface text 114 29.8 95.0 

Formatting, e.g. time and date and sort orders 82 21.5 68.3 

Units, e.g. measurements, currency and paper sizes 75 19.6 62.5 

Colours, graphics and sound 23 6.0 19.2 

Navigation and layout 31 8.1 25.8 

Functionality 35 9.2 29.2 

Feature sets 21 5.5 17.5 

Unknown 1 0.3 0.8 

Total 382 100.0 318.3 

 

The vast majority of projects, 94 (80%), were commercial, compared to 21 (18%) non-

commercial projects and 3 (3%) projects of unknown commerciality. 54 projects (45%) 

were localised into 1-5 languages, followed by 27 projects (23%) into 6 – 15 languages, 21 

projects (18%) projects into 16 – 30 languages, and 17 projects (14%) into more than 30 

languages. 

Table 5-8 Number of languages of reported projects 

# of languages Frequency Percent 

1 - 5 54 45.0 

6 - 15 27 22.5 

16 - 30 21 17.5 

More than 30 17 14.2 

Unknown 1 0.8 

Total 120 100.0 

 

44% of the projects followed an agile approach, 15% of the projects followed a waterfall 

approach, and 3% followed a spiral model approach. 15% of the projects followed no 

development model. 
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Table 5-9 Development model of reported projects 

Development model Frequency Percent 

Waterfall model 19 15.8 

Spiral model 3 2.5 

Agile model 53 44.2 

No particular model 18 15.0 

Unknown 27 22.5 

Total 120 100.0 

 

Translations were provided for the projects by customers (9%), machine translation 

(13%), crowdsourcing (16%), employees in a non-translation role (24%), employed 

translators (34%), freelance translators (41%), and translation agencies (43%). 3% of 

respondents did not know how translations for their projects were provided. 

For the transmission of translations between translators and developers, projects used 

random file formats (4%), XLIFF (15%), self-developed formats (18%), program files (20%), 

XML (24%), standard desktop formats including Excel (27%), and online databases, TMs or 

CMS (36%). 9% of respondents did not know how translations were transported. 

5.2 Variable Distributions and Data Preparation 

Prior to analysis, the data was screened for false or inappropriate data such as 

monotonous replies indicating a click-through rather than thoughtful participation, and 

inexplicable outliers. Data screening showed that one respondent entered a nonsensical 

experience length in software localisation, two had not clearly identified their highest 

education level, and three had not clearly identified their nationality. Three respondents 

had answered all CQ-related items monotonously, two had not specified commerciality of 

their project, one did not know what elements were localised, 27 did not know the 

development model of their project, and one did not know the number of target locales. 

In order to select the correct statistical tests, the distribution of tested variables needs to 

be known. Specifically, the normality or non-normality of a variable’s distribution 

determines the suitability of different correlation tests. For example, the Pearson test to 

test the correlation of two continuous variables requires both variables to follow a normal 

distribution. Otherwise, the Spearman rank correlation is to be used (Bryman and Cramer, 
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1995). Because of the sample size of n < 2000, the Shapiro-Wilk test was used to test for 

normality (Norušis, 2006). Table 5-10 shows the distributions of the continuous variables. 

Table 5-10 Variable distributions 

Construct Shapiro-Wilk sig. (p) Distribution 

Cultural Competence .01 not normal 

Metacognitive Cultural Competence .00 not normal 

Cognitive Cultural Competence .08 normal 

Motivational Cultural Competence .00 not normal 

Behavioural Cultural Competence .00 not normal 

Attitude Towards Localisation .00 not normal 

Localisation Effort .02 not normal 

 

To see whether non-native English speakers score higher on cultural competence than 

native English speakers, the mean score of both groups was compared. English as native 

language was inferred from nationality: participating nationals of a country in which 

English is the first language, e.g. the UK, USA, Canada, Australia, New Zealand, or South 

Africa, were sorted into the group of native English speakers. Participating nationals from 

any other country were sorted into the group of non-native English speakers. Three 

respondents’ completed surveys were not considered for this test as they had not 

disclosed their nationality in the survey. 

5.3 Hypothesis Results 

An overview of all tested hypotheses and data exclusions is shown in Table 5-11. The 

significance threshold for statistical significant was chosen as p < .05. 

Table 5-11 Overview of the survey analysis results 

ID Hypothesis Test p Result n Exclusion reason 

H1 Developers score lower 

than localisers on CQ 

T-Test .00  116 monotonous CQ 

H1a … on metacognitive CQ T-Test .01  116 monotonous CQ 

H1b ... on cognitive CQ Pearson .00  116 monotonous CQ 

H1c … on motivational CQ T-Test .12 rejected 116 monotonous CQ 

H1d … on behavioural CQ T-Test .09 rejected 116 monotonous CQ 

H2 Developers & localisers 

assume different loc.scope  

     

H2a … for UI text Phi coefficient .43 rejected 119 role not clear 

H2b … for formatting Phi coefficient .70 rejected 119 role not clear 
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H2c … for units Phi coefficient .70 rejected 119 role not clear 

H2d … for colours, sound etc. Phi coefficient .09 rejected 119 role not clear 

H2e … for navigation Phi coefficient .11 rejected 119 role not clear 

H2f … for functionality Phi coefficient .36 rejected 119 role not clear 

H2g … for feature sets Phi coefficient .39 rejected 119 role not clear 

H2h Developers assume a 

smaller localisation scope 

than localisers 

T-Test .27 rejected 119 role not clear 

H3 Developers score lower on 

ATL than localisers 

T-Test .01  119 role not clear 

H4 Developers assume less 

responsibility for 

localisation than localisers 

Phi coefficient .63 rejected 119 role not clear 

H5 Developers have a higher 

SEL than localisers 

T-Test .52 rejected 119 role not clear 

H5a Developers have a higher 

SEU than localisers 

T-Test .04  119 role not clear 

H5b SEL is correlated with SEU Spearman .00  120  

H6 Cost, quality and time 

priorities differ between 

developers and localisers 

Chi-square .43 rejected 119 role not clear 

H7 Software success factor 

priorities differ between 

developers and localisers 

     

H7a … on maintainability T-Test .02  119 role not clear 

H7b … on reliability T-Test .12 rejected 119 role not clear 

H7c … on correctness T-Test .56 rejected 119 role not clear 

H7d … on execution Speed T-Test .09 rejected 119 role not clear 

H7e … on usability T-Test .09 rejected 119 role not clear 

H7f … on power T-Test .01  119 role not clear 

H7g … on popularity T-Test .04  119 role not clear 

H7h … on financial success T-Test .29 rejected 119 role not clear 

H8 Localisation training is 

correlated with CQ 

Spearman .00  116 monotonous CQ 

H8a … with metacognitive CQ Spearman .00  116 monotonous CQ 

H8b ... with cognitive CQ Spearman .01  116 monotonous CQ 

H8c … with motivational CQ Spearman .01  116 monotonous CQ 

H8d … with behavioural CQ Spearman .00  116 monotonous CQ 

H8e For developers, loc.training 

is correlated with CQ 

Spearman .03  70 developers only 

H8f … with metacognitive CQ Spearman .02  70 developers only 

H8g ... with cognitive CQ Spearman .17 rejected 70 developers only 

H8h … with motivational CQ Spearman .06 rejected 70 developers only 

H8i … with behavioural CQ Spearman .00  70 developers only 
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H9 Native English speakers 

score lower than non-

native Engl. speakers on CQ 

T-Test .70 rejected 113 3 nationality 

unclear; 4 

monotonous CQ 

H9a … on metacognitive CQ T-Test .66 rejected 113 see above 

H9b … on cognitive CQ T-Test .60 rejected 113 see above 

H9c … on motivational CQ T-Test .92 rejected 113 see above 

H9d … on behavioural CQ T-Test .56 rejected 113 see above 

H9e Native German speakers 

score lower on CQ than 

non-German speakers 

T-Test .93 rejected 113 see above 

H10 LE is affected by s/w type…      

H10a … application T-Test .24 rejected 120  

H10b … video game T-Test .00  120  

H10c … website T-Test .82 rejected 120  

H10d … mobile app T-Test .46 rejected 120  

H10e … system software T-Test .03  120  

H10f … firmware T-Test .23 rejected 120  

H11 LE is affected by user type…      

H11a … private end users T-Test .18 rejected 120  

H11b … software developers T-Test .22 rejected 120  

H11c … scientists T-Test .24 rejected 120  

H11d … companies T-Test .43 rejected 120  

H11e … government institutions T-Test .36 rejected 120  

H11f … educational institutions T-Test .26 rejected 120  

H12 LE is affected by customer-

user identity 

ANOVA .83 rejected 109 customer-user 

identity not clear 

H13 LE is affected by number of 

target languages 

ANOVA .04  119 # of languages 

unknown 

H14 LE is affected by 

development model 

ANOVA .00  90 3 spiral model; 

27 model unkn. 

H15 LE is affected by project 

commerciality 

ANOVA .15 rejected 114 commerciality 

not known 

H16 ATL is correlated with CQ Spearman .00  116 monotonous CQ 

H16a For developers, ATL is 

correlated with CQ 

Spearman .06 rejected 81 developers only 

H17 SEL is correlated with CQ Spearman .06 rejected 116 monotonous CQ 

H18 SEL is correlated with ATL Spearman .00  120  

 

For each statistical test used, a separate table shows the tested hypotheses and result 

details results. Independent sample t-test results (Table 5-12) include mean (M) and 

standard deviation (SD) of each group G1 and G2, t statistic, degree of freedom df, and 

significance p. Pearson correlation test results (Table 5-13) include correlation coefficient 
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r and significance p. Chi-squared test results (Table 5-14) include Chi-square value, 

degrees of freedom df, and significance p. Phi coefficient test results (Table 5-15) include 

Phi value and significance p. Spearman rank correlation test results (Table 5-16) include 

correlation coefficient r and significance p. ANOVA results (Table 5-17) include degrees of 

freedom df, F value of the relationship between explained and unexplained variance, 

significance p, and for significant results effect size f as well as Tukey honest significant 

differences (HSD, Table 5-18 and Table 5-19). 

Table 5-12 Independent samples t-test results 

ID Hypothesis G1 M / SD G2 M / SD t df p 

H1 Developers score lower than 

localisers on CQ 

74.59 / 16.99 85.23 / 16.25 -3.31 114 .00 

H1a … on metacognitive CQ 17.01 / 4.30 19.14 / 3.33 -2.78 114 .01 

H1c … on motivational CQ 22.36 / 4.73 23.93 / 5.80 -1.59 114 .12 

H1d … on behavioural C 20.08 / 5.03 21.81 / 5.81 -1.69 114 .09 

H2h Developers assume a smaller 

loc. scope than localisers 

4.46 / 1.72 4.82 / 1.77 -1.10 117 .27 

H3 Developers score lower on 

ATL than localisers 

42.43 / 7.01 45.80 / 6.50 -2.61 117 .01 

H5 Developers have a higher SEL 

than localisers 

9.59 / 2.51 9.24 / 3.30 .65 117 .52 

H5a Developers have a higher 

SEU than localisers 

10.26 / 2.88 9.18 / 2.54 2.07 117 .04 

H7 Software success factor 

priorities differ between 

developers and localisers 

     

H7a … on maintainability 4.41 / 1.87 5.20 / 1.50 -2.41 117 .02 

H7b … on reliability 2.76 / 1.49 2.36 / 1.15 1.55 117 .12 

H7c … on correctness 3.05 / 1.63 2.34 / 1.81 -.59 117 .56 

H7d … on execution speed 5.22 / 1.63 4.71 / 1.39 1.73 117 .09 

H7e ... on usability 2.47 / 1.48 2.00 / 1.40 1.72 117 .09 

H7f … on power 6.54 / 1.36 5.80 / 1.77 2.57 117 .01 

H7g … on popularity 6.22 / 1.86 6.87 / 1.34 -2.04 117 .04 

H7h … on financial success 5.34 / 2.50 5.82 / 2.19 1.08 117 .29 

H9 Native English speakers score 

lower than non-native 

English speakers on CQ 

77.56 / 19.15 78.92 / 16.81 -.39 111 .70 

H9a … on metacognitive CQ 17.56 / 4.80 17.92 / 3.75 -.44 111 .66 

H9b … on cognitive CQ 19.43 / 6.58 20.16 / 7.07 -.53 111 .60 

H9c … on motivational CQ 23.03 / 5.75 22.92 / 5.04 .10 111 .92 

H9d … on behavioural CQ 21.19 / 5.62 20.55 / 5.37 .59 111 .56 
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H9e Native German speakers 

score lower on CQ than non-

German speakers 

78.23 / 17.33 78.58 / 17.68 -.09 111 .93 

H10 LE is affected by s/w type…      

H10a … application 34.29 / 7.56 31.97 / 10.37 1.20 49.55 .24 

H10b … video game 40.72 / 6.07 32.90 / 8.40 3.01 118 .00 

H10c … website 33.88 / 8.58 33.49 / 8.51 .24 118 .82 

H10d … mobile app 34.95 / 8.72 33.37 / 8.48 .74 118 .46 

H10e … system software 37.09 / 8.82 32.79 / 8.25 2.21 118 .03 

H10f … firmware 36.89 / 4.51 33.35 / 8.70 2.06 13.46 .23 

H11 LE is affected by user type…      

H11a … private end users 34.57 / 8.42 32.49 / 8.53 1.34 118 .18 

H11b … software developers 35.89 / 9.39 33.22 / 8.32 1.23 118 .22 

H11c … scientists 35.94 / 8.34 33.26 / 8.51 1.18 118 .24 

H11d … companies 34.16 / 8.06 32.92 / 9.05 .79 118 .43 

H11e … government institutions 35.04 / 8.71 33.26 / 8.45 .92 118 .36 

H11f … educational institutions 35.27 / 9.11 33.16 / 8.31 1.12 118 .26 

 

As can be seen, it was found that developers score significantly lower on CQ and ATL than 

localisers, whereas the difference in SEL is not statistically significant. Developers 

prioritise maintainability and popularity higher than localisers, but prioritise application 

power lower. Developers and localisers reported no statistically significant differences for 

localisation responsibility. Prioritisation differences of reliability, correctness, execution 

speed, usability, and financial success were not statistically significant. Overall, developers 

and localisers should be assumed to prioritise the given software success factors the 

same. Similarly, the difference in project management priorities was also statistically not 

significant. 

Table 5-13 Pearson test results 

ID Hypothesis r p 

H1b Developers score lower than localisers 

on cognitive CQ 

-.34 .00 

 

Table 5-14 Chi-square test results 

ID Hypothesis Chi-square df p 

H6 Project management priorities differ between 

developers and localisers 

4.87 2 .43 
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Table 5-15 Phi coefficient test results 

ID Hypothesis Phi p 

H2 Developers assume a different 

localisation scope than localisers 

  

H2a … for UI text -.07 .43 

H2b … for formatting -.04 .70 

H2c … for units -.04 .70 

H2d … for colours, graphics, sound -.15 .09 

H2e … for navigation -.15 .11 

H2f … for functionality .08 .36 

H2g … for feature sets -.08 .39 

H4 Developers assume less responsibility 

for localisation than localisers 

.05 .63 

 

Table 5-16 Spearman rank correlation test results 

ID Hypothesis r p 

H5b SEL is correlated with SEU .44 .00 

H8 Localisation training is 

correlated with CQ 

.29 .00 

H8a … with metacognitive CQ .26 .00 

H8b … with cognitive CQ .24 .01 

H8c … with motivational CQ .23 .01 

H8d … with behavioural CQ .31 .00 

H8e For developers, localisation 

training is correlated with CQ 

.27 .03 

H8f … with metacognitive CQ .28 .02 

H8g … with cognitive CQ .17 .17 

H8h … with motivational CQ .22 .06 

H8i … with behavioural CQ .36 .00 

H16 ATL is correlated with CQ .29 .00 

H16b … with metacognitive CQ .32 .00 

H16c … with cognitive CQ .27 .01 

H16d … with motivational CQ .21 .02 

H16e … with behavioural CQ .21 .03 

H16a For developers, ATL is 

correlated with CQ 

.22 .06 

H16f … with metacognitive CQ .26 .03 

H16g … with cognitive CQ .14 .22 

H16h … with motivational CQ .13 .27 

H16i … with behavioural CQ .11 .38 

H17 SEL is correlated with CQ .18 .06 

H28 SEL is correlated with ATL .42 .00 
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Table 5-17 ANOVA test results 

ID Hypothesis df F Eta-squared p 

H12 LE is affected by customer-user identity 2, 106 .19 - .83 

H13 LE is affected by number of target languages 3, 115 2.78 0.07 .04 

H14 LE is affected by development model 2, 87 7.03 0.14 .00 

H15 LE is affected by project commerciality 1, 112 2.15 - .15 

 

Table 5-18 Post-Hoc Tukey HSD result for H13 

# languages # languages MD Std. Error p 

95% Confidence Interval 

Lower Bound Upper Bound 

1 - 5 6 - 15 -.72222 1.96603 .983 -5.8477 4.4032 

16 - 30 -4.80688 2.14511 .118 -10.3992 .7854 

More than 30 -5.09259 2.31971 .131 -11.1401 .9549 

6 - 15 1 - 5 .72222 1.96603 .983 -4.4032 5.8477 

16 - 30 -4.08466 2.42692 .337 -10.4116 2.2423 

More than 30 -4.37037 2.58254 .332 -11.1030 2.3623 

16 - 30 1 - 5 4.80688 2.14511 .118 -.7854 10.3992 

6 - 15 4.08466 2.42692 .337 -2.2423 10.4116 

More than 30 -.28571 2.72135 1.000 -7.3803 6.8088 

More than 

30 

1 - 5 5.09259 2.31971 .131 -.9549 11.1401 

6 - 15 4.37037 2.58254 .332 -2.3623 11.1030 

16 - 30 .28571 2.72135 1.000 -6.8088 7.3803 

 

Table 5-19 Post-Hoc Tukey HSD result for H14 

Development 

Model 

Development 

Model MD Std. Error p 

95% Confidence Interval 

Lower Bound Upper Bound 

Waterfall Agile -.92056 2.19742 .908 -6.1603 4.3191 

None 7.39181 2.70302 .020 .9465 13.8371 

Agile Waterfall .92056 2.19742 .908 -4.3191 6.1603 

None 8.31237 2.24190 .001 2.9666 13.6581 

None Waterfall -7.39181 2.70302 .020 -13.8371 -.9465 

Agile -8.31237 2.24190 .001 -13.6581 -2.9666 

 

Despite the confirmed difference in CQ, the localisation scope assessment is not 

statistically significant. In other words, while the observed difference between developers 

and localisers in CQ might affects software localisation, it does not affect both discipline’s 

perception what aspects of software should be localised. 
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CQ is weakly correlated with training in localisation, suggesting that the training measures 

queried in the survey are somewhat effective. There is no statistically significant 

association between being a native English speaker and CQ. The data further shows that 

ATL is weakly correlated with CQ, but only for localisers, not for developers. Further, SEL 

is moderately correlated with ATL, but not with CQ. 

There was no statistically significant difference in LE between commercial and non-

commercial projects, nor was LE affected by type of user or whether the user was also a 

customer or not. A statistically significant increase of LE was observed for video games 

and system software, but not for the other software types. LE also increases moderately 

with number of target languages. Further, there is a large effect of software development 

model presence on LE. 

5.4 Discussion 

RQ 3 asked in what regards software developers and localisers are distinct. The results 

show that developers and localisers differ in cultural competence, attitude towards 

localisation, and self-efficacy in usability. They do not differ in self-efficacy in localisation, 

assumption of responsibility towards localisation, prioritisation of software success 

factors, and assessment of localisation scope. 

RQ 4 asked what dependencies exist between localisation effort and properties of 

development projects. The results show that localisation effort increases for some types 

of software, with the number of target languages, and with the presence of a software 

development model. It remains unaffected by most software types, relationship to the 

user, or commerciality of a project. 

The hypotheses confirmed and rejected by the data were suggested by existing literature 

on software localisation and are discussed in that context next. 

5.4.1 Distinctness of Developers and Localisers 

An influence of developer-localiser distinctness on cooperation has been discussed (e.g. 

O’Sullivan, 1989; Honkela et al., 1997), particularly cross-disciplinary knowledge (Bauer 

and Rodrigo, 2004; Russo and Boor, 1993; Sikes, 2011; Immonen and Sajaniemi, 2003a) 

and disposition towards localisation (e.g. Sikes, 2011; Honkela et al., 1997). 
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A number of differences could be confirmed. Developers have a lower cultural 

competence than localisers. However, on the other hand localisers do not have a lower 

self-efficacy in localisation than developers. The relationship localisers have with the 

discipline of software development is just as important as the one developers have with 

localisation (Law, 2003; Immonen and Sajaniemi, 2003a), and in this regard the lack of a 

difference in self-efficacy in localisation suggest that localisers understand the technical 

aspects of localisation just as well as developers. Overall, the results suggest that 

localisers seem to have more cross-disciplinary knowledge than developers. Interestingly, 

some of the localisers in the interviews seem to have been acutely aware of this 

advantage. 

It has further been shown in the survey that developers are less positively predisposed 

towards localisation than localisers. However, developers and localisers exhibited only 

minor differences in assessment of software quality priorities, and no differences in 

project management priorities. While this suggests that there are no collaboration issues 

caused by success criteria in software development, e.g. cost and schedule over quality 

(see Boehm, 2011, 2006; Blackburn et al., 1996), it leaves open the possibility that 

software success criteria supersede localisation success criteria, as suggested by Tuffley 

(2003) and Dunne (2011). 

5.4.2 Cultural Competence and the Scope of Localisation 

The research examined cultural competence of developers and localisers based on the 

assumption that developers need cultural awareness (e.g. Ryan et al., 2009; Abufardeh 

and Magel, 2008a; Immonen and Sajaniemi, 2003a), for example to understand 

localisation requirements (Giammarresi, 2011; Kalliomäki et al., 1997; Hoft, 1996). The 

survey results suggest that there are indeed differences in cultural competence between 

localisers and developers. Despite these, opinions regarding localisation scope were 

similar enough that they seem to be unaffected by this cultural competence gradient. 

Regarding the sub-constructs of CQ, it is noteworthy that there are developer-localiser 

differences between metacognitive and cognitive CQ, but not between motivational and 

behavioural CQ. This is surprising as one would assume that localisers have more interest, 

and hence a higher intrinsic motivation, in learning about different cultures. 
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Results were not always as expected when examining factors that might influence cultural 

competence. While it is suggested that developers’ cultural competence can be increased 

with training, this would nonetheless leave their attitude towards localisation unaffected. 

However, it is noteworthy that where Immonen and Sajaniemi (2003a, 2003b) found that 

few of their participants had read any books on software localisation, in this survey 43% 

of participants had reported that they had at least read a book on software localisation, 

and only 25% had not received any kind of formal or informal training. 

Contrary to what is assumed (e.g. Carey, 1998), no statistically significant difference in the 

cultural competence or any of its sub-constructs between native and non-native English 

speakers could be found. There is room for error as the survey did not explicitly ask 

whether English was a native language. Instead, it asked for nationality, and English as 

native language was inferred from that information. It is conceivable that this procedure 

lead to incorrect assignments. Barring this confounding factor, it appears that cultural 

competence is not a matter of being multilingual. This interpretation is supported by 

findings of Khodadady and Shima (2012) who found no correlation between CQ and 

proficiency in English as a foreign language. Hence, adding professionals with a non-

native English background would not automatically bring more cultural competence into 

a development project, nor would a nationally homogeneous development team be less 

cultural competent than an inhomogeneous one. 

The survey assumed that CQ is relevant for software localisation and internationalisation. 

While not conclusively dismissing the notion, recent results by Mor et al. (2015) found 

that metacognitive CQ does not predict performance of Westerners assessing Asian 

values. 

5.4.3 Software Localisation and Project Properties 

In the literature review, it was hypothesised that software development models might 

have an influence on localisation (e.g. Abufardeh and Magel, 2010; Fissgus and Seewald-

Heg, 2005), and that some development models are less suited to work with external 

processes, specifically the agile development model (e.g. Turk et al., 2002). In the survey, 

projects without development methodology exhibited significantly lower localisation 

effort. This suggests that there is indeed a difference between those projects claiming 

usage of a development model and those that do not, contradicting the notion that 
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adopting a development model is pretence without actual meaning (see e.g. Truex et al., 

2000). 

In any way, this difference might merely mean that projects that do not warrant use of 

formalised development methodologies, maybe because of project simplicity or a very 

small development team, also do not warrant high localisation effort. Alternatively, it 

might indicate that a methodology simplifies application of localisation efforts, or that 

developers who develop software according to a formalised method are more inclined to 

invest effort into localisation. In any way, localisation effort did not differ between 

projects using agile and waterfall methodologies. 

As suggested in the literature (e.g. Ryan et al., 2009), there was a positive correlation 

between localisation effort and number of target languages. The more target languages a 

project has, the higher the localisation effort is. This seems like a foregone conclusion 

since more target languages require communication with more translators. It is here 

important to note that none of the items making up the construct LE are obviously 

affected by the number of target languages. In other words, if one accepts that a higher 

LE results in a better localisation quality, then more target languages lead to higher 

localisation quality as well. 

An association between localisation effort and software type was observed for video 

games and system software, both exhibiting higher localisation effort than other software 

types. For video games, this makes sense as these are often content-heavy applications 

requiring text and graphics, but also more culture-related items such as jokes and tropes 

to be adapted to its customers’ locales. Results confirms respective statements by Zhou 

(2011), Callele et al. (2008) and Thayer and Kolko (2004). 

A rationale explaining why system software would exhibit higher localisation effort is not 

as straightforward. Arguably, system software might include embedded software for 

machines in which localisation quality and correctness are critical, e.g. medical 

apparatuses, prompting an increased localisation effort. Other types of software did not 

show a different localisation effort score, contrary to what is expected in the literature 

(e.g. Giammarresi, 2011). 
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Assumptions that localisation effort might be influenced by type of user (e.g. Liu and 

Zhang, 2011), the relationship between developers on one side and customers or users 

on the other side (e.g. DePalma, 2006; Honkela et al., 1997), and the commercial or non-

commercial character of a project (e.g. Exton et al., 2010; Wolff, 2006) could not be 

confirmed in the survey. 

Statements about localisation effort need to be considered in the context of its 

operationalisation in this research. There might be activities that are undertaken in 

software development projects to improve localisation in terms of cost, quality or 

duration that did not find consideration in this operationalisation. While noting that the 

construction and measurement of LE was justified due to the lack of suitable translation 

and localisation quality measures suitable to questionnaires, it must be noted that the 

construct LE itself is speculative since no validity or reliability tests were concluded prior 

to the survey. A large part of the literature review in chapter 2 dealt with localisation 

tools and standards. It is noteworthy that despite a great effort of improving localisation 

tools, the survey data shows only light adoption. While a moderate adoption of machine 

translation and specialised translation systems, e.g. TM, was observed, the proliferation 

of specialised localisation file formats, specifically XLIFF, is still lacking. 

5.4.4 Generalisability of the Sample 

As mentioned in section 3.4, the sample is a convenience sample, which simplifies 

recruitment and can increase participant numbers. However, convenience samples are 

non-probabilistic and as such not representative of the entire population of developers 

and localisers. Identified biases in the sample are for example nationalities (see Table 

5-1). There is a clear skew towards German, British and US-American nationalities, 

probably due to the media in which the call for participation was published. Nationalities 

of global localisation professionals are expected to follow a different distribution, in 

particular regarding German being less emphasized. 

Another potential bias might be a relationship between survey participation/completion 

and attitude towards localisation for developers, i.e. that a more positive attitude 

increases likelihood of survey participation, which might skew the comparison of 

developer and localiser attitudes. However, since the results show a difference in attitude 
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already, presence of an attitude-participation bias would mean that the effect were even 

stronger without it. 

Some survey items might have been defeated by socially or politically preferred answers. 

For example, the test for differences in localisation scope assessment only asks for 

knowledge. One could repeat these tests through an instrument where the actual 

intention of the question is not obvious. 

Almost all incomplete surveys stopped after the biographical data, i.e. in the second 

section, where the perceptions and opinions are queried. It is assumed that most non-

completers stopped here because of the monotony of the test and the implied length of 

the survey. It is assumed that there is no content-related reason for non-completion, e.g. 

non-completers did not mind having their cultural competence measured. It is not 

perceivable why respondents would be sensitive about their cultural competence, 

particularly because the survey is anonymous. 

Some data points were excluded from analysis (see Table 5-11). With one exception 

where the role could not be attributed to either the developer or localiser group, all data 

exclusions were a consequence of the respondents’ presumable lack of knowledge 

regarding the question asked. With one exception, excluded data points were always six 

or less and are numerically unlikely to have an influence on the result. Because 27 

respondents did not specify their projects’ software development models when testing 

for correlation between localisation effort and development method, it is conceivable 

that the missing data had an influence on the result. However, no systematic skew is 

apparent to explain why development model and not knowing it might be related. 

5.5 Summary 

This chapter presented and discussed the results of the quantitative part of this research. 

It was hypothesized that developers and localisers differ measurably across a number of 

items relevant to software localisation. However, a majority of differences could not be 

confirmed. Most importantly, there seems to be no difference regarding the 

interpretation of success and quality criteria for software. On the other hand, gradients 

between developers and localisers in cultural competence and attitude towards 

localisation were confirmed. It was also shown that cultural competence can be, and is, 
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trained, but does not affect attitude towards localisation. Further quantitative results 

showed that some software types, the use of a development model, and the number of 

languages are correlated to the localisation effort expended. On the other hand, the 

relationship to the user and a commercial or non-commercial character of the software 

did not. 

At the end of this chapter, the results were compared to the expectations in localisation 

literature. In the next chapter, the qualitative and quantitative findings will be discussed 

in conjunction while addressing the original research problem: What makes software 

localisation difficult? 
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Chapter 6 Conclusions 

In the introduction, the proposition was made to examine what makes software 

localisation difficult. This problem was developed into four research questions aimed to 

examine the human factor and the project factor in software localisation. The research 

questions were answered by conducting and analysing interviews using the GT 

methodology, and by statistical analysis of survey data on cultural competence, attitude 

and self-efficacy towards localisation of participants, and properties and localisation 

effort of the projects they worked on. This concluding chapter will reiterate the findings 

and discuss contribution to knowledge, implications for practice, and limitations of this 

research, as well as future work. 

6.1 Summary of Findings 

RQ 1 asked how localisation is conducted individually and collaboratively by developers 

and localisers, and how this shapes each discipline’s activities. To answer the question, a 

grounded theory of interdisciplinary collaboration in software localisation was generated 

in which the work of developers and localisers is shaped in part by factors out of their 

control, and by expected and experienced conflicts during software localisation. 

RQ 2 asked how issues are caused during localisation and internationalisation. This 

research question was also answered by the generated grounded theory of 

interdisciplinary collaboration: localisation issues can be caused when, in the hierarchical 

relationship of developers and localisers, each discipline follows its interest rather than a 

localisation goal. 

RQ 3 asked in what regards developers and localisers are distinct. Developers and 

localisers score differently on cultural competence, but exhibit no difference in self-

efficacy in localisation, responsibility towards localisation, and assessment of localisation 

scope. Developers’ attitude towards localisation is lower than that of localisers, and they 

prioritise maintainability higher. 

RQ 4 asked what dependencies exist between localisation effort and properties of 

development projects. More localisation effort is expended on video games and system 

software than on other software types, as well as on projects following a development 

model compared to projects without one. Further, the more target locales a project has, 
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the more localisation effort is spent on it. The commercial nature of a project and the 

relationship between user, developer and customer do not affect localisation effort. 

6.1.1 Conjunction of Qualitative and Quantitative Results 

This research used both qualitative and quantitative methods to answer various research 

questions. Although the two paradigms were not intended to be combined, some of their 

results nonetheless complement and contrast with each other. 

In the interviews, a profound lack of appreciation for non-engineering aspects of software 

development was observed and linked to conclusions in the literature. The lower attitude 

towards localisation of developers found in the survey is in agreement with such an 

engineering mind-set and a lack of appreciation for non-engineering aspects of software 

development. 

There was a difference between localisation scope reported by interviewers and 

localisation scope found in the survey. All localisation projects the interviewees had 

experienced were limited to text translation and proper presentation of text and textual 

data such as number formatting. No interview participant had ever experienced a 

localisation project going further, e.g. by adapting colours or icons. Only one participant 

reported the adaptation of functionality, but the context suggests that their objectives 

were as much unifying previously separate IT systems as they were catering for different 

cultures. The survey, on the other hand, reported that more than a quarter of all projects 

have layout, navigation and functionality adapted, and about a fifth of all projects had 

icons, images, sounds, and feature sets adapted. 

There are three plausible explanations for this disparity: It might be that interview and 

survey samples differ by chance. Alternatively, the reporting in the interview might be 

correct but some survey respondents might have been reporting their opinions and 

assumptions rather than their experiences. Thirdly, the survey question might have been 

too unspecific. Indeed, in the interviews, a number of participants had reported that text 

in image files was translated while keeping the pictorial content untouched. This is then 

translation, not adaptation of graphical content. Unfortunately, the respective survey 

question Q.63 did not make that distinction. 
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6.2 Contribution to Knowledge 

As discussed in the literature review, there have been few studies of empirical 

examination of localisation practice and localisation issues. Abufardeh (2008) and 

O’Sullivan (2001b) examined the impact of localisation on software quality in terms of 

bugs introduced into the software. O’Sullivan (2001b) and Moorkens (2012a, 2012b) 

included a description of localisation practice from interviews in their research. Immonen 

and Sajaniemi (2003a, 2003b) conducted a descriptive examination of localisation 

practice, but limited interviews to management professionals at Finnish companies. 

This thesis went beyond their research by applying well-defined research methodologies 

for qualitative data collection and analysis, and gathering data from various contributors 

to international software. The research findings provide a perspective on how localisation 

is handled in practice based on the perception of its stakeholders, and how this practice 

affects its product. The evidence of this research consists of self-reported perceptions 

from stakeholders through qualitative and quantitative means. A grounded theory of 

interdisciplinary collaboration in software localisation emerged which explains how 

development and localisation professionals apply strategies of interdisciplinary 

collaboration based on existing external influences and interdisciplinary conflicts. This 

theory contributes to answering what makes software localisation difficult. 

6.2.1 A Grounded Theory of Interdisciplinary Collaboration 

The interviews led to a grounded theory of interdisciplinary collaboration in software 

localisation in which external influences, strategies of professionals and interdisciplinary 

conflicts interact with each other. The main concern of participants is the facilitation of 

interdisciplinary collaboration across development and localisation. Strategies of 

developers and localisers to that end are shaped by external influences outside of their 

control, e.g. success criteria and the workings of development and CAT tools. Those 

influences interact with strategies, and lead to conflicts in interdisciplinary collaboration. 

Localisation issues are caused when its cost, quality and schedule goals are compromised 

through and replaced by developers’ and localisers’ individual interests. 
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6.2.2 Localisation is Difficult Due to its Multidisciplinary Character 

Software localisation is difficult. Previous research has mostly seen this difficulty in the 

context of the brobdingnagian number of cultural idiosyncrasies, how to represent and 

manage them in software, and how to provide translations quickly and efficiently. 

This research has examined the difficulty in software localisation in the context of two 

disciplines with different practices, epistemologies and work focuses working together. It 

becomes apparent when observing software localisation in practice. For developers, 

software localisation is a product-centric process to be integrated into existing software 

development processes. It involves the creation of a technical infrastructure and the 

separation of code and content. For localisers, software localisation is a culture-centric 

outcome determined by the product it lives in. It involves the management of translation 

and text through the integration and processing of translation-relevant information. Thus, 

different views collide in practice, and when there is no even playing field to negotiate 

processes and aims, the power of one discipline over the other shapes an entire aspect of 

an undertaking that should involve both. 

6.2.3 Localisation Issues are Caused by the Separation of Disciplines 

Localisation errors can be caused by the strict separation between localisation and 

development. In the course of the interviews, it has been shown that the development 

side has been virtually always the centre of localisation management: by instruction when 

processes or interfaces were defined towards the localisation side, or by omission when 

localisation and its management was simply outsourced to an external agency. 

6.2.4 Cross-Disciplinary Knowledge Trumps Cultural Competence 

Barbour and Yeo (1997) suggested that tackling ethnocentrism, i.e. a preference of 

Western culture, is an important step towards developing truly international software. In 

this research, that stance found recognition by examining cultural competence. However, 

taking into account the interview results, the hierarchical position of software 

engineering above other matters in software development as described by e.g. Low et al. 

(1996) seems a better explanation for localisation issues. 
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6.2.5 Support for the Notion of a Software Engineering Mind-Set 

Although the survey results are not a comprehensive confirmation of the notion that 

developers have an attitude problem towards other disciplines, to the best of my 

knowledge, this is the first explanatory empirical support for the notion. 

6.3 Implications for Practice 

While this research did not aim to create and evaluate recommendations and guidelines, 

the results provide an understanding of the process of software localisation as source of 

cost, quality and schedule issues. The findings of this research have significance for 

organisations developing and localising international software, individual developers and 

localisers, and those who manage them. Sharp et al. (2005) argue that there is a benefit in 

increasing accountability by making software development processes visible and 

generally available. A description of how localisation and software development conflict 

and how localisation issues are caused is essential for improving software localisation 

overall and increasing its efficiency and effectiveness towards currently underemphasized 

factors such as quality. 

6.3.1 No Complete and Comprehensive List of Cultural Differences 

During the research, a common, almost universal, desire of software developers was 

what they must perceive as the holy grail of internationalisation: a comprehensive and 

complete list of all aspects that must be variable in an application so that it is completely 

internationalised. It mirrors the description of Green (1994) that developers expect a self-

contained deliverable which is easy to understand, apply, and integrate into their 

processes. To paraphrase Cooper (2004), developers ask for a universal guide for a 

problem that needs to be solved on a case-by-case basis. The notion of a list of cultural 

difference might also lie at the heart of cultural resource banks or repositories discussed 

in the literature (Ryan et al., 2009; Smith and Dunckley, 2007; Mahemoff and Johnston, 

1998). Maybe this view is one of the main causes of the phenomenon noted by 

Austermühl and Mirwald (2010), that translators’ self-image as intercultural 

communication experts is not shared by the localisation industry, who instead see them 

as a source of linguistic and technological skill. 
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Of course, such a list does not exist, and cannot exist considering the variation of culture 

and the infinite number of potential cultural differences. These are context-dependant, 

i.e. depend on what the software is supposed to achieve. In fact, as Ito and Nakakoji 

(1996) write, the term cultural difference is insofar misleading. Improvement might 

instead be obtained by perceiving differences as manifestations of different social 

backgrounds. Ito and Nakakoji hence do not give a list of cultural differences or elements 

in software. Instead, they identify the cultural impact on different stages of the human-

computer interaction process. This might be helpful when conducting locale-usability 

tests as discussed by del Galdo (1996). 

Boehm (2011) writes that postmodern software development de-emphasising the 

positivistic notion of certainty has not quite arrived yet. One might argue that a request 

for a complete and comprehensive list of cultural differences is a further manifestation of 

a modernist paradigm in software development as discussed by Robinson et al. (1998) in 

two ways: First, such a list is supposed to give certainty where, according to the 

postmodernist view on software localisation by Barbour and Yeo (1997) and confirmed by 

the research results of Sun (2004a), no certainty exists because the interpretation of UI in 

cultural context has to be left to the user, not software developer or even localiser. 

Second, it illustrates the hierarchical supremacy of software engineering within software 

development as it marginalises cultural expertise to something that can be separated 

cleanly, its implementation then left to software engineers. 

6.3.2 Localisation as Process Rather than Deliverable 

Instead of seeing localisation as a deliverable, localisation should instead be an activity 

exercised during product design, requirements engineering and implementation 

(Giammarresi, 2011). Many accounts suggest that, especially in projects where it is 

outsourced, localisation is reduced to an activity to separate text from code and use 

available localisation APIs. This might be traced back to the basic idea of 

internationalisation and the assumption that a separation of locale-dependent and locale-

independent parts of software would also extent itself to processes and social 

relationships. This research’s results suggest that O’Sullivan’s (2001b) argument about the 

choice between process model and architecture model is incomplete. He suggests the 

architecture model, ironically in order to reduce the number of localisation-caused 
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software bugs. But this choice does not make a process model obsolete. Collaboration, 

the social dependency, is always conducted in some way, even if the choice is not to 

collaborate. The communication researcher Paul Watzlawick has been famously ascribed 

the quote that “one cannot not communicate”, meaning that even the total refusal to 

interact is an act of communication. Likewise, if there is a technical dependency, one 

cannot not collaborate insofar as even the most minimal imaginable contribution from 

one discipline still affects the work activities and output of the other. 

6.3.3 Counteracting Control, Agency and Dominance in Localisation 

If, as was suggested, internationalisation, existing localisation and processes and tools 

might follow an attempt to control the workforce in the sense of scientific management, 

then it might be worth considering alternatives, e.g. empowering the workforce by giving 

them access to training, budget, information and most of all authority to make decisions 

for which they are then responsible (Tubbs and Moss, 2003). 

When the ultimate decision for the shape of the product lies with the development side, 

it also needs to be tasked with resolving and avoiding translation and localisation errors. 

This is, in fact, a key recommendation of Dr. International (2003, p.15), yet rarely seems 

to be applied in practice. In fact, sharing of responsibility and performance measures have 

been identified as strategies to counter selfish behaviour by the agent. Further, an 

increased inclusion of the development side in localisation might include an introspective 

examination of the motivations for localisation and its respective acknowledgement. 

There might be a variety of reasons, from concern to the international user to fulfilment 

of a legal requirement of a target market. Hence, the motivation to localise software 

should inform not only the budget, but also the overall localisation strategy as well as the 

level of commitment applied to localisation from the development side. 

6.3.4 Creating Cross-Disciplinary Knowledge 

In the light of the dominance that the development side exerts over software localisation, 

and the catering for it by the agency model, it is all the more surprising that in this 

research, comparatively little insight on the development side was observed that 

localisation errors might be systemic, i.e. that certain localisation issues might be an 

inherent property of development and localisation processes. This is unfortunate because 
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the survey results in particular can be interpreted to mean that developers and the 

development process have an influence on localisation effort: it correlates with software 

type and number of languages, which are aspects of development. This suggests that 

localisation issues, and in particular quality problems, are not results of random events 

and can be avoided. 

Cross-disciplinary awareness, i.e. an understanding of each other’s competence and 

ability, seems to be a central aspect of interdisciplinary collaboration. Developers do not 

need to be localisers and vice versa, but key knowledge can be identified, such as the 

importance of context or placeholder syntax. The idea behind this is to break up the 

entrenchment where either side does not know what the other side needs or does. 

6.4 Limitations 

All samples and sample origins were reported along with all data exclusions, all 

manipulations and all measures, which were entirely made in good faith towards a 

scientific result. A number of factors reduce generalisability and representativeness: 

The GT method emphasises contextual fit and theory progression over representativeness 

and generalisability to begin with. Both are further reduced due to the extremely wide 

range of development, localisation processes and configurations, making a representative 

sample of development-localisation configurations difficult. 

GT is sometimes described as a method to help finding the problem. In this thesis, what 

was found was a problem. The categories and concepts identified in the theory reflect the 

interview accounts and were obtained mostly through line-by-line and paragraph coding, 

classification and conceptualisation. Coding was conducted with post-formed codes 

developed during analysis. No existing theoretical framework was used and to the best of 

my knowledge, there were no existing applicable studies. Microanalysis was conducted 

during open coding and whenever accounts or details were unclear later. 

Although the GT process result was initially descriptive, during a later conceptual analysis, 

categories, relationships, and to a degree also properties emerged leading to a narrow 

and substantive theory beyond mere description. However, the identified theory is not 

the only possible way to organise and interpret the data. 
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Validation occurred during data collection by comparing new data with existing data. To 

improve validity further, a number of recommendations by Runeson and Höst (2009) 

were followed, i.e. the interview protocol was supervisor-reviewed, and cases were 

thoroughly examined, including looking for contradictions to the developing theory. Inter-

rater reliability measures ensuring similar coding were not applied as I was the only coder 

for this thesis. 

Pure translators without a management role are probably underrepresented. Every effort 

was made to increase participation of translators. Since interviewees often chose to be 

interviewed during working hours, it can be speculated that translation freelancers are 

less motivated to participate because participation comes out of their own time, whereas 

many participating developers and LSP project managers are employed and participation 

during work time are seen as no personal sacrifice. 

The survey used a convenience sample, which is not representative of the entire 

population of localisation professionals. However, convenience samples allow easier 

recruitment, leading to more participants. Examples for the limitations of the 

generalisability of the survey results are a clear nationality skew towards German, British 

and US-American. 

The survey is limited regarding validity and reliability of some of its instruments, i.e. 

whether measurements are repeatable and actually measure the intended constructs. 

The CQS is a validated instrument and was used without changes. The instruments 

measuring ATL, SEL and SEU were adapted from validated instruments. As a construct, LE 

was not validated. During analysis, it was noted that some of the LE questions, specifically 

Q.64 to Q.67, need to be rephrased for a better inclusion of translators and localisers. 

Respectively, the instruments measuring ATL, SEL and SEU could be re-validated and LE 

improved and validated to increase the robustness of results of a repeat survey, 

preferably with a probabilistic sample for improved generalisability. 

The survey was designed to be applicable and comprehensible for both developers and 

localisers. A piloting phase showing no comprehensibility issues for translators. However, 

during the actual data collection, repeated feedback was received from localisers who felt 

that the survey was not relevant to them. 
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GT is, by definition, a method of exploratory research. Statistical survey analysis, on the 

other hand, is by definition a method of explanatory research. However, due to the 

limitations of the survey, the ad-hoc character of the tested hypotheses, and the liberal 

use of regression and correlation measurements, the survey results should be considered 

exploratory following recommendations by Kitchenham et al. (2008). 

In order to address the limitations of this research, it is suggested to validate the items in 

the survey and verify the GT results. For the latter, in addition to the methods already 

employed in this research, Hoda (2011) verified data by presenting research results to 

audiences at conferences and industry meetings and gathering feedback, and 

triangulating interview data with observations. Similarly, Martin (2009) informally verified 

through feedback and triangulated with observations and archival data. In order to avoid 

further lengthy qualitative data collection, for this research it is suggested to obtain 

feedback on the results from participants in a quantitative survey that is constructed so as 

to avoid confirmation bias. This can be done with relatively little effort and later be 

expanded into a study with a probabilistic sample of practitioners, including validated 

constructs of the original survey in this research. 

6.5 Future Work 

Parts of the results of this study suggest a hierarchical relationship between development 

and localisation. The survey further tested for cultural competence differences of 

developers and localisers, but the GT results suggest that developers’ knowledge of how 

localisers work is more important. Both hierarchical relationship and cross-discipline 

knowledge can be tested, e.g. by measuring the locus of control as perceived by 

localisers, which has been identified as a relevant construct in this context of socio-

technical aspects of work, or surveying developers’ knowledge of translation and 

localisation processes. 

A more ambitious project would be to develop a practical measure of localisation quality, 

the lack of which currently appears as one of the biggest limitations both in localisation 

and in conducting research about it. In this research, it was tried to partly address this by 

measuring localisation effort instead. However, localisation quality assessments as 

suggested by Nielsen (1996a, 1996b) and Sun (2004a), i.e. task performance tests across 

different locales with respective users, are not practicable in surveys. Other suitable 
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definitions of localisation quality for surveys are not known (Lewis et al., 2009). If an 

easily applied measure of localisation quality could be developed, it would open up the 

possibility to reliably test the effects of various tools and processes, and it would become 

possible to further examine the effects of outsourcing or CAT tools on quality. In this 

research, since localisation quality was replaced by localisation effort, this was not 

possible as the independent variable, i.e. use of CAT tools and outsourcing, was part of 

the dependent construct LE. 

Another more ambitious project might be to examine a software artefact and archival 

data from its development process in order to identify localisation issues and their 

causes. This could include focus group studies with the professionals involved during 

original development. Such research might be used to verify the GT results of this 

research by triangulation, but would be connected to serious effort and would have to 

overcome a number of practical obstacles such as obtaining access. 

The phenomenon of interdisciplinary collaboration should be examined further in a more 

general sense. Existing research seems to focus on the narrow areas of collaboration in a 

team and in the academic sector. However, I wonder if there is not a larger riddle here. 

Some of the findings seem to suggest that the distinction between developer and 

localiser might be more than just different work priorities and more or less conscious 

profit maximisation strategies. Deep knowledge of a discipline or subject area might 

inform our behaviour and cognition in a much more profound way. Questions to ask are 

what effect affiliations to a discipline have on human perception, communication and 

behaviour, and whether these are conscious or subconscious phenomena. It would be 

most interesting to know whether disciplinary knowledge works as a communication filter 

or influences perceptions of professionals. 
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Appendix A Survey 

Note: Item numbers were not shown on the web form, but are shown here to simplify 
identification in the text. 

Software Localization Survey 

In this survey, we examine the interoperation of software development and localization 
processes and its influence on quality and development effort. If you have ever 
participated in the creation of software for international markets, including websites, 
then this survey is for you, regardless of how much you know about software 
localization. 
 
The survey serves scientific purposes only. The collected data from all participants will 
be pooled and participants will remain anonymous. Any data will be treated 
confidentially. 
 
This survey is divided into five parts. Completing it takes approximately 15 to 20 
minutes. 
 
For the purposes of this survey, “localization” refers to adapting a product for different 
markets, languages and cultures (e.g. translation of user interface text). A “localizer” 
would be the person doing this. Usually, this is also a translator. “Localization” in the 
context of this survey also includes “internationalization”. 
 
Instructions: 

- Please follow the instructions and read each question carefully before 
answering. 

- Answer questions speedily and in the given order. Don’t skip any questions. 
- Don’t worry if you are not sure about the precise meaning of a question or 

statement. Make a guess and follow your instincts. 
- If none of the answer options fit perfectly, choose the one that comes closest. 
- There are no “right” or “wrong” answers. 
- It is ok to choose the “I don’t know” option often. A substantial goal of the 

survey is to determine how much knowledge about software localization is 
available in the development community. 

 
If you have any questions or comments, please feel free to contact us at 
locdevresearch@uwl.ac.uk. 
 
Part 1 

1. What is your age in years? 

_________________________ 

2. What is your gender? 

Male / Female 
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3. Have you been working on software projects which were localized? 

Yes / No / I don’t know 

4. What is your nationality? 

_________________________ 

5. What is your highest level of education you have completed? 

o High School, Grammar school, Gymnasium or equivalent 
o Bachelor’s degree or equivalent (e.g. BA, BSc) 
o Master’s degree or equivalent (e.g. MSc, MA) 
o Doctoral degree or equivalent (e.g. PhD, Dr) 
o Other, please specify: _________________________  

Part 2 

Thank you for participation so far. The second section considers perceptions of and 
opinions about software localization. Please rate the following statements on a scale 
from “strongly disagree” to “strongly agree”. 
 

6. For me, software localization is not a regular concern on a day-to-day basis. 
 

7. Applying knowledge in software localization can help me to create more 
effective software for international users. 
 

8. I am confident about my ability to do well in a software project which is 
localized. 
 

9. If the software project I am working on is localized, this will only mean more 
work for me. 
 

10. I do not think that software localization will be useful for the software projects I 
am working on. 
 

11. I feel at ease learning about software localization. 
 

12. Software localization helps increasing the user base of software projects I am 
working on. 
 

13. I am not the type to do well with software localization. 
 

14. Software localization will increase the usability of the software I am working on 
for international users. 
 

15. Any gain through software localization can be achieved just as well some other 
way. 
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16. The thought of software localization being a part of the software project I am 
working on frightens me. 
 

17. Software localization is confusing to me. 
 

18. Software localization is necessary for software projects to adhere to local laws 
and customs. 
 

19. I do not feel threatened by the impact of software localization on my software 
projects. 
 

20. I am anxious about software localization in my software projects because it 
might interfere with my efforts or ideas. 
 

21. Software localization helps avoid misunderstandings and offenses for 
international users of the software I am working on. 
 

22. I don't see how software localization can improve my software project for 
international users. 
 

23. I feel comfortable about my ability to handle software localization in my 
software projects. 
 

24. Knowing about software localization will not be helpful in my future work. 
 

25. I feel confident employing localization-related functionalities of UI frameworks 
(e.g. WPF, Cocoa). 
 

26. I feel confident documenting context information about the software I'm 
developing for a translator. 
 

27. I feel confident deciding what elements of an application need to be localized. 
 

28. I feel confident handling translations from third parties for inclusion in the 
software I'm developing. 
 

29. I feel confident working on projects which use Unicode. 
 

30. I feel confident creating a clear user interface layout for software. 
 

31. I feel confident conducting usability tests. 
 

32. I feel confident phrasing error messages for software in a helpful way. 
 

33. I feel confident analyzing feedback from usability tests. 
 

34. I feel confident implementing changes suggested by usability experts in the 
software I'm developing. 
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Part 3 

Following are 20 statements about your general interactions with other cultures in 
everyday situations. Read each statement and select the response that best describes 
your capabilities. Select the answer that BEST describes you AS YOU REALLY ARE (1 = 
strongly disagree; 7 = strongly agree). 
 

35. I am conscious of the cultural knowledge I use when interacting with people with 
different cultural backgrounds. 
 

36. I adjust my cultural knowledge as I interact with people from a culture that is 
unfamiliar to me.  
 

37. I am conscious of the cultural knowledge I apply to cross-cultural interactions.  
 

38. I check the accuracy of my cultural knowledge as I interact with people from 
different cultures.  
 

39. I know the legal and economic systems of other cultures.  
 

40. I know the rules (e.g., vocabulary, grammar) of other languages.  
 

41. I know the cultural values and religious beliefs of other cultures.  
 

42. I know the marriage systems of other cultures.  
 

43. I know the arts and crafts of other cultures.  
 

44. I know the rules for expressing nonverbal behaviors in other cultures.  
 

45. I enjoy interacting with people from different cultures.  
 

46. I am confident that I can socialize with locals in a culture that is unfamiliar to 
me.  
 

47. I am sure I can deal with the stresses of adjusting to a culture that is new to me.  
 

48. I enjoy living in cultures that are unfamiliar to me.  
 

49. I am confident that I can get accustomed to the shopping conditions in a 
different culture.  
 

50. I change my verbal behavior (e.g. accent, tone) when a cross-cultural interaction 
requires it.  
 

51. I use pause and silence differently to suit different cross-cultural situations.  
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52. I vary the rate of my speaking when a cross-cultural situation requires it.  
 

53. I change my nonverbal behavior when a cross-cultural situation requires it.  
 

54. I alter my facial expressions when a cross-cultural interaction requires it. 
 

Part 4 

In this part, we’d like to learn more about your experiences. Please answer the 
questions in this section for your most recent finished software project which was 
localized. 
If none of your previous projects were localized, but your current project is, please 
answer the questions for your current project. 
 

55. What kind of software was your most recent localized project? Check all that 
apply. 
 
o Application software 
o Videogame 
o Website 
o Mobile App 
o System Software 
o Firmware 
o Other, please specify: _________________________ 

56. Who are typical users of your most recent localized project? 

o Private end-users 
o Other software developers 
o Scientists 
o Companies 
o Government institutions 
o Educational institutions 
o Other, please specify: _________________________ 

57. Are the users of your most recent localized project your customers? 

o Yes 
o No 
o Partly 
o I don’t know. 
o This question doesn’t apply. 

(Help: For example, customers and users are not identical if: 
  - a company commissions a website for promotion. 
  - a hardware developer buys software for bundling with its hardware  
    products.) 
 

58. In a general sense, was your most recent localized project commercial or non-
commercial? 
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o Commercial 
o Non-commercial 
o I don’t know. 

59. For how many target languages was your most recent localized product 
localized? Select one: 
 
o 1 – 5 
o 6 – 15 
o 16 – 30 
o More than 30 
o I have absolutely no idea. 

(Help: If you don’t know the exact number, please make an approximation.) 
 

60. What software development model was followed mostly during your most 
recent localized project? Select one: 
 
o Waterfall model 
o Spiral model 
o Agile model 
o No particular model 
o I don’t know. 
o Other, please specify: _________________________ 

61. Which of the following statements applies for your most recent localized project? 
 

o The localization requirements were clearly defined. 
o Best practice guidelines for localization were provided. 
o A glossary or corporate dictionary was used in the creation of UI 

dialogues and text. 
o Translations were stored for re-use in other projects. 
o A dedicated person or team handled the technical aspects of localization. 
o All developers could build, compile and run any language version of the 

software. 
o All language versions, including the original language, were released at 

the same time. 

 
62. How often was the importance of localization quality for your most recent 

localized project emphasized by the project leaders? 
 
o Never 
o Once or twice 
o A few times 
o Often 
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63. Which parts of the software were localized in your most recent localized 
project? 
 
o User interface text 
o Formatting, e.g. time and date and sort orders 
o Units, e.g. measurements, currency and paper sizes. 
o Colors, graphics and sound 
o Navigation and layout 
o Functionality 
o Feature sets 
o I don’t know. 

64. Who did the translation work for your most recent localized project? Check all 
that apply: 
 
o Machine translation 
o Employees with a different primary task, e.g. marketing or 

documentation 
o Users, for no charge (“crowdsourcing”) 
o Customers who commissioned the project or language(s) 
o Freelancers or external translators 
o Agencies or localization/translation providers 
o Full-time employees with the primary task of translating 
o I don’t know 

65. How could you communicate with the localizer during your most recent localized 
project? 
 

o There was no way for us to communicate with each other. 
o Communication was unidirectional, e.g. I could contact the localizer, but 

not the other way around. 
o Communication was relayed through a third party, e.g. project managers 

or agencies. 
o We could communicate directly by email. 
o We could communicate directly by phone. 
o We could meet in person on reasonably short notice. 
o Localizers were routinely present in meetings and/or part of the 

development team. 
o I don’t know. 

66. How did the translators receive the text to be translated during your most recent 
localized project? Check all that apply: 

 

o We didn’t have text to translate. 
o Translators edited the text directly in the program files. 
o We mailed text in files, but there are no standard file formats to use. 
o We mailed text in self-developed proprietary formats. 
o We mailed text in txt files or XML files. 
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o We mailed text in standard office formats, e.g. word, excel or rich text 
format. 

o We mailed text in XLIFF format. 
o We exchange text through online databases, content management 

systems or translation memories. 
o I don’t know. 
o Other, please specify: _________________________ 

67. Context information helps translators in creating appropriate translations. What 
kind of information sources were available to them in your most recent 
localized project? Check all that apply. 
 
o Direct access to project members (e.g. by phone or mail) 
o Resource files (e.g. containing UI elements or text) 
o Complete source code 
o A written description of the software and its functionality 
o Internal design documents 
o Screenshots 
o A working version (e.g. a prototype, pre-release version, or the full 

product) 
o None of the above. 
o I don’t know. 
o Other, please specify: _________________________ 

68. What quality assurance efforts were in place for your most recent localized project? 
Check all that apply: 
 

o Localization bugs were fixed when reported by customers. 
o Some language versions were partially tested before release. 
o All language versions were partially tested before release. 
o Some language versions were fully tested before release. 
o All language versions were fully tested before release. 
o Automated scripts tested for missing translations, UI fit etc. 
o All translations and/or localizations were reviewed by a second 

translator/localizer. 
o None of the above. 
o I don’t know. 
o Other, please specify: _________________________ 

Part 5 

You have already finished four of five survey parts. The last part covers a few facts and 
opinions about your previous experience with software localization. 
 

69. What are your usual roles in software development? Check all that apply. 

o Software engineer 
o User interface designer 
o Software architect 
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o Business analyst 
o Project manager 
o Translator/Localizer 
o Technical editor 
o Other, please specify: _________________________ 

70. For how many years have you been working on software projects for 
international users? 
 

_________________________ 

71. Did you receive any training about software localization? Check all that apply: 
 

o I have read books and/or articles dealing exclusively with software 
localization. 

o I have read books and/or articles dealing in part with software 
localization. 

o I have received informal training, e.g. from colleagues. 
o I have received formal training, e.g. a course. 
o None of the above. 

72. In your opinion, what parts of software should be localized? 

o User interface text 
o Formatting, e.g. time and date, sort orders 
o Units, e.g. measurements, currency, paper sizes, and currency 
o Colors, graphics and sound 
o Navigation and layout 
o Functionality 
o Feature sets 
o None of the above 
o Other, please specify: _________________________ 

73. Sort the following nouns according to what you consider most important for 
software: 
 
o Maintainability 
o Reliability 
o Correctness  
o Execution speed 
o Usability 
o Power 
o Popularity 
o Success 

74. Sort the following priorities according to what you consider most important for 
software development outcomes: 
 
o Costs within budget 
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o Quality on target 
o Release on time 

75. Do you feel that generally, responsibility of software quality for international 
users is part of your roles? 
 
Yes / No 

Thank you for making it so far. We have two more questions which are stored 
separately from your previous answers to ensure anonymity. Please follow the link 
below: 
 
-> Please follow this link for two final questions. <- 
 
Thank you very much for completing the survey. The replies on this page are stored 
separately and can’t be linked to your previous answers. 
 
Please feel free to leave a comment: 

- Do you have any feedback about this survey? 
- Are there important aspects about software localization that have not been 

mentioned? 
- Would you like to leave your email to obtain a copy of the survey results? 
- Is there anything else you would like to let us know? 

 
You can also contact us directly at mailto:locdevresearch@uwl.ac.uk. 
 
Experiences in software development are often specific and complex. For that reason, 
we would also like to interview software developers in person or by phone to gain a 
more comprehensive understanding. If you would be willing to discuss your 
experiences, please fill in your email address below and we will get in touch with you. 
 
(Help: Your email address will be saved separately and won't be linked to your replies 
in the survey.) 
 
Thank you very much for your participation! 
 
If you have any further inquiries, please feel free to contact us at 
locdevresearch@uwl.ac.uk. 

 

mailto:
mailto:
mailto:locdevresearch@uwl.ac.uk
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Appendix B Informed Consent Information Sheet 

Information about Informed Consent for (telephone) interviews: 

Ethical regulations require us to inform all participants of our research of the following: 

In our research, we examine the interplay of software development and software 
localisation and the interoperation of these two areas. Our research aims to understand 
the impact of processes, infrastructure and interdisciplinary collaboration on required 
effort and resulting quality. To this end, we conduct interviews with professionals from 
related disciplines about their practices and experiences. 

Our research is conducted according to the ethics codes of the Faculty of Professional 
Studies at the University of West London, the Association for Computing Machinery 
(ACM), and The British Sociological Association. The research has been reviewed and 
approved by the University of West London Research Degree Committee. 

You have the right to withdraw from participation at any time. Participation in this 
research is voluntary. 

You have a right to remain anonymous. All gathered data will be treated confidentially. 
Publication of any data will be in anonymized form. No individuals and/or companies will 
be identifiable. Confidential information will not be shared with anybody. Research 
results will be published. Participants will receive a copy of the research results if they 
want. 

If you have any questions, you may ask them at any time. 
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Appendix C Interview Excerpt 

Author: So, I'm just curious, what you just told me about that you have 
this e-book xml or the xml file with the text for the buttons, erm, did you 
that before, or did somebody, I mean, did somebody tell you, did your 
engineer tell you that when you were [at company headquarters] last 
time, and asked them about localisation? Or did they, how did you know 
that, how it works? 

Interviewee: Me? 

Author: Yeah. 

Interviewee: Because, erm, erm, er, I have thorough training about the 
back office, you know. So... [CODE: source of knowledge of localisation 
process and infrastructure] 

Author: Ah ok. So that was part of the training. 

Interviewee: Yeah, it was for the training [CODE: source of knowledge of 
localisation process and infrastructure] [NOTE: Maybe participant 
received training because he is involved with customers and customers 
are involved with localisation.], and the, er, er, er, so this is a process. 
You want any new languages, ok, you provide to us a file, an xml file, 
with all the translation, and we are going to integrate after then in the 
back office [CODE: localisation process]. Ok? So, we don't have a big 
program, you know, with a culture between, between countries, because 
if [customer 1] want to translate in German, is easy for, for them, 
because there is a subsidiary [CODE: localisation by customer], there is 
German people there, so the, they speak French and German, so they do 
the work, and after they give to us the file. 

Author: Ok. Just that I get this right, because for me if, if you, we look at 
the brochure again, or the catalogue, well, we don't really, yeah, there it 
is. I mean there are two separate things, right? One is the actual 
brochure, the catalogue, and obviously [customer 1] has to, has to 
translate themselves. Of that, you know, the customers, but for the 
reader, for the buttons up there, you know, those, these are, in a way 
those are part of your program. Right? So I'm just wondering: Do they 
do the German translations, or do you get them somewhere else, or do 
you get them from [customer 1], for the buttons? 

Interviewee: Yeah, it's [customer 1] who give, who give the file. To us. 

Author: Because I'm wondering, let's assume that for the next version of 
your frontend you have a new button. 

Interviewee: Ok. 
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Author: Then you need this translated in 32 languages, right? 

Interviewee: We need to ask, erm, at each of our customer who want to 
integrate this new feature. For example tomorrow we are going to 
launch, I don't know, a new feature, a new button, I don't know, to share 
on Facebook, maybe. To share the [unintelligible] on Facebook. So, if our 
customer wants, er, this new feature, we are going to ask to them, so 
we are going to launch a new product, and so, so we need a translation 
for, er, for, er, for the display on the front office. So maybe takes time? 
But you know, it's good. 

Author: Yeah, I understand. But then you kind of, that means that you're 
kind of dependant on your customers to get the translations? 

Interviewee: No, because if, if we want, because it's not for us, it's our 
customer who ask us, I want these languages, I want these languages. 
So if they don't want the languages, it's not a problem for us. [CODE: 
defer responsibility to customer] 

Author: So you would, just that I get this right, so you would say the, 
erm, the responsibility of getting the translations lies with the customer? 

Interviewee: Yes. 
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Appendix D Memo example 

Excerpt from the interview: 

Author: Ok. You mentioned that there, basically, localisation is, I can 
show you that here [refers to previously drawn diagram of the 
participant’s localisation architecture], has these three parts: integration 
framework... 

Interviewee: Yes. Ok, so one of these apps is called the [framework 
name], which is... every [local subsidiary] got a different billing system, 
right? So if you're gonna write a generic thing that says, you know, pay, 
authorize refund, then you need to have code at the backend which will 
integrate to those backend systems. That by definition will be different 
for every [local subsidiary], and therefore every [local subsidiary] needs 
to, you know, write that part themselves. So we provide the framework, 
and they write that code themselves. 

This led to the following memo: 

 

If the internationalisation is very general, then localisation work requires a lot of 

coding! 

It appears that localisation can be perceived as a mathematical problem: infinite 

possible customisations allow infinite localisations – and then this particular 

developer considers the task finished. As a consequence, in this project, the 

interface between development and localisation is in the technical domain, not 

between the technical and linguistic/cultural domains; as opposed to an 

interface which is next to the, let’s say, technical and HCI domain, which then 

can’t incorporate cultural issues which are not within HCI. 

Does this mean that development might need interfaces to every domain 

affected by localisation? 
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Appendix E Sample Request for a Call of Participation 

This is a sample request to publish a call for participation. Requests were adapted 
depending on whether the recipient was an individual or an organisation and was 
situated on the technical or linguistic side. Here, the recipient is a translator interest 
group, so the request mentions the localisation/linguist aspects of the research first: 

Dear team at [organisation], 

My name is Malte Ressin, I am a PhD student at the University of West 
London. My thesis topic is the interoperation of software development 
processes and software localisation, i.e. how issues such as quality, 
effort and cost are affected by the way in which international software 
is developed and localised, and the way in which those two disciplines 
software localisation and software engineering collaborate. 

For my research, I am among others conducting a survey aimed at 
translators, project managers, software developers/engineers, UI 
designers etc., who have worked on localised software. For this, I am still 
looking for participants. Since [organisation], as a globalization and 
localization community, probably also has many members with relation 
to software localisation, I would like to ask if there is an unobtrusive way 
in which I can inform the [organisation] community about my survey? I 
tried to look into the member area at [organisation’s website], hoping to 
find a forum. However, as I am not a member of an organisation which 
is part of [organisation], it appears I have no proper access. 

It would be very helpful if you could help me find participants for my 
survey. It can be found behind this link: 

http://samsa.uwl.ac.uk/locdevsurvey/survey.html 

The survey is completely anonymous and any gathered information will 
be treated confidently and only be used for my research. The survey 
takes about 20 minutes to complete. The results will of course be shared 
with participants, and if [organisation] could help me spread the link, I'd 
be more than happy to share results with [organisation], too. 

I will gladly mail you the survey as word file if you would like to take a 
look at it first. Please contact me if you have any questions. 

Thanks a lot and best regards, 

Malte Ressin 
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Appendix F Interview, Transcription and Analysis Tools 

Note: Skype, VLC media player and Notepad++ were updated regularly during research 
so that specific version numbers cannot be provided. 

Interview Tools 

Recording device: Samsung YP-U3 

VoIP software: Skype, available at www.skype.com 

Recording plugin: MP3 Skype Recorder 2.1.1, available at www.voipcallrecording.com 

Transcription Tools 

Playback software: VLC media player, available at www.videolan.org 

Coding software: WeftQDA 1.0.1, available at www.pressure.to/qda 

NVivo 8, available at 
www.qsrinternational.com/products_nvivo.aspx 

Editor:   Notepad++, available at www.notepad-plus-plus.org 

Survey Tools 

Survey software: LimeSurvey v1.90, available at www.limesurvey.org 

Statistics Tools 

Statistics software: SPSS 22, available at www.ibm.com/software/analytics/spss 



210 
 

Appendix G Publication Sources for Initial Literature Review 

Conferences and Workshops 

IWIPS     www.iwips.org 

Translating and the Computer www.translatingandthecomputer.com 

Journals 

Journal of Specialised Translation www.jostrans.org 

Localisation Focus   www.localisation.ie/oldwebsite/resources/locfocus 

Localisation Ireland   www.localisation.ie/oldwebsite/resources/locfocus 

Translation Journal   translationjournal.net/journal 

Websites 

The Localisation Research Centre www.localisation.ie 

The Machine Translation Archive www.mt-archive.info 
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Publications 
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