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Abstract 

Clay content is one of the primary cause of pavement damages, such as subgrade failures, 

cracks and pavement rutting, thereby playing a crucial role in road safety issues as an indirect 

cause of accidents. In this paper, several ground-penetrating radar (GPR) methods and analysis 

techniques were used to non-destructively investigate the electromagnetic behavior of sub-

asphalt compacted clayey layers and subgrade soils in unsaturated conditions. Typical road 

materials employed for load-bearing layers construction, classified as A1, A2 and A3 by the 

American Association of State Highway and Transportation Officials (AASHTO) soil 

classification system, were used for the laboratory tests. Clay-free and clay-rich soil samples 

were manufactured and adequately compacted in electrically and hydraulically isolated 

formworks. The samples were tested at different moisture conditions from dry to saturated. 

Measurements were carried out for each water content using a vector network analyzer spanning 

the 1–3 GHz frequency range, and a pulsed radar system with ground-coupled antennas, 500 

MHz center frequency. Different theoretically-based methods were used for data processing. 

Promising insights are shown to single out the influence of clay in load-bearing layers and 

subgrade soils, and its impacts on their electromagnetic response at variable moisture 

conditions. 
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INTRODUCTION 

Clay detection in soils is a key topic of research in many fields of application such as 

construction (Miqueleiz et al. 2012), pavement (Uzan 1998) and geotechnical engineering 

(Abusharar and Han 2011), agriculture (Robinson and Phillips 2001), and Earth sciences in 

general (Mahmoudzadeh et al. 2011). Overall, the interaction between water and clay plays a 

very important role in the health conditions of pavements due to the considerable swelling 

properties of clay (Wuddivira et al. 2012), since it is capable to exert significant effects on the 

stability of soils behavior under loading. 

The chemical and mechanical behavior of clay, has been widely investigated in the past. As a 

rule of thumb, it is conventionally established to model the hydrodynamic behavior of plastic 

soils during wetting-drying cycles (Dudoignon et al. 2007). Richard et al. (2001) argued that 

particle arrangements along with their mineralogical nature can notably affect the properties of 

clayey soils under compressive or drying stress cycles. More recently, Beroya, Aydin, and 

Katzenbach 2009 have also proved that clay minerals abundance mainly governs the cyclic 

behavior of silt-clay mixtures. 

Several procedures have been established over the years to limit the effects of clay in soils for 

construction and rehabilitation of transport infrastructures. In this regard, the use of geogrids 

(Abdi Sadrnejad, and Arjomand 2009) or additives (Pakbaz and Alipour 2012) are very 

common practices. When suitable strength and deformation properties of soils cannot be 

ensured by excessive abundances of plastic material, extra reinforcing steel to foundations and 

slabs as well as earthmoving operations for removing waste materials are instead usually carried 

out (Wood, Osborne, and Forde 1995). Among the most common destructive techniques for 

clay investigation, core sampling relies on an undeniable accuracy. However, coring is a local 

technique and it might not be representative of large areas; in addition to that, this method is 

invasive, expensive and time consuming. 
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The demand for non-destructive testing techniques (NDTs) in this field of application and 

beyond is increasing nowadays. To cite a few, acoustic methods like falling weight 

deflectometer (FWD) techniques (Benedetto et al. 2014a) are widely used to evaluate the 

strength and deformation properties of clayey soils, as well methods relying on spectral 

analyses, such as the vis-NIR spectroscopy (Viscarra Rossel et al. 2009), or infrared imaging 

(Srasra et al. 1994) of soil materials. However, most of the NDTs are not time-efficient, since 

they cannot be continuously implemented on roads, nor cost-effective for road inspection and 

maintenance. Amongst the main electromagnetic (EM) methods fit for purposes, advanced high-

resolution radiometer (AVHRR) (Odeh and McBratney 2000) and electromagnetic induction 

(EMI) (Triantafilis and Lesch 2005) can be considered as other very effective techniques, 

although the scale domain of investigation or the long time required for surveying are not 

suitable for pavement engineering applications. 

It is therefore clear how an effective high-performance method capable to provide large-scale 

reliable measurements with a high spatial resolution, is nowadays required. In line with this, 

ground-penetrating radar (GPR) has proved to be one of the most powerful diagnostic non-

destructive tools that enables to collect data rapidly in the field (Saarenketo and Scullion 

2000;Benedetto et al. 2012a; Tosti et al. 2014a). GPR is being increasingly employed in a range 

of many application areas such as planetary exploration, cultural heritage protection, Earth 

sciences, and engineering applications (Daniels 2004). This instrument allows to infer the 

physical conditions of subsurface relying on the transmission/reception of short EM impulses in 

a given frequency band (Van der Kruk and Slob 2004; Slob, Sato, and Olhoeft 2010;). 

GPR was first used in traffic infrastructure surveys in 1970s by the Federal Highway 

Administration (FHWA) for testing in tunnel investigation (Morey 1998). The main 

applications in this field range from physical to geometrical inspections of pavement layers. 

They broadly include the evaluation of layer thicknesses (Al-Qadi and Lahouar 2004), the 

assessment of damage conditions in hot mix asphalt (HMA) layers (Scullion, Lau, and Chen 

1994), load-bearing layers and subgrade soils (Saarenketo and Scullion 2000), the inspection of 
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concrete structures (Huston et al. 1999; Benedetto et al. 2012b). New frontiers on the use of 

GPR in pavement engineering have been also recently tackled on the possibility to infer 

mechanical properties of road pavements and materials from their EM characteristics 

(Benedetto and Tosti 2013; Tosti et al. 2014b). In addition, FDTD simulation-based approaches 

of the GPR signal have been implemented for analysing the GPR responses of typical scenarios 

of pavement faults (Benedetto et al. 2014b). 

Many studies in the literature have been devoted towards the evaluation of water content 

(Robinson et al. 2008). Applications in this field can be broadly classified according to the type 

of pavement and construction material, whereby different radar systems and processing 

techniques can be specifically employed. Concerning subsurface moisture measurements in 

subgrade soils, GPR can bridge the gap between high-resolution data (from ~10-2 m to 10-1 m) 

by minor destructive techniques, such as capacitance probes (Wobshall 1978) and time domain 

reflectometry (TDR) (Fellner-Feldegg 1969), and low-resolution techniques (~10 m) by remote 

sensing investigations (Wagner et al. 2007), thereby ranking effectively as an intermediate-scale 

effective technology (from ~10-1 m to 1 m) (Lambot et al. 2006, Minet et al. 2011). Several 

approaches exist for determining the volumetric water content (VWC) θ by GPR (Huisman et 

al. 2003). An estimate of the relative dielectric permittivity εr is firstly carried out, and a 

petrophysical relationship is then used to convert εr into θ. Among such expressions, the 

empirical equation proposed by Topp, Davis, and Annan (1980) is undoubtedly the most used 

for this purpose. From a theoretical point of view,  can be also related to  by using 

volumetric mixing formulae, which use the volume fraction and the dielectric permittivity of 

each soil constituent to derive a relationship between them (Dobson et al. 1985, Roth et al. 

1990).  

Overall, the aforementioned methods for moisture evaluation rely on the estimates of the 

relative dielectric permittivity of soils, and the use of core sampling is mostly needed for 

calibrating the system. In this regard, research activities are increasingly being focused on the 

use of efficient and self-consistent techniques, namely, capable to minimize or avoid the use of 
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destructive samplings for calibration. Lambot et al. (2004a) evaluated the dielectric properties 

of unsaturated soils at the laboratory scale by relating the imaginary part of the dielectric 

permittivity and the frequency of investigation. Moreover, a Rayleigh scattering-based method 

has been used by Benedetto (2010) and Benedetto et al. (2015) for directly predicting the 

volumetric water content in soils, thereby enabling to avoid the use of any calibrations of the 

system. 

The GPR-based detection of clay content has been mainly investigated over the years in studies 

applied at the field scale (Gómez-Ortiz et al. 2010, De Benedetto et al. 2012) and, partly, at the 

laboratory scale (Saarenketo 1998). More recently, advances in the research have registered 

several clay-dedicated laboratory studies specifically focused on achieving high-resolution 

estimates on different textured soil materials using several self-consistent processing techniques 

and different radar systems (Patriarca et al. 2013, Tosti et al. 2013). 

 

METHODOLOGY AND OBJECTIVES 

In this paper, it is analyzed the ability of GPR to detect clay in different types of soil at variable 

moisture contents by using several tools and signal processing techniques. Three types of soil 

classified by the American Association of State Highway and Transportation Officials 

(AASHTO 2011) as A1, A2, and A3 were used for laboratory testing. To single out the 

electromagnetic behavior of the above materials relative to clay presence, clay-free and clay-

rich conditions amounting up to 15% by weight were manufactured. The consistency of results 

was validated through permittivity-based methods, namely, the full-wave inversion method, the 

surface reflection method, and the volumetric mixing formulae. In addition, a Rayleigh 

scattering-based method working in the frequency domain was employed for the analyses.  

The possibility to detect clay in load-bearing layers and subgrade soils for preventing structural 

failures of pavements and restraining the risk of severe damage can be considered as the main 

task of this paper, as part of an important countermeasure in quality control, rehabilitation, and 
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maintenance operations made in transport infrastructures for improving transport safety 

conditions. 

More specifically, the aforementioned processing techniques were applied on data collected 

from samples of compacted loose materials, representing conditions from load-bearing layers 

and subgrade soils, which were investigated using different GPR systems. 

 

THEORETICAL BACKGROUND 

Full-Wave Inversion Technique 

The radar model 

Lambot et al. (2004a) proposed an intrinsic far-field antenna model combined with planar 

layered media Green's functions where a local homogeneous field distribution is assumed for 

the backscattered field over the antenna aperture. Therefore, the antenna radiation properties can 

be described by an equivalent single electric dipole approximation. In such system, the wave 

propagation between the source point and the radar transmission line reference plane, as well as 

the antenna-medium interactions, can be described, on the basis of the linearity of Maxwell’s 

equations, by means of complex, frequency-dependent global reflection and transmission 

coefficients. Equation (1) describes the relationship between the radar-measured field and the 

3D layered medium Green’s function in the frequency domain (Lambot et al. 2004a): 

              (1) 

with  representing the raw radar signal as the ratio between the backscattered field  

and incident field  at the radar transmission line reference plane, and  describing the 

angular frequency.  stands for the global reflection coefficient of the antenna in free 

space, while =  with  being the global transmission coefficient for fields 

incident from the radar reference plane onto the source point, and  being the global 

transmission coefficient for fields incident from the field point onto the radar reference plane. 

 stands for the global reflection coefficient for the field incident from the layered medium 
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onto the field point, and  is the layered medium Green’s function. Such function is 

defined as the scattered x-directed field  at the field point for a unit-strength x-directed 

electric source  at the source point, and it can be theoretically written as (Slob and 

Fokkema 2002): 

               (2) 

               (3) 

where subscript TM and TE stand, respectively, for transverse magnetic mode and transverse 

electric mode. The R global reflection coefficients describe the reflected part of the wave in 

each mode.  is the vertical wave number, where subscript n represents the 

number of layers and it is equal to 1 in equation (3) (index of the top layer (free space)), 

 and . The global TM-mode and TE-mode reflection coefficients at 

the n = 1…N interface are given by: 

                (4) 

                  (5) 

                (6) 

                  (7) 

The antenna characteristic functions  and  can be determined through a 

proper calibration of the antenna, involving the measurement of the raw radar signal  for 

particular antenna-medium configurations, for which the value of the Green’s function can be 

calculated (e.g., measurements with the antenna at different heights over a copper sheet). In 
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particular the  coefficient, i.e., the global reflection of the antenna in free space, can be 

derived by performing a radar measurement with the antenna pointed toward the sky. It is worth 

noting that once the antenna factors are determined, they can be considered as constant 

regardless from the type of medium investigated. Accordingly, all the antenna effects can be 

filtered out from the raw radar data in order to retrieve the value of the Green’s function 

. 

 

Model inversion 

This method relies on a comparison between the value of the Green’s function measured on the 

test samples  and the value of a theoretically modeled Green’s function , 

retrieved through the aforementioned theoretical assumptions. 

It is therefore possible to model the behavior of the Green’s function depending on fixed 

electromagnetic and geometrical parameters, such as the relative dielectric permittivity , the 

electrical conductivity , the wave number , the number of layers N illuminated by the EM 

wave, the thickness  of the nth layer, and the distance  from the antenna phase centre to the 

surface of the investigated medium. A mono-layered configuration as well as a fixed distance of 

0.32 m between the soil sample surface and the antenna aperture are considered in this study, 

with the equivalent point source in turn being located at 0.07 m from the antenna aperture. 

It is then possible to build a field of dielectric parameter values, sized [P×M], with P and M 

being, respectively, the dimensions of the dielectric permittivity and the electrical conductivity 

vectors taken into account. Accordingly, a 3D matrix of Green’s function  values 

can be produced in the evaluated frequency range, with dimensions [P×M×F], where  

is the number of collected frequencies, being B and , respectively, the selected frequency 

bandwidth and the frequency step. 
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The inversion process consists in retrieving the dielectric parameters  and  of the analyzed 

materials starting from the measured radar data, expressed in terms of  rather 

than , and from the theoretically expected behavior of the modeled Green’s function 

. These two unknown values are returned through a search for the best matching 

between measured and modeled Green’s functions. In this regard, by defining a vector 

, the wanted value of b is the one minimizing an objective function  

expressing the error between measured and modeled Green’s functions. In this study, the 

objective function is computed as follows (Patriarca et al. 2011): 

                (8) 

 

Frequency dependence of conductivity 

In the GPR frequency range, a frequency-dependent behavior of the material apparent 

conductivity (including dielectric losses) usually occurs. This is mainly due to relaxation 

mechanisms and Maxwell-Wagner effects in the soils. In this regard, it is worth mentioning the 

locally linear relationship between  and f proposed by Lambot et al. (2004a): 

                 (9) 

where  is the reference value of conductivity at the starting frequency fi, which can be 

evaluated through the inversion process, and  is the variation rate of the . Therefore, when 

considering , namely, the relevant conductivity for the nth layer, variable in the range [10-1 ÷ 
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10-4 Sm-1], the parameters affecting the objective function must be taken into account in a new 

vector . Typical values of  lie in the range [10-10÷10-12 Ssm-1]. In this work, a 

constant value of a equals to 1×10-10 Ssm-1 is adopted, so that the sizes of vector b are related 

only with two dielectrics. It is worth mentioning how Lambot et al. (2004a) have found the 

linear relationship of Equation (9) to be very suited for the 1 – 2 GHz frequency range, while 

higher discrepancies of this model were observed for wider frequency intervals. 

 

Implementing the Full-Wave Inversion method with the Time Domain Signal Picking 

approach  

This approach has been adopted according to the results from Tosti et al. (2013), wherein 

laboratory tests were carried out on soil samples with same dimensions than those used in this 

work. In particular, a good effectiveness was proved in forecasting dielectric permittivity values 

by estimating the two-way travel time of the measured radar signal within the medium, being 

such estimates comparable to those coming from the application of Full-Wave Inversion (FWI) 

technique.  

The method provides the application of an Inverse Fast Fourier Transform (IFFT) to convert the 

domain of the signal measured from spectral into time. Once having the transformed signal 

, the time delay  between the air-medium and the medium-perfect electric 

conductor (PEC) reflections can be measured, by knowledge of the thickness h1 of the 

formworks, and the wave velocity through the medium v1 estimated by . It is 

therefore possible to retrieve the value of permittivity by letting , where c is 

the speed of light in free space. From now on, such approach will be referred to as the Time 

Domain Signal Picking (TDSP) technique. Figure 1 shows a typical scenario of measured signal 

where the two aforementioned peaks of reflection are clearly identified. 
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FIGURE 1. Measured Green’s function in the time domain  and time delay  

between air-medium and medium-PEC interfaces. 

 

The implementation of the TDSP technique within a FWI approach subsequently provides to 

retrieve a first approximation value of dielectric permittivity  for each sample. As 

represented in the flowchart of Figure 2, this value can therefore be used as a starting point for a 

deeper analysis in the spectral domain, to be further refined for retrieving information about the 

other electromagnetic properties. The conventional FWI approach is then employed over a 

significant range of dielectric permittivity values, in the neighborhood of the value retrieved by 

the TDSP approach, namely, within the range ± 10% of the  value.  

 

FIGURE 2. Flowchart representing the implementation of the TDSP technique within a FWI 

approach. 

 

Surface Reflection Method 

The use of the Surface Reflection Method (SRM) leads to the evaluation of the relative 

dielectric permittivity of a mono-layered system by comparing the amplitude of the air-soil 

interface reflection and the amplitude from the air- PEC interface, taken as a reference. Such 

approach is commonly employed when measuring with high-frequency off-ground GPR 

systems. (Davis and Annan 2002, Serbin and Or 2004). 

When considering one soil characterized by a certain value of permittivity , the reflection 

coefficient R at the surface separating air and soil layers can be determined as follows (Redman 

et al. 2002): 

                 (10) 
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where 1 is the value of the dielectric permittivity of the air. Equation (10) relies on the twofold 

assumptions of i) a negligible conductivity and ii) a simplified scenario of air layer over a 

homogeneous half space (Lambot et al. 2006). By considering that the magnitude of the 

reflection coefficient R at a given height position h above the surface can be also expressed as 

the ratio between the amplitude  of the reflection from the ground surface to the amplitude 

 of the reflection over a copper shield or a metal plate (with a reflection coefficient of -1), 

both measured at the same height h from the ground, it is possible to calculate the permittivity 

of the soil as: 

                 (11) 

This approach has the main advantage of providing an estimation of the soil permittivity 

without knowing the subsurface reflector position or the wave propagation velocity through the 

medium, as in case of TDSP applications. Nevertheless, it is clear how an inhomogeneous water 

distribution within the medium could lead to different results depending on the method applied. 

Indeed, for higher particle-sized materials, a gravimetric behavior is prevalent for the water, 

which tends to stratify at the bottom as a water table. This water content clearly influences 

results of FWI or TDSP methods, while it could be neglected by SRM if the water table is too 

deep with respect to the air-soil interface. Many literature studies have dealt with the capability 

of the SRM to sense water content on the basis of soil physical properties. Huisman et al. (2003) 

considered such influence as relevant up to depths of 20 cm. Conversely, Serbin and Or (2004) 

narrowed the reliability of this method to the first 1 cm below the soil surface. Therefore, it 

seems clear how this uncertainty can be considered as the main drawback of the SRM (Lambot 

et al. 2004b). Further drawbacks include a high dependence of this technique on surface 

roughness, along with a high sensitivity to moisture for lower water contents (Davis et al. 1994). 

On the other hand, it is also worth citing the remarkable advantage of a significant lightness in 

computational requirements.  
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Volumetric Mixing Formulae  

Volumetric Mixing Formulae (VMF) rely on the volumetric fraction and the dielectric 

permittivity of each component of a multi-phase medium, and enable to assess the volumetric 

water content  (Dobson et al. 1985, Roth et al. 1990).  

By considering a medium with n-phases, the general expression of a VMF can be written as 

follows: 

                 (12) 

where  represents a geometrical fitting parameter depending on the inner structure of the 

medium (Lichtenecker and Rother 1931), while  and  stand, respectively, for the volume 

fraction and the dielectric permittivity of the  component. By implementing Equation (12) on 

a three-phase system and by knowledge of the porosity  of the soil material, it is therefore 

possible to determine the permittivity of the medium: 

             (13) 

where ,  and  are, respectively, the permittivity of free water, of the solid matrix and of 

the gaseous phase, and θ stands for the volumetric water content of the multi-phase system. 

According to this, the permittivity of the solid matrix can be evaluated by considering the 

relative permittivity of the multi-phase medium in dry conditions  ( , as follows 

(Patriarca et al. 2013): 

                (14) 

In case of clayey soils, it is necessary to consider a four-phase medium and, accordingly, a VMF 

expressed as follows (Roth et al.1990): 

           (15) 

where  and  stand for the volumetric content and the permittivity of the clay fraction, 

respectively. In addition, the permittivity of the soil matrix can be determined by considering 

the dry conditions of the system (Patriarca et al. 2013): 
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               (16) 

In this paper, values of  were retrieved from the work of Tosti et al. 2013, wherein 

laboratory tests on the same materials were carried out in dry conditions. Many efforts were 

devoted in the past to characterize the value of , which can vary between -1 and 1. By letting 

, it is assumed to have a wave travel time through the medium equal to the travel times 

within each singular component weighted by the volume (Birchak et al. 1974, Dobson et al. 

1985, Gorriti and Slob 2005). Roth et al. (1990) proposed a value of  equals to 0.46 for a 

three-phase medium, while Dobson et al. (1985) retrieved a value of 0.65 for a four-phase 

mixture. An interesting work has been recently developed by Patriarca et al. (2013), who 

developed a method for determining the optimal  value for different clay-rich mixtures. In this 

work, a value of 0.5 is adopted for the  factor.  

Among the main drawbacks of this method, it can be mentioned the need to have an a-priori 

knowledge of some physical properties of the multi-phase medium, as well as of the dielectric 

permittivity of each component.  

 

Rayleigh Scattering Method 

A recent approach relying on signal processing in the frequency domain was proposed by 

Benedetto (2010). The main advantage of the Rayleigh Scattering Method (RSM) consists in 

avoiding core sampling to calibrate the system, since the volume fractions of the three phases in 

the medium are not accounted for. In this regard,  can be directly estimated by frequency 

analyses of the GPR signal without estimating the dielectric permittivity. The main assumption 

are that in the unsaturated domain, electromagnetic waves are scattered by water droplets 

(Drude 1902), thereby a shifting of the central frequency of the waves occurs (Bohren and 

Huffman 1983). 
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Rayleigh scattering is traditionally used to explain the shifting of the frequency of the scattered 

signals. A shift in the frequency distribution of the reflected signals has already been observed 

in the past; however, the cause of such shift was not identified or deeply investigated (Narayana 

and Ophir 1983; Ho, Gader, and Wilson 2004). 

Overall, it is well-known that scattering is generated by singularities or non-homogeneities in 

electromagnetic impedance. The process can be described as Rayleigh scattering whether the 

dimensions of these non-uniformities are much smaller than the wavelength of the EM wave. 

Analytically, the size of a scattering particle is defined by the ratio x = 2πr / λ, where r is the 

radius of the particle, and λ represents the wavelength of the signal. According to this, Rayleigh 

scattering occurs in the small size parameter regime when x ≪ 1. Scattering from larger 

spherical particles was explained by Mie (1908) for an arbitrary size parameter x. When small 

values of x are considered, the Mie theory falls in the Rayleigh approximation.  

By means of both several assumptions on the three-phase porous medium properties and 

simplifications of the physics, Benedetto (2010) defined the following formulation: 
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        (17) 

whit R being the distance between the observer and the particle, θs represents the angle of 

scattering, f is the frequency of the electromagnetic signal, c0 is the velocity of free space, μr is 

the magnetic permeability, ε∞ is the dielectric constant of the full-polarized medium at an 

infinite frequency electromagnetic field, Δε = εstatic−ε∞ is the difference between the permittivity 

values of, respectively, a steady and an infinite frequency electromagnetic field, τ is the 

relaxation time, and d stands for the diameter of the particle. According to the water content, a 

non-linear modulation of the electromagnetic signal is produced by scattering. In this regard, the 

author demonstrated how the peak of frequency was a comprehensive indicator, negatively 

related to moisture. Accordingly, since scattering is caused by water presence in the medium, 

more scattering events are expected as the water content increases. 
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In line with Equation (17), it was observed how the several frequency components of the 

frequency spectra were differently scattered, depending on the soil type and water contents, with 

the peak of the frequency spectrum fP being the frequency component having the maximum 

scattered intensity of the EM wave. On the basis of several experimental evidences, it was 

proposed the following regression law for determining water content θ, expressed in %, from 

the value of the peak of frequency fP, expressed in Hz×108: 

  BfA P
               (18) 

where A and B are regression parameters calibrated by means of laboratory tests on different 

soil samples. In this paper, the RSM was applied to analyse the behavior of clay-free and clay-

rich soil samples and to provide further insights about water content evaluation in the soil types 

taken into account herein, according to Equation (18). 

 

EXPERIMENTAL FRAMEWORK 

Experimental design 

The main purpose of the experimental design has been to provide a research scenario capable to 

sufficiently represent the electromagnetic behavior of clayey soils, outlined by the combination 

of different-textured soil samples in both clay-free and clay-rich conditions along with water 

contents from dry to saturation. A detailed description of the samples preparation protocols 

followed in this work, including compaction procedures and clay mixing, can be found in Tosti 

et al. 2013. In addition, standard procedures for cross-checking the homogeneous wet 

conditions within the soil samples have been implemented herein, as described later. 

 

Test devices and equipment 

Experimental tests were carried out using two different GPR systems. An ultra wideband 

(UWB) stepped frequency continuous wave (SFCW) radar, was set-up by using a vector 

network analyzer (VNA) manufactured by Hewlett Packard (8753C, 300 kHz – 3 GHz) to 
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collect data in the frequency domain (Figure 3a). More information on the antenna properties, 

the calibration procedures, the experimental setup for such type of off-ground measurements, as 

well as about the dimensions of the test formworks can be found in Tosti et al. 2013.  

In addition, a pulsed radar system with ground-coupled antennas (pulseEKKO PRO 

manufactured by Sensors & Software Inc., Canada), 500 MHz center frequency of investigation, 

was used in a bi-static configuration and common offset (Figure 3b). Data were collected in the 

time domain, using a 40ns time window and a time step of 5×10-2 ns.  

 

FIGURE 3. Test devices and equipment a) SFCW radar set-up using a vector network analyzer 

HP 8573C (Hewlett Packard Company, USA) and a linear polarized double-ridged broadband 

TEM horn BBHA 9120 A (Schwarzbeck Mess-Elektronik, Germany), in a mono-static 

configuration. b) PulseEKKO PRO 500 pulsed radar system, manufactured by Sensors & 

Software Inc., Canada. 

 

Materials and laboratory testing 

Typical road materials used for unbound pavement layers construction and subgrade soils were 

used for laboratory testing. In more details, three different soil types, classified by the AASHTO 

soil classification system as A1, A2, and A3 were considered, being, respectively, gravel (A1, 

grain size 4-8 mm), coarse sand (A2, grain size 1-2 mm), and fine sand (A3, grain size 0.125-

0.250 mm).  

Concerning the clay-rich samples, an amount of 15% by weight of bentonite clay was added 

within the above three types of undisturbed materials. The Colclay A90 bentonite clay, 

manufactured by Ankerpoort NV, The Netherlands, is mineralogically mainly composed by 

smectite, consisting of silica (62% by weight) and alumina (21% by weight) sheet-like bounded 

particles. Mineral thin units get separated by water intrusion between the particles, thereby 

causing a sudden dispersion of the bentonite in the water. 
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Increasing amounts of water were gradually added to the soil samples from dry up to saturated 

conditions. After the mixing and compaction procedures, the bulk density of each soil sample 

was collected. To ensure homogeneous moisture conditions within the samples, a number of 

three samplings was carried out in the barycenter and in the lower and upper corners of each 

sample, alongside the diagonal line of the specimens, such that it was possible to determine the 

average volumetric water content of each sample after drying in the oven the sampled material. 

A relatively high moisture homogeneity was broadly verified in all the samples according to the 

low values of standard deviation determined between the aforementioned three sampled 

amounts of VWC (i.e., standard deviation σθ < 2%). A thorough list of the main physical 

properties of the dry-member materials used in this work, including bentonite clay, can be found 

in Tosti et al. 2013.  

 

RESULTS AND DISCUSSION 

Soil behavior analysis through permittivity-based methods 

According to the flowchart of Figure 2, permittivity values  from the TDSP technique were 

firstly estimated from the measured signal in time domain, after implementing the IFFT of the 

responses measured in the frequency domain.  

In a second step, the inversion process is run. According to this, each measured signal 

 is compared with a 3D matrix of Green’s functions , sized [P×M×F], 

being P = 75 (i.e., ), M = 60 (i.e., ), and F = 640 (i.e., number of frequencies collected), 

being n = 1, with a relatively large parameter space used for running such inversions. As 

previously mentioned, the target value of  can be searched in the parameter space defined by 

± 10% of the  value of first approximation. Furthermore, the frequency-dependent 

electrical conductivity  has been evaluated according to Equation (9), being the parameter 

space for  variable in the range [10-1÷10-4 Sm-1] within a bandwidth B spanning the 1 – 3 GHz 
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frequency range. Finally, the F parameter has been obtained by the ratio between the above 

cited bandwidth B and a frequency step fs of 3.125 MHz.  

Figure 4a,b depicts two examples of measured and modeled responses in the frequency and time 

domain by FWI application. 

 

FIGURE 4. Measured and modeled Green’s functions in the frequency (amplitude  and 

phase ) and time ( ) domain. (a) soil sample 23 (A3, clay = 0%, θ = 10.9%); (b) soil 

sample 45 (A3, clay = 15%, θ = 9.7%). 

 

As it can be seen in the  plots, a smoother behavior can be observed in case of clay 

presence (Figure 4b), being the same soil type (i.e., A3) considered in both figures, with 

comparable volumetric water contents. Amplitudes for the clay-free A3 soil sample (Figure 4a) 

reach higher peak values than in the presence of clay. Concerning the Green’s functions in the 

 time domain, two main peaks of reflection can be clearly singled out in both these figures. 

It is also worth noticing how signal amplitudes in the time domain can be affected by 

mismatches occurring in the frequency domain. The comparison between the two  plots of 

Figure 4a,b for the clay-free and the clay-rich soil samples shows the positions of the first main 

peaks of reflection (namely, the air-soil interfaces at the subsequent zero-amplitude positions 

along the x axis) at 2.03 ns and 2.02 ns, respectively. Coherently, the second main peaks of 

reflection (namely, the soil/PEC interfaces at the subsequent zero-amplitude positions along the 

x axis) are measured at 3.63 ns and 3.43 ns, thereby providing time distances  = 1.60 ns for (a) 

and  = 1.40 ns for (b). Such trend can be considered a comprehensive case study for the 

overall behavior of the road materials investigated, being the position of the first main peak of 

reflection approximately the same for all the samples, while the second main position usually 

locates in floating time distances, as expected by the different physical conditions manufactured 

in the specimens. Relatively good matches between permittivity estimates with TDSP and FWI 
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techniques have been found, whereby errors ≤ 8%, 7%, and 6% can be detected for A1, A2, and 

A3 soil types, respectively. 

In addition to the above two techniques for permittivity estimation, the SRM was used to 

retrieve further values of dielectric permittivity  from the measured signals in the time 

domain representing each soil sample. On the other hand, permittivity values  from the 

VMF approach were also inferred by exploiting the physical properties of the soil samples along 

with the water contents gravimetrically determined.  

 

Methods comparison  

Table 1 lists the values of relative dielectric permittivity assessed by the above four methods in 

both clay-free and clay-rich conditions. The overall trend proves how increasing values of 

relative dielectric permittivity are reached for higher water amounts in samples. Moreover, 

considerably lower values of permittivity can be observed in clayey samples, probably due to 

the swelling properties of clay that tightly bound water particles by molecular forces preventing 

a full polarization of the water dipoles when the EM field is applied. Much more than in the 

case of clay-free samples, the four methods return similar permittivity values for the clay-rich 

samples, whereby slighter variations of permittivity between dry-member and end-member (i.e., 

saturated) cases are also encountered. Considerable differences of dielectrics among all the four 

approaches are instead detected in clay-free cases. 

 

TABLE 1. Relative dielectric permittivity values retrieved using different processing methods 

for 0% and 15% clay samples. 

 

The plots in Figure 5a-f provide interesting insights on the EM response of different textured 

soils with varying clay and water contents. Petrophysical relationships from Topp, Davis, and 

Annan (1980) were used here for best comparing the performances of the processing techniques 

employed with the empirical estimates of relative dielectric permittivity based on the water 
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content measurements. Both the Topp’s general expression and the Topp’s site-specific 

relationship for the Rubicon sandy loam (SL) soil type, with grain size distribution comparable 

to the soil types analyzed herein and very low clay contents, were taken into account for the 

analyses on the clay-free soil samples, while only the Topp’s general expression was considered 

for the clay-rich member cases.  

Concerning clay-free samples behavior (i.e., Figures 5a-c), it can be argued how the agreement 

of the processing methods in θ estimate is highly dependent on the soil texture. In particular, the 

lower is the grain size of the material, the similar and closer are the EM responses retrieved. To 

broadly quantify the errors between permittivity estimates by different approaches, the 

Normalized Root Mean Square Deviation (NRMSD) index has been therefore evaluated for 

each pair combination of methods, as follows: 

              (19) 

where  and  are the  estimated permittivity values for, respectively, the considered and 

the reference method, n is the number of parameters,  and  are, respectively, the 

maximum and minimum permittivity values within the population of the reference method 

taken into account. Table 2 lists the NRMSD values for the whole set of processing techniques 

that have been compared each other. Such statistics confirm a good reliability in permittivity 

estimates of the A3 soil type, with negligible errors. On the contrary, these errors increase for 

higher grain sizes up to 0.84 (i.e., NRMSD value by FWI and Topp (general) comparison for 

A1 soil samples). 

 

TABLE 2. Normalized Root Mean Square Deviation (NRMSD) values in clay-free soil samples 

by comparing the different permittivity-based methods. 
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Experimental tests have highlighted that the greater the grain size of samples, the more 

remarkable the heterogeneities observed in water distribution. In case of the A1 soil type 

already with relatively low moisture contents, the experimental observations have shown how a 

free-water layer had begun to form at the bottom of the test box. This could be due to a very low 

threshold of loosely bound molecular and capillary water, being the amount of capillary water 

controlled by the soil texture, soil structure, organic matter and gravity (Lyon and Buckman 

1937). Accordingly, capillarity tends to have a greater contribution in finer-textured materials, 

and much more capillary meniscus around single or multiple particles are formed. This can be 

singled out according to the trend of permittivity values retrieved by the FWI with respect to 

SRM, VMF, and Topp-based relationships. When considering A1 soil samples (Figure 5a) in 

the gravel size domain, capillarity occurs up to very low volumetric water contents. Indeed, 

similar estimates can be seen up to θ = 2.68%, beyond which the FWI begins to return very 

much higher values of permittivity than the other techniques. Useful insights about the 

hydraulic and EM behaviors of similar gravel aggregates for increasing water contents can be 

found in Scullion and Saarenketo (1997). 

One main explanation for this behavior lies on the own theoretical principles of these processing 

techniques. By experimental evidence, the SRM approach returns relatively flat values of 

permittivity within the A1 and A2 soil samples, respectively in Figures 5a and 5b, with an 

increasing trend observed for the last two member-cases of A2 soil samples when the 

permittivity approaches the analogous estimates by the other processing methods. In line with 

this, a more regular and slight increasing behavior can be also seen in A3 soil samples (Figure 

5c), wherein major effects of capillarity occur. Within this framework, when water content 

increases in coarser-sized materials such as A1 soils, the upper unsaturated volume of the 

formwork retains the same levels of loosely bound water, while the thickness of the water layer 

progressively increases at the bottom. Since the SRM strongly relies on surface reflections, the 

higher is the grain size of the soil (i.e., lower amounts of loosely bound and capillary water), the 

more different will be the values of permittivity retrieved with respect to the other processing 
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techniques considered herein. Such behavior diverts when the depth to water layer approaches 

the surface, namely, for moisture conditions close to saturation, and the SRM approach becomes 

more sensitive to free water, thereby returning higher dielectrics. Where loosely bound water 

contribution and capillary effects are higher (i.e., finer-textured soils), the SRM returns 

permittivity values more consistent with the water added to the samples (i.e., A3 soil in Figure 

5c).  

A certain weak sensitivity to water is instead observed for permittivity estimates using the VMF 

method, which slightly rise for finer-textured materials. Relying on the theoretical assumptions 

of a homogeneous distribution of the multi-phase soil components within each weighted volume 

and same wave propagation velocity through the medium, the relevant permittivity estimates do 

not reflect the real distribution of water within the formwork. Such behavior is more 

emphasized in coarser materials, such as the A1 soil sample, than in A2 and A3 soils, where 

capillarity effects contribute at more homogeneously distributing moisture within the multi-

phase volume of the specimen. 

The FWI approach takes instead into account the whole thickness of the samples, and returns a 

modeled signal which includes all the possible information of the wave related to a non-

homogeneous distribution of water within the depth domain investigated. 

On the other hand, the EM behavior in clay-rich soil samples (i.e., Figures 5d-f) is strongly 

related to the presence and amount of clay particles, which deeply affect how the water 

molecules adhere to the particle surface. In more details, the water dipole is oriented according 

to the electrical charge of the clay particle when applying an EM field, by virtue of molecular 

forces (Benedetto 2010). In this case, a high-density layer of tightly bound water around the 

particle surface is formed. When water content increases, a ticker film of oriented dipoles 

creates, and the outer water changes into the so-called loosely bound layer, since the bonding 

forces decrease with the distance from the mineral surface. Basically, the aforementioned layers 

of adsorbed water consist of monomolecular layers which surround negatively charged mineral 

surfaces and further absorption water layers that can be tightly or loosely bound (Mitchell 
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1992). In this regard, when clay particles are present and water molecules are bound in the form 

of adsorbed water, the EM field applied by GPR enables to orientate only the loosely bound 

water dipoles. When increasing moisture contents, a ticker film of water around the soil 

particles occur, thereby enabling the polarization of the outer dipoles. This reflects in a lower 

variability of the soil dielectric properties with water content, regardless of the amount of θ.  

A very good consistency in permittivity estimates is observed by the application of the FWI and 

SRM methods within all the types of soil investigated, being the NRMSD indexes equal to 0.12, 

0.16 and 0.21 for, respectively, A1, A2 and A3 soil samples (Table 3). This is due to fairly 

homogeneous water content conditions throughout the whole thickness of the formwork, such 

that lower differences between near surface permittivity values by SRM and full-depth 

dielectrics by FWI occur. In addition to this, it is worthwhile to note how the application of the 

VMF approach mostly overestimates the values (i.e., A2 and A3 soils in Figures 5e and 

5f), since the water content contribution is completely taken into account by the theoretical 

model, while the electrical losses due to the rates of tightly bound water to clay particles are not 

considered. 

Overall, the application of the Topp’s general relationship returns higher values of dielectric 

permittivity for all the three types of soil. The VMF approach provides in turn intermediate 

permittivity estimates between the Topp’s approach and the FWI and SRM techniques. Finally, 

it should be noted how the best agreement among the various approaches is verified for the A1 

soil type (Figure 5d). 

 

FIGURE 5. Plots of volumetric water contents θ vs dielectric permittivity values  by different 

permittivity-based methods in clay-free – A1 (a), A2 (b), A3 (c) – and 15% of clay conditions – 

A1 (d), A2 (e), A3(f) –. 
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TABLE 3. Normalized Root Mean Square Deviation (NRMSD) values in clay-rich soil samples 

(15% of clay) by comparing the different permittivity-based methods. 

 

Soil behavior analysis through the Rayleigh scattering method (RSM) 

Radar traces from the pulseEKKO pulsed radar system were processed for each test. A 

denoising step was applied by means of low-pass (i.e., 1000 MHz) and high-pass (i.e., 150 

MHz) filters. Subsequently, a fast Fourier transform (FFT) was used for retrieving the frequency 

spectrum of the radar signal, and the frequency peak fP of each spectrum, namely, the frequency 

of the maximum amplitude, was then extracted. To enhance the accuracy of the processing, a 

number of 20 traces per sample was collected, so that a more stable value of fP could be 

achieved for each soil sample by averaging as follows: 

                (20) 

with n being the total amount of i replicas, and fP,i being the frequency of the ith spectrum. Such 

operation is useful in case of instability in the values of fP extracted by FFT within the same soil 

sample, i.e., when the shift of the spectrum peak approaches to be sensitive to an increase of 

water content. Further insights on the application of super-resolution techniques in the spectral 

domain are discussed in Benedetto and Tosti (2013b). 

An overview on the behavior describing the frequency modulations of signal spectra can be seen 

in Figure 6a-f. Theoretical motivations and empirical observations on this phenomenon can be 

found in literature for natural soils and compacted loose materials (e.g., Benedetto 2010), as 

well as for concrete materials (e.g., Laurens 2005). 

It is evident how the frequency peak moves systematically to lower values of frequency, 

regardless of the grain size and the presence of clay, which however are fundamental to provide 

a more comprehensive interpretation of such occurrence. Table 4 lists the measured values of 

frequency peaks, case by case.  
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FIGURE 6. 3D representation of the frequency spectra modulation for the soil types 

investigated from dry to saturated conditions. Clay-free conditions – A1 (a), A2 (b), A3 (c) – 

and 15% of clay conditions – A1 (d), A2 (e), A3(f) –. 

 

TABLE 4. Measured values of frequency spectra peaks ƒP [Hz × 108] for 0% and 15% clay 

samples from dry to saturated conditions. 

 

The overall behavior in both clay-free and clay-rich conditions in terms of peaks shifting is 

represented, respectively, in Figure 7a and 7b. In addition and according to Equation (18), the 

calibrated A and B parameters along with the relevant regression coefficients for volumetric 

water content prediction are listed in Table 5. As it can be seen, the mean squares fitting linear 

curves are characterized by relatively high correlation coefficients R2, especially for the finer-

grained soil types A2 and A3 with 15% of clay content. 

FIGURE 7. Trend of values of frequency spectra peak (fP) across the range of moisture contents 

investigated for clay-free (a), and clay-rich soil samples (b). 

 

TABLE 5. Values of regression coefficients in Equation (18). 

 

Numerical data show how the frequency shift occurs, across the range of moisture investigated, 

with two main rates of displacement, whose dimensions vary according to the grain size and 

clay content of the samples. Basically, a lower shift of frequency peaks is firstly observed (i.e., 

low amounts of water content). Secondly (i.e., increasing amounts of water content), more 

remarkable displacements are noticed.  

In both clay-free and clay-rich conditions, it can be noticed how the coarser is the grain size of 

the soil the lower is the amount of moisture by which the aforementioned two steps of 

displacement occur. Considering clay-free conditions (Figure 6a-c), the range of frequency 

peaks variation ΔfP A1-0% clay for the A1 soil type reaches a water content of θ = 6.71% (Sample 7) 
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at the beginning of the second main step of displacement (relevant ΔfP A1-0% clay = 4.11×108 Hz). 

The same step begins at θ = 21.43% (Sample 16) for the A2 soil type (relevant ΔfP A2-0% clay = 

3.92×108 Hz), while lower displacements are reached for the A3 soil type, being the last 

moisture value θ equals to 26.63% (Sample 27) with a significantly lower range of variation of 

frequency peaks (relevant ΔfP A3-0% clay = 2.15×108 Hz). 

In clay-rich conditions (Figure 6d-f), numerical results demonstrate how this occurrence is 

broadly more attenuated, although its strong dependence on the grain size of the soil samples is 

yet confirmed. Indeed, despite the lower ΔfP intervals, much higher volumetric water contents 

than in clay-free conditions are observed within this range, and the finer is the grain size the 

higher is the amount of moisture. In more details, such range of variation ΔfP A1-15% clay measures 

3.14×108 Hz for the A1 clay-rich soil type, and it is reached in a wide field of moisture (θ = 

23.95% - Sample 32). Within the A2 clay-rich soil samples, the highest ΔfP A2-15% clay measures 

0.59×108 Hz with a relevant water content θ = 27.13% (Sample 41), while ΔfP A3-15% clay = 

1.57×108 Hz and θ = 29.40% (Sample 51) are noticed for the A3 clay-rich finer soil type. 

Such overall behavior can find reasonable explanations by relating the contribution of water, 

clay and grain size of the undisturbed material. Several transition water states occur when 

starting to add water in a system of dry soil particles, namely, tightly bound and loosely bound 

adsorption water, capillary water, and free water (Mitchell 1992). According to this, different 

rates of polarization of the water dipoles occur, with the grain size and mineralogy of soils 

playing an important role in the modes of such occurrence (Saarenketo 1998). In case of A1 

clay-rich soil samples (Figure 6d), it is found the widest experimental heterogeneity between 

particles, i.e., among the undisturbed material (i.e., grain size 4-8 mm) and the bentonite clay. 

When adding low amounts of water into a dry system composed by many particles from these 

two types of population, both the gravel and the clay particles retain water by molecular forces, 

therefore it is expected that the water dipoles are not fully-polarized by the EM field. In these 

cases, lower variations of the frequency peaks of the spectra can be noticed. When increasing 

the water content, clay particles continue to retain moisture, due to their swelling properties, 
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without undergoing any polarization, while gravel grains begin to loose water molecules, which 

in contrast start to polarize. In such conditions, slightly higher variation of the frequency peaks 

of the spectra can be observed. On the other hand, if the water amount added is considerable, 

both the two types of population take part in the polarization of water dipoles, since a large 

amount of clay particles begin to polarize all together. Such condition reflects in the highest rate 

of variation of the frequency spectra peaks, as a result of a sudden amount of polarized water 

dipoles. In case of finer-grained particles with 15% of clay content, such as the A3 clay-rich soil 

samples (Figure 6f), the above two populations are instead characterized by particle sizes very 

close each other, thereby the A3 fine sand is capable to retain higher amounts of water, as well 

as losing more gradually water molecules. In line with this, such “shifting” behavior involving 

the peaks of frequency spectra is much more attenuated. 

When considering clay-free conditions (Figure 6a-c) with a unique population of soil particles 

and a relatively homogeneous grain size, the shift of the frequency peaks of spectra occurs more 

rapidly and linearly, although a higher disorder of the several frequency components of the 

spectra can be broadly observed. 

 

SUMMARY OF THE MAIN RESULTS 

Permittivity-based methods 

General considerations 

 Higher water contents reflect into increasing values of relative dielectric permittivity. 

 Considerable lower permittivity values in clayey soil samples are observed with respect to 

clay-free samples. 

 Similar permittivity values are returned with the four processing methods used in this study 

in case of clayey samples. Slighter variations of permittivity between dry-member and end-

member cases are also encountered. 
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Clay-free samples 

 The agreement of the processing techniques used in this study in θ estimate is highly 

dependent on the soil texture: the lower is the grain size, the closer are the relative dielectric 

permittivity values. 

 The FWI technique has a higher sensitivity than the other permittivity-based processing 

methods to single out the low threshold between loosely bound molecular and capillary 

water in coarser-grained materials (i.e., A1 and A2 soil types) and determining reliable 

values of moisture within the whole depth domain investigated. 

 The SRM seems to be more suited for characterising the loosely bound water content of the 

upper (surface) part of the samples in coarser-grained materials (i.e., A1 and A2 soil types) 

when moisture conditions are not saturated. 

 The VMF approach used herein does not provide worthwhile information for distinguishing 

any transition water states due to the theoretical assumptions of the model itself, which 

diverts from the real grain size structure of the soils investigated. 

 

Clay-rich samples 

 The Topp’s general relationship returns higher values of relative dielectric permittivity than 

the processing techniques employed here for all the three types of soil. 

 Good results consistency is observed between the FWI and the SRM methods within all the 

three types of soil investigated due to the clay ability of retaining water and fairly 

homogenising its content within the soil volume. 

 In most cases, the VMF approach overestimates the permittivity values with respect to FWI 

and SRM, since the rates of tightly bound water to clay content are not taken into account 

by its theoretical model. 

 

Rayleigh scattering method 
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 When increasing the water content, the peak of the frequency spectra of the signals moves 

systematically to lower values of frequency, regardless of the grain size and the clay 

content. 

 In both clay-free and clay-rich samples, the highest linear correlation coefficients in 

frequency peaks shifting vs VWC relationships are found for finer-grained clayey soil types 

(i.e., A2 and A3) 

 Two main rates of displacement for the shifting of the frequency spectra peaks are observed. 

The occurrence and dimension of such behaviour vary according to the grain size and the 

clay content of the soil samples. 

 In both clay-free and clay-rich samples, the coarser is the grain size of the soil, the lower is 

the amount of water whereby the frequency peaks displacement takes place. 

 The frequency spectra peaks displacement is more attenuated in clay-rich than in clay-free 

conditions. Anyhow, in clayey conditions, the wider is the grain size heterogeneity between 

the undisturbed soil and the clay particles (i.e., A1 soil type), the higher is the rate of 

frequency displacement. 

 

CONCLUSIONS 

This study is motivated by the need to understand the dielectric behavior of clayey subgrade 

soils and unbound load-bearing layers using ground-penetrating radar. Data from two different 

radar systems are analyzed at the laboratory scale of investigation for three types of soil 

classified by AASHTO as A1, A2, and A3 in both clay-free and clay-rich conditions (15% by 

weight of clay) under different water contents. 

Several permittivity-based methods were used for data processing, namely, the time-domain 

signal picking technique, the full-wave inversion method, the surface reflection method, and the 

volumetric mixing formulae. An implementation of the time domain signal picking technique 

within the full-wave inversion method has been also presented. Considerably lower values of 
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dielectric permittivity are observed in clayey samples with respect to clay-free conditions. 

Permittivity estimates very close to each other are also detected between dry-member and end-

member (i.e., saturated) cases by the four approaches. On the contrary, considerable differences 

of dielectrics are detected in clay-free cases. Comparisons between the above dielectrics and the 

volumetric water contents of samples, gravimetrically determined, highlight considerable 

differences among the full-wave technique and the other approaches. A very good capability of 

this method in evaluating permittivity values of unsaturated coarse-grained materials in clay-

free conditions is shown. Overall, differences in permittivity estimates decrease for finer grain 

sizes, such that the full-wave inversion traces relatively well the trend of the Topp’s general 

relationship for the A3 soil type. The surface reflection method and the volumetric mixing 

approach do not perform well in characterizing the overall volumetric water contents in 10.5 cm 

thick formworks. 

Concerning clay-rich soil samples, a very good agreement in the trend of the full-wave 

inversion approach and the surface reflection method is noticed, due to the swelling properties 

of clay, which creates a relatively homogeneous mixtures of the multi-phase components of the 

soil samples, such that low changes of permittivity throughout the thickness of the formwork are 

encountered. In such clayey conditions, the Topp’s general expression broadly overestimates the 

values of soil permittivity. By a lower entity, considerable overestimates are also encountered 

using the volumetric mixing approach. 

The ability to detect clay in soils was also investigated using a Rayleigh-based scattering 

technique, which relies on analyses carried out in the spectral domain of the GPR signal. The 

results demonstrate a strong contribution of water, clay and grain size of the undisturbed 

material on the occurrence of scattering phenomena. Higher variations in the range of frequency 

spectra peaks are noticed in clay-free soil samples with respect to clay-rich conditions, being 

this frequency-dependent behavior more rapid and linear, despite the overall higher disorder of 

the several frequency components of the spectra. On the contrary, clay-rich soils exhibit simpler 

spectral behaviors, and frequency shifts develop across higher amounts of water content, due the 
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swelling properties of clay. Soil-specific regression functions are proposed for estimating water 

content as a function of the peaks of frequency spectra. 
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FIGURE 1 Measured Green’s function in the time domain  and time delay  

between air-medium and medium-PEC interfaces. 
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FIGURE 2. Flowchart representing the implementation of the TDSP technique within the FWI 

approach. 
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FIGURE 3. Test devices and equipment a) SFCW radar set-up using a vector network analyzer 

HP 8573C (Hewlett Packard Company, USA) and a linear polarized double-ridged broadband 

TEM horn BBHA 9120 A (Schwarzbeck Mess-Elektronik, Germany), in a mono-static 

configuration. 



47 

 

  

FIGURE 3. Test devices and equipment b) PulseEKKO PRO 500 pulsed radar system, 

manufactured by Sensors & Software Inc., Canada. 
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FIGURE 4. Measured and modeled Green’s functions in the frequency (amplitude  and 

phase ) and time ( ) domain. (a) soil sample 23 (A3, clay = 0%, θ = 10.9%) 
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FIGURE 4. Measured and modeled Green’s functions in the frequency (amplitude  and 

phase ) and time ( ) domain. (b) soil sample 45 (A3, clay = 15%, θ = 9.7%). 
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FIGURE 5. Plots of volumetric water contents θ vs dielectric permittivity values  by different 

permittivity-based methods in clay-free – A1 (a), A2 (b), A3 (c) – and 15% of clay conditions – 

A1 (d), A2 (e), A3(f) –. 
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FIGURE 6. 3D representation of the frequency spectra modulation for the soil types investigated from dry to 

saturated conditions. Clay-free conditions – A1 (a), A2 (b), A3 (c) – and 15% of clay conditions – A1 (d), A2 (e), 

A3(f) –. 
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FIGURE 7. Trend of values of frequency spectra peak (fP) across the range of moisture contents 

investigated for clay-free (a), and clay-rich soil samples (b). 
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Tables 

 

TABLE 1. Relative dielectric permittivity values retrieved using different processing methods 

for 0% and 15% clay samples. 

 

Soil 

sample ID          

(0% clay) 

θ [%] εTDSP εFWI εSRM εVMF  
Soil 

sample ID                

(15% clay) 

θ [%] εTDSP εFWI εSRM εVMF 

A1       A1      

Sample 1 0.00 2.53 2.65 3.46 3.12  Sample 28 0.00 3.97 4.02 3.89 4.01 

Sample 2 2.68 3.64 3.50 3.02 3.55  Sample 29 8.42 4.32 3.98 3.56 5.36 

Sample 3 4.44 5.34 5.30 3.86 3.83  Sample 30 18.27 5.67 5.35 5.41 6.93 

Sample 4 4.26 6.42 6.49 4.28 3.80  Sample 31 21.69 6.00 5.68 6.88 7.48 

Sample 5 5.11 8.46 8.50 3.53 3.94  Sample 32 23.95 8.63 8.78 8.89 7.84 

Sample 6 5.73 10.43 10.52 3.76 4.03  Sample 33 27.11 9.04 8.82 11.52 8.35 

Sample 7 6.71 12.9 13.22 4.62 4.19  Sample 34 29.44 12.21 12.28 11.13 8.72 

Sample 8 8.34 15.96 16.20 2.63 4.45  Sample 35 31.76 12.30 12.37 13.11 9.09 

Sample 9 12.18 20.09 20.59 27.74 5.07        

             
A2       A2      

Sample 10 0.00 2.74 2.78 2.21 3.33  Sample 36 0.00 4.07 4.06 4.05 4.03 

Sample 11 3.62 3.96 3.73 2.94 3.91  Sample 37 9.71 3.91 3.75 3.86 5.58 

Sample 12 6.06 4.60 4.52 3.00 4.30  Sample 38 17.99 4.36 4.41 3.02 6.91 

Sample 13 7.27 5.93 5.55 3.70 4.50  Sample 39 20.96 4.72 4.80 4.07 7.38 

Sample 14 10.48 8.79 8.44 3.56 5.01  Sample 40 24.89 5.47 5.58 4.79 8.01 

Sample 15 14.71 11.07 10.69 3.36 5.69  Sample 41 27.13 6.00 5.91 6.28 8.37 

Sample 16 21.43 14.44 14.02 3.41 6.76  Sample 42 30.29 6.75 7.16 8.39 8.88 

Sample 17 24.68 17.79 17.91 4.47 7.28  Sample 43 33.20 6.85 7.35 9.05 9.34 

Sample 18 29.44 21.10 20.60 11.46 8.05        

             
A3       A3      

Sample 19 0.00 2.64 2.66 2.44 3.26  Sample 44 0.00 3.43 3.38 2.76 3.68 

Sample 20 2.80 3.22 3.04 2.28 3.71  Sample 45 9.69 4.02 4.03 4.21 5.23 

Sample 21 5.55 3.96 3.80 3.24 4.15  Sample 46 15.46 3.38 3.37 3.01 6.15 

Sample 22 8.07 4.84 4.66 3.13 4.55  Sample 47 18.10 3.69 3.65 3.08 6.57 

Sample 23 10.95 5.87 5.52 4.45 5.01  Sample 48 21.08 4.02 3.88 3.92 7.05 

Sample 24 13.61 6.14 5.69 3.97 5.44  Sample 49 23.79 4.18 4.07 4.17 7.48 

Sample 25 17.42 8.06 7.83 4.61 6.05  Sample 50 26.00 4.42 4.69 4.03 7.84 

Sample 26 20.87 11.54 11.27 5.67 6.60  Sample 51 29.40 4.65 4.84 4.44 8.38 

Sample 27 26.63 15.19 14.91 7.07 7.52        
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TABLE 2. Normalized Root Mean Square Deviation (NRMSD) values in clay-free soil samples 

by comparing the different permittivity-based methods. 

 

Methods NRMSD 

  A1 A2 A3 

FWI SRM 0.44 0.39 0.28 

FWI VMF 0.44 0.56 0.24 

SRM VMF 0.24 0.11 0.21 

Topp Gen.  FWI 0.84 0.24 0.03 

Topp Gen. SRM 0.28 0.39 0.40 

Topp Gen. VMF 0.28 0.36 0.38 

Topp SL FWI 0.83 0.11 0.03 

Topp SL SRM 0.33 0.39 0.41 

Topp SL VMF 0.31 0.37 0.38 
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TABLE 3. Normalized Root Mean Square Deviation (NRMSD) values in clay-rich soil samples 

(15% of clay) by comparing the different permittivity-based methods. 

 

Methods NMRSD 

  A1 A2 A3 

FWI SRM 0.12 0.16 0.21 

FWI VMF 0.24 0.37 0.55 

SRM VMF 0.24 0.42 0.54 

Topp Gen. FWI 0.21 0.36 0.46 

Topp Gen. SRM 0.19 0.35 0.47 

Topp Gen. VMF 0.30 0.39 0.43 
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TABLE 4. Measured values of frequency spectra peaks ƒP [Hz × 108] for 0% and 15% clay 

samples from dry to saturated conditions. 

 

Soil 

sample ID          

(0% clay) 

θ [%] fP [Hz×108]  
Soil 

sample ID                

(15% clay) 

θ [%] fP [Hz×108] 

A1    A1   

Sample 1 0.00 6.65  Sample 28 0.00 5.68 

Sample 2 2.68 5.87  Sample 29 8.42 5.51 

Sample 3 4.44 5.48  Sample 30 18.27 5.29 

Sample 4 4.26 5.28  Sample 31 21.69 5.09 

Sample 5 5.11 4.50  Sample 32 23.95 2.54 

Sample 6 5.73 4.70  Sample 33 27.11 2.54 

Sample 7 6.71 2.54  Sample 34 29.44 2.35 

Sample 8 8.34 2.54  Sample 35 31.76 2.35 

Sample 9 12.18 2.15     

       
A2    A2   

Sample 10 0.00 6.46  Sample 36 0.00 5.87 

Sample 11 3.62 5.87  Sample 37 9.71 5.87 

Sample 12 6.06 5.28  Sample 38 17.99 5.68 

Sample 13 7.27 5.09  Sample 39 20.96 5.48 

Sample 14 10.48 5.09  Sample 40 24.89 5.28 

Sample 15 14.71 4.70  Sample 41 27.13 5.28 

Sample 16 21.43 2.54  Sample 42 30.29 5.87 

Sample 17 24.68 2.34  Sample 43 33.20 5.68 

Sample 18 29.44 2.15     

       
A3    A3   

Sample 19 0.00 6.65  Sample 44 0.00 6.07 

Sample 20 2.80 6.26  Sample 45 9.69 5.68 

Sample 21 5.55 5.87  Sample 46 15.46 5.87 

Sample 22 8.07 5.28  Sample 47 18.10 5.87 

Sample 23 10.95 5.09  Sample 48 21.08 5.87 

Sample 24 13.61 5.87  Sample 49 23.79 5.69 

Sample 25 17.42 5.28  Sample 50 26.00 5.67 

Sample 26 20.87 5.28  Sample 51 29.40 4.50 

Sample 27 26.63 4.50     
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TABLE 5. Values of regression coefficients in Equation (18). 

 

Clay Content [%] Parameter Soil     

    A1 A2 A3 

0 A × 108 6.79 6.43 6.64 

  B × 107 4.34 1.56 1.02 

  R2 0.84 0.95 0.77 

          

15 A × 108 6.34 5.83 5.96 

  B × 107 1.23 0.10 0.07 

  R2 0.71 0.98 0.99 

 

 

 

 

 

 

 

 


