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ABSTRACT - Ground-penetrating radar (GPR) was firstly used in traffic infrastructure surveys during the 

first half of the Seventies for testing in tunnel applications. From that time onwards, such non-destructive 

testing (NDT) technique has found exactly in the field of road engineering one of the application areas of 

major interest for its capability in performing accurate continuous profiles of pavement layers and detecting 

major causes of structural failure at traffic speed. This work provides an overview on the main signal 

processing techniques employed in road engineering, and theoretical insights and instructions on the proper 

use of the processing in relation to the quality of the data acquired and the purposes of the surveys. 
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1. INTRODUCTION 

Safety concerns and economical savings in road construction and maintenance strategies are no doubt the 

two main issues around which considerable efforts of engineers and practitioners are being increasingly 

focused. In terms of driving safety, it is well known how cracks, potholes, and surface deformations can 

generate sudden vertical accelerations on the vehicle tires, thereby lowering the effective friction between 

tires and pavement surface and raising the probability of car accidents [1]. As far as the economic aspect is 

concerned, three main factors have a great influence nowadays in orienting the policies of investment of 

governments and local authorities in the transportation area, namely, i) the general lack of economic 

resources which causes a lowering of the demand for new constructions; ii) the need for a road asset that can 
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meet the current requirements of mobility, and iii) the progressive aging of existing assets. Accordingly, 

effective road maintenance policies can be considered nowadays as important as good construction practices.  

Within the frame of road inspection methods, traditional techniques such as coring and drilling are based on 

a destructive approach. Notwithstanding the high reliability, they reveal as expensive, time-consuming and 

slightly significant, since the information gathered can not be extended to long-range distances. Thereby, 

several non-destructive testing or evaluation (NDT/NDE) techniques have been developed to enable more 

efficient assessments of road pavements and materials. Among the major advantages, we can mention the 

faster data acquisition, more contained cost, and the capability to be performed in-situ over longer distances 

[2, 3]. 

Within the various NDTs employed in road surveys, ground-penetrating radar (GPR) is nowadays 

established as one of the most effective and powerful, due to its high flexibility and reliability of results. 

Basically, this tool enables to infer information on the physical and geometrical conditions of the subsurface 

relying on the transmission and reception of short EM impulses in a given frequency band [4, 5]. 

First documented research on the use of GPR in the traffic infrastructure area can be traced back in the 1970s 

by the Federal Highway Administration (FHWA) for testing in tunnel investigation [6]. The main 

applications in this area concern the inspections of pavement layers, and they broadly include the evaluation 

of layer thicknesses [7], the assessment of damage conditions in hot mix asphalt (HMA) layers [8], load-

bearing layers and subgrade soils [9], and the inspection of concrete structures [10, 11]. New frontiers on the 

possibility to infer strength and deformation properties of road pavements and materials from their EM 

characteristics have been also recently explored [12, 13]. In addition, finite-difference time-domain (FDTD) 

simulation-based approaches of the GPR signal have been implemented for analysing the EM response of 

typical scenarios of pavement faults [14]. 

The aforementioned applications require suitable processing schemes to GPR data for providing easily 

interpretable images to operators and decision-makers [4]. Indeed, one of the final goals of the signal 

processing is to improve the quality of the data collected, which is mainly related to an increase of the signal-

to-noise ratio (SNR). Nevertheless, the risk of achieving distorted information by over-processing the data is 

considerable, and it tends to rise the more sophisticated is the processing technique applied.  
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Overall, it can not be universally recognized an established and unique processing scheme to follow. The 

best way to treat the collected data is highly dependent on several factors. Firstly, a suitable stage of data 

collection on the field is the most important step to undertake for a later and successful interpretation of data, 

regardless of the quality and depth of the applied processing. Thereby, an aware and strict survey protocol 

[15] will imply, most likely, a faster and smoother phase of processing. Secondly, the rate of complexity in 

getting the aim of the survey heavily affects the processing procedures. The more complex is the information 

to retrieve, e.g., detection of buried targets in strongly anthropic environments, the higher is the processing 

effort required. Finally, it is worth mentioning the costs related to the data processing, especially in terms of 

human resources and time invested. Accordingly, it is crucial to evaluate comprehensively the objectives of a 

GPR survey and the deliverables of each processing technique fits for purposes [15]. 

As far as the road applications are concerned, the multi-layered horizontal character of pavements along with 

a relatively widespread knowledge a-priori of the construction materials of each layer, tends to lower the risk 

of over-processing the data. Therefore, the applicability of specific and more advanced processing schemes 

can increase significantly the quality of the data interpretation [4, 16]. On the other hand, wrong processing 

applications are likely to increase due to the typical large amount of data gathered in road surveys, and aware 

and proper post-processing phases are crucial to be planned. 

This work presents an overview on the main signal processing techniques employed in road engineering 

using GPR. Section II deals with the theoretical bases of GPR useful to frame the context in which the signal 

processing is performed. Subsequently, the main processing techniques are discussed in Section III, wherein 

the main benefits achieved in a number of significant GPR applications in road engineering are highlighted. 

Finally, conclusions and future perspectives are drawn in Section IV.  

 

2. GPR PRINCIPLES AND MAIN CONFIGURATIONS 

 

2.1. The GPR technique 

GPR is a geophysical inspection technique that operates by transmitting electromagnetic (EM) waves toward 

a surface, typically a soil, and by receiving the transmitted or back-reflected signal. The propagation of the 

EM waves is ruled by the dielectric properties of the medium passed through, namely, the dielectric 
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permittivity ε, the electric conductivity σ and the magnetic permeability μ. In particular, ε and σ greatly 

influence the behavior of the propagating wave, in terms of wave velocity and wave attenuation, 

respectively, and μ is equal for all the non-magnetic materials to the free space magnetic permeability μ0 and 

does not affect the propagation of the EM wave. Practically, the dielectric contrasts in the medium generate a 

partial reflection and transmission of the EM impulse emitted by a transmitting source. Depending on the 

operating mode, the reflected or transmitted part of the signal is collected by a receiving antenna, and allows 

imaging the subsurface, in both two or three dimensions. Penetration depth and spatial resolution are 

influenced by several factors, amongst which the frequency of the emitted signal and the type of material 

investigated are worth to be mentioned. In civil engineering applications, GPR works typically in a range of 

frequency between 100 MHz and 2000 MHz [17]. 

Theoretically speaking, the physics of EM fields is described by the Maxwell’s equations, as follows: 
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density vector of the magnetic flux, J
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
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electric displacement vector, t (s) the time, and with H
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field. 

Conversely, the behavior of the medium wherein the EM wave is propagating, can be described by the 

constitutive relationships, reported as follows: 
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By combining the EM fields’ theory with the material properties, it is possible to describe comprehensively 

the GPR signals. 

 

2.2. Main GPR configurations 

The application of GPR in road engineering is mostly related to the use of impulse radar systems, due to a 

major easiness of usage and data interpretation. These systems operate by transmitting toward the target a 

very short pulse (~10-9 s), characterised by a fixed central frequency, by means of one or more antennas, and 

by recording the signal back-reflected by the dielectric discontinuities. The two-way travel time signal is 

then recorded in the time domain, and a map of reflections generated in the subsurface can be finally 

displayed.  

Conversely, stepped frequency continuous-wave (SFCW) radar systems, operate in the frequency domain. 

Amplitude and phase of the emitted and received signal are sampled and collected as a function of the 

frequency, which is linearly incremented of a fixed step within a defined frequency range. The high costs of 

electronics, a major complexity of data processing and the lack of dedicated commercial software have 

broadly resulted in a lower spread of SFWC radars in road engineering, although their use is recently 

increased [18]. 

Concerning the configurations of the antennas, a GPR system is configured as mono-static when a unique 

antenna operates as both transmitter and receiver. Conversely, in case of separated transmitter and receiver, 

the GPR system is defined as bi-static. Furthermore, GPR systems can be sorted in ground-coupled and air-

coupled according to the type of antenna. In the first case, the antenna is in direct contact with the ground. 

This allows higher depths of penetration throughout the medium. Central frequencies usually available for 

this configuration range from 80 MHz to 1500 MHz. In the second survey configuration, the antenna is 

typically kept at a constant height above the surface, mostly ranging from 0.15 m to 0.50 m. Most common 

air-coupled GPR systems are pulsed systems operating in the range 0.5÷2.5 GHz, with a central frequency 

typically of 1 GHz. The penetration depth of an air-coupled system is dependent on the central frequency and 
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rarely exceeds 0.9 m for pavement applications [19]. Despite this main drawback, air-coupled systems allow 

to survey at traffic speed by mounting the system onto an instrumented vehicle [20]. The advantage of 

avoiding traffic interruption makes the air-couple GPR systems the most common devices used in road 

surveys. 

 

2.3. Radar signal imaging 

There are a multitude of ways for displaying a GPR response, as shown in Fig. 1. In general, it is possible to 

represent the signal collected as: 

𝑓(𝑥, 𝑦, 𝑧) = 𝐴(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)     (8) 

with i, j and k ranging from 1 to N, M, P, respectively. 

 

 

Fig. 1. Visualization modes of a GPR signal: (a) A-scan, (b) B-scan, and (c) C-scan. 

 

A single radar trace, or waveform, is called A-scan (Fig. 1a), and it can be defined as: 

𝑓(𝑧) = 𝐴(𝑥𝑖 , 𝑦𝑗, 𝑧𝑘)      (9) 

with k ranging from 1 to P, i and j equal to a constant value. The A-scan provides a punctual information 

about the subsurface configuration. It is worth to note how the z-axis can represent both time and depth, 

which are related each other by the propagation velocity. 

A set of consecutive radar waveforms along a particular direction (x, for instance) represents a B-scan (Fig. 

1b), and it can be defined as follows: 

𝑓(𝑥, 𝑧) = 𝐴(𝑥𝑖, 𝑦𝑗, 𝑧𝑘)      (10) 
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with i and k ranging from 1 to N and P, respectively, and j being a constant value. Therefore, a B-scan 

visualization mode allows to achieve a two dimensional view along a specific direction. In road engineering 

applications, the B-scan mode is a widely used imaging methodology, wherewith the variations occurring on 

the main geometrical features of the pavement, such as the thickness of the layers, can be relatively easily 

detected. 

If a value along the z-axis is fixed as constant, the visualization of the horizontal domain (x, y) is called C-

scan, and it is defined as follows: 

𝑓(𝑥, 𝑦, 𝑧) = 𝐴(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)     (11) 

over the range i = 1 to N, j = 1 to M and k = constant. Practically, the C-scan view mode provides an 

amplitude map at a specific time of collection. When one area is surveyed, for instance by collecting data 

along a regular grid, the C-scan visualization mode can be very useful in detecting inhomogeneous spots, 

which are characterized by a high reflectivity in terms of signal amplitudes.  

Overall, the GPR data are processed and depicted according to the above three visualization modes. Since 

the A-scan mode provides information on the temporal delay between the emission and the reception of a 

single transmitted or back-reflected signal, the processing of the single A-scan operates exclusively in the 

punctual spatial domain influencing that signal. When a set of consecutive waveforms is considered, such 

temporal frames are gradually set beside along a linear track. Therefore, the processing of a B-scan operates 

in both temporal (i.e., in depth along the z axis) and spatial (i.e., along the path of the scan, namely, the x 

axis) dimensions. The C-scan visualization concerns a defined temporal instant, such that the processing 

operates only in space. Due to the considerable extension of roads and the resultant huge amount of data 

processing required, the C-scan visualization mode is rarely used in road applications. Accordingly, the 

processing related to the C-scan visualization will not be tackled in this study. 

 

3. SIGNAL PROCESSING TECHNIQUES IN ROAD INSPECTIONS 

 

Signal processing in the GPR area exploits many of the advances achieved in the early eighties in the digital 

processing of seismic data [21, 22]. Although these two disciplines hold evident differences in the source of 

propagation, they share identical basics under a processing perspective, which consists in a collection of 
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pulsed signals in the time domain. The main difference between such two areas lies in the nature of the 

emitted and received wave, which in seismic is mechanical, whereas in GPR is EM-based. EM waves are 

defined as ‘non-stationary’, since they show a faster decay of the amplitude with the penetration through the 

soil, and the loss of higher frequency harmonics [19]. Besides, GPR waves suffer higher scattering 

phenomena, ruled by complex reflection coefficients and major similarity between the wavelength and the 

discontinuities in the media than in seismic. Nevertheless, many of the processing techniques performed 

when tackling a GPR dataset originate from the seismic theory.  

In this Section, the main processing techniques for GPR dataset in road surveys are presented. The 

discussion will be sorted by i) processing techniques required to be performed prior to any post-processing 

step, ii) techniques involving the processing of A-scan data, and iii) those dealing with B-scan data. 

 

3.1. Basic processing 

3.1.1. Data editing 

This step represents the first preliminary activity to be carried out prior to approach any data processing. 

Mostly, the data collected need to be sorted and arranged to secure highly-reliable interpretation, especially 

in the case of considerable amounts of data, such as in road investigations.  

A first level of faults in the data is generally related to incorrect or inaccurate settings of the survey 

parameters.  

A second level is rather related to faults occurring during the collection. The quality of the visualization of a 

particular survey section can be affected significantly by incoherent, fuzzy or clipped traces. This 

contingency is not rare and tends to reduce as the expertise of the surveyor increases. The main causes of 

misstated traces are the external sources of noise and the failures of the GPR equipment. For example, 

excessive travel speeds can cause such type of issues, since the probability of asynchrony between the GPR 

trace and the odometer tends to raise.  

In the case of singular traces or a subtle band of traces, a simple cut of the corrupted traces and an 

interpolation between previous and following traces is usually sufficient. When errors get more frequent, 

repeated interpolations are necessary, and the risk of losing information increases. 
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A particular error occurring in GPR acquisitions is the clipping of the initial ground wave signal, i.e., when a 

strong air-pavement coupling saturates the GPR receiver, as shown in Fig. 2a. This is more common in case 

of ground-coupled antennas. When clipping occurs, the collected signal is not representative of the real peak 

amplitude reflected at the ground surface. Moreover, if a normalization to the peak amplitude value is 

performed, an artificial enhancement of the late-arrival reflections for the saturated traces in respect to the 

non-saturated ones will be recorded. In such a case, the desaturation function is a useful tool for 

reconstructing the true shape of the amplitude peak by using a spline interpolation (Fig. 2b). 

 

 

 

Fig. 2. Clipping errors of a GPR signal: (a) clipping of the initial ground wave signal, and (b) reconstructed 

signal.  
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When no odometer is employed, the pulse is emitted by the GPR system at regular time intervals. This can 

represent a critical issue, in case more advanced processing procedures are subsequently implemented. 

Although the surveying speed is maintained as constant as possible, a regular collection of radar traces in 

spatial terms is indeed impossible to perform [23]. In such a case, the GPR sections appear stretched or 

compressed. This issue can be sorted out by marking the radar collection with a regular step, e.g., 100 m, and 

by resampling the data in order to generate sections with equally-spaced traces, namely, by performing a 

“rubber-band interpolation”. 

  

3.1.2. Time-zero correction 

In road surveys it is strictly necessary to have a fixed and unique reference as a time-zero point for the GPR 

data, in order to compare the reflection time and, possibly, the depth of inhomogeneities located at different 

positions along the survey track. Mostly, this can not be ensured due to several factors, such as the different 

temperature of the air during the collection of the data, the different length of the connecting cables or, more 

simply, the variation of the antenna height due to the vertical acceleration acting on the instrumented vehicle 

[23, 24]. Therefore, the position of the reflection coming from the air-pavement interface can vary between 

different A-scans (Fig 3a). To avoid the obvious interpretation issues arising from a variable time-zero 

reference, and to allow the employment of further processing techniques, the data need a correction to set a 

common time-zero position (Fig 3b). Mainly, this issue is sorted by cutting the air layer to a fixed threshold, 

set at a mostly stable point of the considered trace. Depending on both the type of the antenna and the central 

frequency of investigation, setting the proper position of this threshold along the A-scan reflects on the 

accuracy of the results. According to [25], among the possible thresholds, the most employed by users and 

advised by manufacturers can be summarized as i) the first break-point, ii) the first negative peak, iii) the 

zero-amplitude point between the negative and the positive peaks, iv) the mid-amplitude point between the 

negative and the positive peaks and v) the first negative peak. Each method holds advantages and drawbacks 

with regard to the dieletric properties of the surface materials and the central frequency of investigation [25]. 

Nevertheless, an on-site calibration of the time-zero is always required, and the picking of any features 

within the A-scans with the evaluation of the relevant depths must account every time for the chosen method. 
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Fig. 3. B-scan representation of a road survey: (a) raw B-scan before time-zero correction and, (b) processed 

B-scan after time-zero correction using a common time-zero position. 

 

3.2. A-scan processing 

3.2.1. Zero offset removal 

The initial direct current (DC) signal component and the very low-frequency signal trend (or ‘wow’) can 

generate a distortion of the mean of the A-scan towards values of amplitude far from zero [26]. This 

occurrence is partially related to the coupling effect and to the saturation of the signal by early arrivals, and 

itis not usually negligible in road inspections, since a strong dielectric contrast between the air and the 

surface of the pavement typically occurs. This affects the spectrum of the trace and inhibits further spectral 

processing steps or time varying gains [27]. Mostly, processing software are capable to sort out this problem 

by using simple average-subtraction algorithms, such as the following: 

𝑦′(𝑛) = 𝑦(𝑛) −
1

𝑁
∑ 𝑦(𝑘)𝑁
𝑘=1      (11) 
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with y(n) and yr(n) being the amplitude of the nth sample of the processed and raw trace, respectively, and 

with n ranging from 1 to N. The result of the application of this algorithm turns out to be an A-scan with 

mean equal to zero, which means a symmetric probability distribution of the amplitude along the A-scan (see 

Fig. 4). 

The same goal can be granted by applying a high-pass filter and removing the low-frequency signal 

components. More details about this method are given in Section 3.2.2. 

 

Fig. 4. Zero offset removal in a typical GPR trace of a road section. 

 

3.2.2. Band-pass filtering 

The application of a band-pass filter may represent a crucial step for a correct visualization and interpretation 

of a GPR signal [28-30]. This processing method is aimed at increasing the SNR by filtering out from the 

data the signal components with frequencies outside the main working bandwidth of the GPR system 

employed. 

A band-pass filter can be considered as the combination of two frequency filters, namely, the high-pass and 

the low-pass filters. The first one operates a cut-off of the low frequency components from the frequency 
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spectrum of each singular trace. This allows to filter the clutter related to both the ground-wave and the 

‘cultural sources’ of noise, such as nearby vehicles, buildings, fences, power lines or trees in close proximity 

to the roadway [31-33]. The low-pass filter works by cutting off the high frequency components from the 

spectrum, which are usually generated by the EM interferences between the antenna and relevant everyday 

EM devices, such as mobile phones.  

Fig 5 shows the spectral visualization of a GPR signal, highly affected by both low and high frequency 

clutter, collected in a road inspection with an air-launched GPR system equipped with a 1GHz central 

frequency horn antenna. In particular, it is possible to recognize a significant component of the signal 

affecting frequencies below ~ 350 MHz. Such disturbance is a relatively common occurrence in road 

surveys, affected by several sources of cultural noise, e.g., the action induced by towing vehicles. 
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Fig. 5. Band-pass filtering in the frequency spectrum of a GPR signal collected with an air-launched GPR 

system. 

 

The dashed line shows the shape of the spectrum after the application of a band-pass filter to the spectral 

region between 250 MHz and 1750 MHz. More specifically, if a raw signal trace in the time domain y(t) and 

its spectral representation Y(ω) are accounted for, the band-pass filter H(ω) operates as follows: 

𝑌′(𝜔) = 𝑌(𝜔) ∙ 𝐻(𝜔)      (12) 

with Y’(ω) being the processed data in the frequency domain. Several different types of band-pass filters, 

affecting the shape of the reconstructed spectrum, can be found in the literature. One of the most common is 

the Butterworth filter, expressed by (13) as follows: 

𝐻(𝜔) =
𝐵(𝑛)(

𝜔

𝜔𝑐
)

𝐵(𝑚)(
𝜔

𝜔𝑐
)
      (13) 

where B(k)(ω) is a k-order Butterworth polynomial, and ωc is the cutting-off frequency, which depends on 

whether a low- or a high-pass filter is considered first. There is no univocal rule for setting the width of the 

pass band, but it is rather a choice that needs to be undertaken after the observation of the signal spectra. 

Indeed, the risk of cutting-off frequency regions with likely relevant information, hidden by some noise, is 

relatively high. An effective and not too impactful practice is to set a pass bandwidth of 1.5 times the central 

frequency [16]. It is worth noting that the antenna-ground coupling mostly generates a shift of the central 

frequency towards lower values than the nominal frequency, due to the coupling effects between the antenna 

and the surface. Thereby, it is highly recommended to check this feature prior to set the pass band centered 

around the nominal frequency of the antenna, as provided by manufacturer. This issue is particularly relevant 

in road inspections.  

 

3.2.3. Time-varying gain 

Due to the dispersive nature of the EM wave and to the geometrical spreading losses, the GPR signal suffers 

by an attenuation when propagating through a medium. The intensity of such attenuation is related to the 

electrical conductivity of the passed through medium [4]. Mostly in case of high conductivity materials, such 
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as clayey soils, deeper targets can be hardly detected. It can be worth to compensate the loss suffered by the 

signal when applying a time-varying gain to each A-scan [16, 28]. Time gains actually alter the radar signal, 

and therefore have to be applied with care, in order to avoid the addiction of artifacts. This processing 

procedure is most likely to work effectively when the data are clear of noise, or after a well-performed 

decluttering. Indeed, if a gain function is applied to a noisy signal, the late-arrival noise components will be 

enhanced, thereby inducing potentially incorrect data interpretation. 

The general form of a time-varying gain function can be expressed as follows: 

𝑦′(𝑛) = 𝑦(𝑛) ∙ 𝑘 ∙ 𝑛     (14) 

where y’(n) is the nth sample of the considered trace in the time domain, and k is the gaining function of the 

sample number n [4]. Several gain functions are commonly employed in GPR data interpretation according 

to the objective of the data processing. The spherical and exponential (SEC) function operates by 

compensating the loss of energy caused by geometrical spreading effects [28], with an exponential 

relationship. On the other hand, the automatic gain compensation (AGC) works by sorting each signal trace 

in several time windows characterized by different average amplitudes. The compensation applied by the 

algorithm is a function of the difference between the average amplitude within a time window and the 

maximum amplitude of the whole trace [34]. In this case, the width of the time windows highly influences 

the performances of the process. As a rule of thumb, simple constant, linear or exponential gain functions 

can be applied to the signal, at the discretion of the user. Nevertheless, the choice of the type of gain function 

should depends on the physical model of the target.  

Time-varying gain functions can represent a useful mean for imaging deeper information in road inspections. 

For instance, they may help in reconstructing the configuration of deeper layers in case of clayey soils. 

Nevertheless, it is the authors’ opinion that the gaining step has to be strictly performed in post-processing, 

whereas it is preferable to collect the data in their raw nature. Indeed, it can occur to change the gain function 

afterwards, e.g., in case of information about the subsurface acquired subsequently, or choosing to avoid the 

application of any gain function, such as in case of noisy records. 

 

3.2.4. Resolution improvement methods 
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Concerning pulsed GPR systems, the smallest dimension of the detectable targets is strictly dependent on the 

central frequency employed, as well as on the dielectric permittivity of the material that constitutes the 

target. According to [35], for a typical Ricker wavelet with a central frequency close enough to the 

bandwidth, the smallest detectable thickness smin is: 

𝑠𝑚𝑖𝑛 =
𝜆0

2√𝜀𝑟,𝑚
      (15) 

with 0 and r,m being the wavelength of the EM wave in the air and the dielectric permittivity of the target, 

respectively. In general, the resolution of the system can be described as the minimal time step t between 

two consecutive recognizable echoes, at a fixed frequency bandwidth B. Thereby, the system resolution 

power is characterized by the factor B·t. In case two different targets are too close each other, it is also 

affected by ringing effects that limit the capability of recognizing such targets, such as in seismic 

applications [22]. 

A road pavement can be typically simplified as a non-dispersive ensemble of homogeneous horizontal layers. 

Usually, the thickness of the first layers, namely, the hot-mix asphalt (HMA) layers, ranges between 1 cm 

and 6 cm, thereby falling behind the resolution power of the system. It is therefore frequent that an overlap of 

the reflections from the top and the bottom interfaces of the HMA layer may occur, due to the central 

frequency employed. This is typically referred to as ‘thin layers problem’. The HMA layer thickness is a key 

parameter to consider in pavement design processes, and once the pavement is constructed, it covers a 

primary role in both quality control and quality assurance surveys, within the frame of effective road asset 

management plans [9, 36-38]. 

One of the most acknowledged processing methods capable of overcoming such an issue is the 

deconvolution technique, which relies on the assumption that the recorded GPR signal x(t) can be modeled as 

the convolution between the transmitted wavelet w(t) and the target reflectivity e(t) [39, 40], as expressed by 

(16): 

𝑥(𝑡) = 𝑤(𝑡) ∗ 𝑒(𝑡)     (16) 

The deconvolution technique consists in isolating the e(t) function by accounting for the reflected signal and 

retrieving the source wavelet by means of calibration or statistical inferences. Depending on the way w(t) is 

calculated, deconvolution techniques can be roughly sorted in deterministic and stochastic.  
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Deterministic deconvolution is based on an a priori knowledge of w(t), typically assessed by calibration, 

which in far field conditions is easily achieved by performing GPR tests over a plate of perfect electric 

conductor (PEC) [41]. In near field conditions, e.g., in case of ground-coupled antenna systems, an accurate 

determination of the source wavelet is more difficult, thereby making such technique less applicable. The 

deterministic approach is definitely more straightforward and efficient to undertake under a numerical point 

of view. Positive outcomes are documented in [42, 43] and [44], wherein the authors performed a 

deconvolution as a simple fraction in the frequency domain and by means of a matricial approach, 

respectively.  

Stochastic methods aim at developing a blind deconvolution in which the only back-reflected GPR signal is 

known. These methods rely on statistical and numerical processes for defining the transmitted wavelet. 

Depending on the process, several seismic methods can be listed within the family of stochastic methods 

applicable to GPR, including propagation deconvolution [45], predictive deconvolution [46], two-sided 

deconvolution [47], source signature deconvolution [48], Wiener deconvolution [47], deconvolution via 

sparsity maximization [42], and super- and high-resolution methods [50, 51]. The nature of these methods 

results in a major computational complexity, which in turn allows increasing the resolution without 

calibrating the system.  

Nevertheless, deconvolution is by definition a solution to an ill-posed problem [52], characterized by 

important approximations, thereby involving an estimation of a solution rather than an exact solution. 

Moreover, notwithstanding the acknowledged outcomes achieved in the seismic discipline, the effectiveness 

of such a technique in GPR applications, wherein the considered wavelet is generally mixed-phase and non-

stationary, has been frequently a subject matter of discussion [16, 17]. 

 

3.3. B-scan processing 

3.3.1. Background removal 

If an ensemble of traces is considered, the clutter can be reduced by subtracting from each A-scan the 

average value of the amplitude related to a singular sample, calculated over the whole set of A-scans. The 

procedure can be explained as follows [4]: 
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𝑦′(𝑛) = 𝑦(𝑛) −
1

𝐾
∑ 𝑦𝑘(𝑛)
𝐾
𝑘=1      (17) 

where y’(n) and y(n) are the processed and raw signal traces, respectively, with n being the number of the 

sample and k being the number of the trace within the selected set of A-scans. In Fig. 6, a B-scan before (a) 

and after (b) the application of the background removal filter is reported. 

 

 

Fig. 6. Application of the background removal filter: B-scan before (a) and after (b) applying the 

background removal. 

 

It is evident how the removal of the background noise enhances the subsurface reflections. In particular, a 

region interested by unevenness in the pavement configuration is clearly recognizable within 

approximatively 8 m and 13 m. On the other hand, it is worth noting that flat layers, such as the air-pavement 

interface, have been totally removed. This is a major assumption when dealing with road inspections, since 

the pavement layers are supposed to be horizontal in respect to the survey track. In this sense, the 

background removal is not useful in case the analysis of the layer thicknesses is set as objective. Conversely, 

if the objective of the processing is to highlight any deviations within the pavement configuration, it can 

represent an effective technique. Lastly, it is worth mentioning that this processing technique holds the 

potential of introducing artifacts in presence of homogeneous non-reflecting areas [28]. In general, an 
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experienced operator is required when applying a background removal filter to a dataset in order to avoid 

misinterpretations. 

 

3.3.2. Velocity analysis 

Road inspections usually require a proper time-depth conversion of the received signal, such as in most GPR 

applications. Commercial processing software usually achieve this automatically, by employing a constant 

value of velocity of the propagating wave. Also neglecting the possible inhomogeneous distribution of water 

content and air-filled voids, which highly affect the wave velocity, this procedure will inevitably lead to a 

wrong conversion in the case of roads. Indeed, the assumption of a constant value of velocity is a simplifying 

hypothesis that leads to a systematic error due to the multi-layered nature of road pavements, which are 

constituted of materials with different permittivity values. In addition, the relative real part of the dielectric 

permittivity εr’ is directly related to the propagation velocity of the EM wave in the medium (v) and in the 

vacuum (c0) as explained in (18) [53]: 

𝑣 =
𝑐0

√𝜀𝑟′
      (18) 

An accurate estimation of the subsurface wave propagation velocity within the media can be achieved 

through different methods. The first one, which lies beyond the context of signal processing, is the traditional 

ground truthing. This is mostly performed by coring the pavement along the survey track in order to visually 

measure the thicknesses of the layers. If a suitable number of cores is gathered, it is possible to interpolate, 

mostly linearly, the depth of the interfaces and reconstructing the configuration of the pavement structure 

along the whole length of the road inspected. Notwithstanding the high accuracy of the measurement in the 

closeness of the core, this method has many drawbacks, amongst which we can cite the invasiveness, the 

high costs, and the low representativeness of the real conditions over the distance between two consecutive 

cores, especially in case the number of cores is limited. The main methods relevant to the GPR practices are 

the “common midpoint” (CMP), and the “hyperbolic velocity analysis”. More than a processing technique, 

the CMP technique is a survey methodology based on the use of a bi-static GPR system collecting data at 

different configurations. After each data collection, the emitting and receiving antennas are moved aside of a 

same distance each other, such that the midpoint between is kept fixed (Fig. 7). In case of a horizontal target 

reflecting the GPR signal in the subsurface, located at depth z and constant for all the test configurations, the 
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two-travel time t of its reflection will increase as the offset between the transmitter and the receiver (x) 

grows. The propagation velocity v can be defined by geometrical assumptions [54]: 

 𝑡2 =
𝑥2

𝑣2
+

4𝑧2

𝑣2
      (19) 

𝑣 =
2√𝑧2+(

𝑥

2
)
2

𝑡
      (20) 

As road pavements are mostly multi-layered targets, the velocity has to be calibrated with regard to the nth 

layer. (18) can be so extended as [55]: 

𝑣𝑛 =
√𝑡𝑛𝑣𝑛

2−𝑡𝑛−1𝑣𝑛−1
2

𝑡𝑛−𝑡𝑛−1
     (21) 

Simple corrections to (20) and (21) allows extending the results to the case of dipping targets: 

𝑣𝑛 =
√𝑡𝑛𝑣𝑛

2 cos2𝜑−𝑡𝑛−1𝑣𝑛−1
2 cos2𝜑

𝑡𝑛−𝑡𝑛−1
     (22) 

with  being the slope angle of the dipping target with respect to the surface. 

 

Fig. 7. Configuration of antennas in a CMP acquisition. 

 

On the contrary, the hyperbolic velocity analysis can be applied only to sections with a clear hyperbolic 

diffraction, but holds the advantage of being applicable also with a mono-static GPR device or with a GPR 

system which does not allow to move transmitter and receiver aside. If the B-scan of a section containing the 

hyperbola is taken into account, a hyperbolic curve can be hypothesized by arbitrary choosing a value of 

wave velocity v’ to be used in (19). By iteratively using new values of v’ and by comparing the shape of the 
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expressed curve with the hyperbola generated by the reflector, it is possible to set the value v* whereby the 

two curves match as well as the propagation velocity of the wave through the medium.  

By coupling more than one antenna transversally to the scan direction, it is possible to achieve a real-time 

multi-offset analysis. The extended CMP method (XCMP method), proposed in [56, 57], exploits the use of 

an air-coupled antenna array equipping a stepped-frequency GPR with the aim of continuously evaluating 

the thickness of the HMA layer in asphalt pavements.  

 

4. CONCLUSIONS 

 

This paper aims at discussing the main GPR processing techniques applied in road inspections. First, an 

introduction of the GPR practices in road engineering is given. Then, an overview of the working principles 

of a GPR system in its most common configurations is provided. The core of the paper focuses on the 

processing methodologies mostly employed in the interpretation of data collected in road pavements, which 

constitute part of the acknowledged techniques used in the GPR practice within other disciplines and 

applications. A thorough work on the most advanced GPR processing techniques embracing several 

scientific disciplines is provided in [4]. It is worthwhile noting that in most cases, the more complex the 

processing is, the higher is the risk of introducing artefacts in the data, which can lead to wrong 

interpretations. Furthermore, it is worthy to be mentioned how each processing technique is suitable for a 

specific purpose. It is then crucial to set the objectives prior to process the data, in order to choose the 

relevant processing schemes, such that it would be more likely to avoid distortion and over-processing of the 

data and, mostly, waste of time. It is also useful to remember that processing has a cost, which mainly 

consists in the use of human resources. Even more in the case of road inspections, characterized by a huge 

amount of data, it is mandatory to invest time and efforts in analyzing the data collected before the 

processing, to check the main requirements and deliverables, and the most effective strategy for reaching the 

goal of the survey. Thereby, it is worth mentioning how the quality of the dataset influences the intensity of 

the processing needed for increasing its readability. At the same time, the level of noise and the setting of the 

proper frequency in line with the nature of the target may also represent a limit to the performance of the 
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processing phase. Accordingly, the proper performance of a GPR survey on the site is the fundamental and 

most important factor to pursue, in order to emphasize the effectiveness of the data processing.  
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