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HIGHLIGHTS

o This paper identifies the properties and features of remote sensing big data.

e This paper reviews the stat-of-the-arts of remote sensing big data computing.
e This paper discusses the “data-intensive computing” issues in remote sensing big data processing.

ARTICLE INFO ABSTRACT
As we have entered an era of high resolution earth observation, the RS data are undergoing an explosive
growth. The proliferation of data also give rise to the increasing complexity of RS data, like the diversity
and higher dimensionality characteristic of the data. RS data are regarded as RS “Big Data”. Fortunately,
we are witness the coming technological leapfrogging. In this paper, we give a brief overview on the
Big Data and data-intensive problems, including the analysis of RS Big Data, Big Data challenges, current
techniques and works for processing RS Big Data.
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1. Introduction

The recent advances in remote sensing (RS) and computer tech-
niques give birth to the explosive growth of remote sensing (RS)
data. Momentary, the observation data streaming from the space-
crafts in current active missions of NASA would approximately be
1.73 GB gigabytes [1]. The RS data gathered by a single satellite data
center are dramatically increasing by several terabytes per day [2].
According to the statistics of OGC [3], the global archived observa-
tion data would probably exceed one Exabyte. Especially, the ad-
vent of the high-resolution earth observation era (EOS-4) has also
led to the high dimensionality of the RS image data. Remote sens-
ing data are recognized as “Big Data” in some certain sense [4].
Meanwhile, the accurate and up-to-date information provided by
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the continual global earth observation are revolutionizing the way
that earth system is interpreted. The large-scale environmental
monitoring and researches [5-7] are exploiting regional to global
covered multi-temporal and multi-sensor RS data for processing.
Obviously, large remote sensing applications overwhelmed with
massive remote sensing data are regarded as typical data-intensive
issues [8].

The unprecedented proliferation of data has posed significant
challenges in managing, processing and interpreting these RS
“Big Data”. Great efforts have been towards the incorporation of
the high-performance computing (HPC) paradigm in RS applica-
tions [9-11]. These HPC-based approaches have became the most
dominant yet efficient way for addressing the enormous computa-
tional requirements introduced by massive RS data. However, the
computation capability available is no longer the rate-limiting fac-
tor when in contrast to the traditional compute-intensive issues.
Despite of the huge processing power, the cluster-based HPC sys-
tems still remain considerably challenging with the data-intensive
issues [12] emerged in RS applications. There involves a number of
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data availability [1,12] related challenging issues. Firstly, the enor-
mous geographically distributed RS datasets with even higher di-
mensionality and significant metadata, on a scale that goes beyond
the traditional data management practice both in memory and
disk. Moreover, the intolerable I/O burden introduced by the inten-
sive irregular RS data access patterns has made the common paral-
lel file systems with stereotypical physical data layout no longer
inapplicable. Secondly, the current task scheduling strategies
[13,14] seeking load balancing among computational resources
seldom take the data availability into account. To complicate the
situation that some large-scale RS applications [10] could be struc-
tured as a large collection of data dependent small tasks with or-
dering constraint. The optimized scheduling of these bunch of tasks
is a critical issue for achieving higher performance. In addition, the
parallel programming for data-intensive RS applications on MPI-
enabled (Message Passing Interface) cluster systems with multi-
level hierarchy and increasing scale turn out to be rather trivial,
difficult and error-prone.

In the near future, some new requirements together with
problems will emerge with the further increasing amount and
widespread application of RS data. Obviously, the increasing de-
mand for real-time or near real-time processing capability by many
time-critical RS applications [ 15,16] have definitely made the data-
intensive issue even worse. The other thing is that it is anything but
easy to offer an ease of use way for on-demand processing of mas-
sive RS data from almost every where. Especially, instead of the
traditional order-request producing mode, the standard and seri-
alized processing of RS data products are also arisen for an on-line
data-triggered producing. The variation of data producing mode
also means timely processing of even more amount of RS data. For
the requirements list above both in current and near future, we go
deep into the potential challenges introduced by the requirements
in processing the RS “Big Data” in this paper. Meanwhile, through
the discussion of limitation or problems with the state-of-the-art
work of massive RS data processing, we demonstrate some possi-
ble solution and enabling techniques for these issues.

The rest of this paper is organized as follows. The following
two sections respectively introduce what RS “Big Data” is and
also discuss the challenges in the processing of these big data. In
Section 4, we elaborate on the current work for processing RS big
data. Finally, the conclusion section summarizes the whole paper.

2. What is RS “Big Data”

Remote sensing is generally defined as the technology of mea-
suring the characteristics of an object or surface form a distance
[17,18]. The RS data are the earth observing data continuously
obtaining from space-borne and airborne sensors, as well as
some other data acquisition measurements. With the exponential
growth of data amount and increasing degree of diversity and com-
plexity, the remotely sensed data are regarded as RS “Big Data”.
However, since the whole idea of big data is still remaining rela-
tively new, most of the start off efforts are focusing on the defini-
tion and discussion of the realm of the big data. Big data [19,12,20]
occurs when a large collection of data sets whose volume and rate
of data is at a scale that is far beyond the state-of-the-art systems
and revolutionize the way of seeking solutions. This is also the case
for the remote sensing and earth sciences domain to offer the defi-
nition of what RS “Big Data” really is. The RS “Big Data” not merely
refers to the volume and velocity of data that outstrip the storage
and computing capacity, but also the variety and complexity of the
RS data. There are several aspects and features of the RS “Big Data”
that need to be discussed: the huge volume and rate of RS data, the
diversity of RS data and also the complexity of RS data especially
the higher dimensionality.

HJ Constellation

NASA Satellite Missions

Fig. 1. The satellite network for earth observation.
2.1. The huge volume and velocity of RS data

With the recent advances in sensors and earth observation
techniques, we are entering the high-resolution observation era
(EOS-4) shown in Fig. 1. The satellite observation network tech-
nique is also employed to seek shorter re-visit cycle and larger
coverage in the compensation for the limitations of a single sen-
sor. Currently, more than 200 on-orbit satellite sensors are cap-
turing multi-spatial, multi-temporal RS data from multi-sensors.
These continual global observing data are capable of covering
the global atmosphere, land surface as well as oceans. Wherein,
the NASA's Earth Observing System Data and Information System
(EOSDIS) [21,22] have successfully managed a growing archived RS
data which would currently exceed 7.5 petabytes. During the year
2012, EOSDIS have already distributed more than 4.5 million giga-
bytes of data [23].

Considering the velocity of data, the RS data archives of EOSDIS
are undergoing a growth of 4 TB daily. The data flow offers to the
users around the world every day would be about 20 TB, which
also means more than 630 million data files. Every unit time, the
observing data gathered from nearly 100 active missions of NASA
would be about 1.73 GB [1]. The increasing of remote sensing data
also brings in the rapid growth of the metadata. For EOSDIS, the
amount of data records in the metadata database would probably
outstrip 129 millions and also dramatically increasing at a rate of
more than 60 thousand every single day [23].

For a data center point of view, we take the statistics of satellite
data center of CAS (Chinese Academy of Sciences) for case study. As
is demonstrated in Table 1, the data streaming through downlink is
around 0.9 Gbps would probably exceed 1.6 Gbps if high-resolution
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Fig. 2. The dimensionality of the multi-temporal RS data.

Table 1

Satellite data center: the volume and velocity of RS data.
Satellites Velocity Volumes Volumes

(Mbps) (GB/Day) (TB/Year)

HJ-1B 60 57 20.32
HJ-1A 120 114 40.63
ZY-03 900 498.38 176.22
HJ-1C 320 187.5 66.83
ZY-02C 320.00 175.78 62.66
SPOT-4 50.00 10.99 3.92
LANDSAT5 85.00 28.02 9.99
RADASAT-2 105.00 57.68 20.56
RADASAT-1 105.00 57.68 20.56
SPOT-5 100.00 54.93 19.58
ENVISAT 100.00 32.96 11.75
IRS-P6 210.00 46.14 16.45
LANDSAT8 440.00 241.70 86.15
Total 3712.98 2089.06 574.6

satellites are counted. The aggregate downlinking bandwidth of
the multiple satellites is around 3.7 Gbps and would add up to
be more than 10 Gbps. The volume of data acquired from a single
satellite is about more than 500 GB every day. The total volume of
data acquired by three ground stations connecting the data center
sums up to about 2 TB per day, and exceeds 0.5 petabytes per
year. For a single data center, the volume and data generating
rate is considered as moderate “Big” and also manageable [23]
from a physical infrastructure point of view. While, according to
the statics of OGC [3], data archives of a nation-wide satellite
data center would be several petabytes, and the global one would
probably exceed one Exabyte. It is extremely massive data waiting
for processing.

2.2. The complexity of RS data

The diversity and high dimensionality of data commonly lead
to the complexity of the RS “Big Data”. The remote sensing data
normally serves many earth science disciplines, such as environ-
mental monitoring, land processes, atmospheric, hydrology and
oceanography. The wide range of applied disciplines give rise to the
diversity of the RS data. As we know that the archives of NASA
nearly includes 7000 types of data sets [24]. In most cases, the

RS data sets are stored in structured files using various stan-
dard formats, including HDF, netCDF, GeoTIFF, FAST, ASCII and
so on. Normally, these standard data formats have different data
organizations, like different standards presenting metadata tags,
different physical structures for organizing metadata and satellite
image data. Accordingly, different data formats have its own for-
mat specific operation interfaces and libraries. The diversity of data
makes the accessing and using of RS data significantly difficult es-
pecially for the non-experts.

With the advent of high resolution earth observation, we have
sensors with even higher spatial resolution, temporal resolution
and also spectral resolution. As a result, we have large numbers
satellites and sensors with different resolutions. For a spatial
resolution perspective, the high resolution satellites include HJ-
1C (5 m), SPOT-5 (2.5 m), IKONOS (1 m), Quickbird (0.61) and
Orbview-5 (0.41 m). The median-resolution satellites are LandSat
serial satellites (LandSat-5 TM (30 m), LandSat-7 ETM+(15 m) and
LandSat-8 OLI (15 m)). The low-resolution satellites involve NOAA
(1km), MODIS (250 m) and FY-1 to FY-3. Considering the temporal
resolution, the re-visit cycle of SPOT would be 1 to 4 days, while
NOAA would only take few hours. For the spectral point of view, the
Hyperion sensor consists of 220 spectral bands with a resolution of
10 nm, the WIS instrument has 812 bands, also the hyperspectral
imager equipped in HJ-1A has 128 bands. Following this way,
the RS data with a wide variety of different spatial, spectral
and even temporal resolutions would inevitably result in the
complexity of the RS data. On the other hand, the regional to global
remote sensing applications like global climate change or global
estimation of grain yield are exploiting multi-temporal, multi-
spatial RS data from different sensors for processing. Obviously,
these advances always lead to the pixel’s multi-dimensionality as
shown in Fig. 2.

In addition, the complexity of RS data also lies in the metadata
organized into complex data structures. As shown in Fig. 3, the RS
data consist of abundant metadata for self-description, including
image para for describing the basic size and type information of
image data, map info that indicates the geographical location of the
data, like latitude/longitude coordinate of image. The projection
para includes some structured geographic projection parameters
which vary with different projection methods. The complex data
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Fig. 3. The metadata organization of RS data.
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Fig. 4. Analysis of the entire remote sensing data processing flow.

structure for organizing the metadata also makes the easy use of 3. Research issues for processing RS Big Data

the RS data rather trivial. The other factor to be concerned is that

the RS data are naturally geographically distributed among data The RS “Big Data” is continually acquired for processing and
centers. This also poses complexity of managing and exploiting  knowledge discovering. Generally, the RS data processing is some
large region covered RS data which are distributed located for a what on-the-flow processing_ The entire processing flow could be
long time-series analysis. commonly segmented into several stages as depicted in Fig. 4.



Wherein, a number of preprocessing techniques are employed in
the preprocessing stage, radiometric correction, geometric cor-
rection, image enhancement for removing noise and correcting
inconsistencies. The value-add processing is responsible for pro-
cessing georeferenced data, including the fine correction, orthorec-
tification, fusion, mosaic and etc. The information abstraction stage
produces various information products, such as LAI, LST, NDVI and
so on. While, the thematic applications normally across various
disciplines, examples are disaster monitoring, global change and
etc. Take the large-scale spatial and temporal analysis of socio-
economic phenomena for example, various types of data describ-
ing the same region are synthesized together for processing. These
data could involve some large region covered fully structured data
including GIS data, thematic maps (phenology and precipitation
data) and even social statistical data (population, temperature and
GDP). Accordingly, the processing of these massive RS data is quite
a challenging issue. The difficulty lies in the data storing, memory
loading, processing and also analyzing. If these challenges could
not be properly surmount, the RS big data would become a trea-
sure that we are not capable of exploring it. These research issues
include:

- The difficulties lie in the efficient managing of the massive RS
data;

- The intensive irregular data access patterns charge for the poor
parallel I/O performance;

- The loading and transmission of RS “Big Data”;

- Tons of data-dependent tasks for optimal scheduling;

- The efficient and productive programming of RS applications on
hierarchical cluster-based parallel system.

3.1. The difficulties of managing RS “Big Data”

The explosion growth of the RS “Big Data” are changing the
way remote sensing data are captured and managed. Naturally,
the remote sensing data acquired by different data centers
are geometrically distributed. However, these data centers are
geometrically far away and normally connected by the Internet.
It is critically important for a data managing system to manage
these massive distributed RS data for a global data sharing and
interoperation. This also means the demand for more storage
devices and easy accessibilities of distributed located RS “Big
Data”. To meet these challenges, the innovations of traditional data
storage devices and architectures are no doubt imperative [25]. The
other difficulty also lies in the high dimensionality of the RS data,
3-D or even 4-D. The high dimensionality characteristic makes the
distributed storing and accessing rather complicated. The main
issue is how to organize and map the multi-dimensional remote
sensing imageries to 1-D data array. To be specific, the suitable
space-filling curves should be chosen for appropriate data partition
and data organization with the purpose of better data availability.
Besides, the RS data are characteristic with complex structured
metadata, especially the geographical metadata. During the RS data
processing, the geographical metadata would be also requested for
recalculation in case of the RS data accessing. However, it is fairly
cumbersome for the data managing system to support the storing
and indexing of geographical metadata efficiently.

3.2. The intensive irregular RS data access pattern

For big data, the data availability is on top priority of the data
processing and knowledge discovering [ 19]. There exists a restraint
in common processing systems: CPU-heavy but I/O-poor. Mostly,
the RS applications perform intensive but irregular data access
patterns [26]. These irregular I/O patterns illustrated in Fig. 5

5

are introduced by the different degree of dependency between
computation of algorithm and RS data during processing. The
computation of each pixel usually depends on its neighborhood or
even the data from other spectral bands. Generally, various degree
of data dependencies would result in different data access patterns
that vary across applications. For example, the regional dependent
computation featured applications tend to request lots of small
data blocks scattered throughout the file in one logical I/0. While,
the band dependent computation normally involve accessing
of small data region from multiple band files simultaneously.
Unfortunately, these 1/O patterns are seldom natively supported
by most of the dominant parallel file systems (PFS). Traditionally,
the non-contiguous I/O [27] is implemented by repeatedly calling
a number of individual data requests, each of which accesses a
small piece of consecutive data. While band related I/O is translated
into many separate data requests each of which accesses from one
band file. Obviously, this kind of implementation is rather time-
consuming and tedious.

However, a large amount of scientific applications perform
small non-contiguous I/O just like RS applications do [28]. But the
situation is that, only one tenth of the peak I/O performance could
be achieved by these kind of applications [29]. This is because most
of the widespread PFSs are optimized for contiguous data access-
ing. Basically speaking, the parallel I/O interfaces and physical data
layout over storages do not match to the expected data access pat-
terns of RS applications [30]. Therefore, the intolerable I/O burden
introduced by the intensive irregular RS data access patterns have
made the traditional PFSs with stereotypical physical data layout
no longer inapplicable.

3.3. The data loading and transmission of RS “Big Data”

The massive high dimensional RS data make the data loading,
memory residing as well as the data transmission among pro-
cessing nodes during processing rather complicated and ineffi-
cient. Firstly, the enormous amount of RS data has far beyond the
limited memory capacity of a single computer. The RS datasets
generally consist of multi-dimensional images and complex struc-
tured metadata. It is rather complicated to offer a proper and
large data structure for loading and residing these massive RS data
into local memory. The other problems are that the communica-
tion of the RS data blocks are common during the parallel im-
plementing of various RS applications. Due to the limitation of
the network bandwidth, the communication of RS data would be
time-consuming especially when the volume of communication
is extremely large. However, the communication of complex RS
data structure across processing nodes are not well supported by
the current MPI implementations. As a result, repeated calling of
low-level MPI send/receive communication APIs is required at the
penalty of significant performance decline.

3.4. Scheduling of large number of data-dependent tasks

For many large RS applications, like large-scale RS data mo-
saicking [10] and hydrological modeling of large watershed [31]
could be described as a large collection of data dependent small
tasks (Fig. 6). The processing of these applications become ex-
tremely difficult because of the dependency among a large collec-
tion of tasks which give rise to ordering constraint. The succeeding
tasks have to wait for the output data of preceding task to be avail-
able. The optimized scheduling of these bunch of tasks is critical to
achieve higher performance. Therefore the problems lie in decou-
pling the dependence relationships among tasks so as to achieve a
minimal execution length.
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Fig. 5. The data access patterns of RS applications.

3.5. Efficient and productive parallel programming

The state-of-the-art cluster systems are featured with a multi-
level hierarchical organization and increasing scale. Efficient and
productive programming of these systems will be a challenge, es-
pecially in the context of data-intensive RS applications.

Recently, several low-level parallel paradigms are extensively
employed for remote sensing image processing in those multi-
level hierarchical clusters. OpenMP [32] paradigm is designed for
shared-memory and could also be extended to the distributed
shared memory clusters. MPI [33] is a message passing interface
adopted for exploiting parallelism both within and across comput-
ing nodes. With MPI, programmers have to explicitly control the
synchronization and communication among a set of processes us-
ing message-passing semantics, which is quite complicated. Typ-
ically, hybrid paradigms like MPI+OpenMP [34] is employed for

exploiting multilevel of parallelism. Wherein, MPI is for message
passing across nodes, while OpenMP is in charge of the paral-
lelization inside a single node. In addition, the latest Partitioned
Global Address Space (PGAS) [35] programming models could of-
fer a global but partitioned memory address space across nodes,
examples are Unified Parallel C (UPC) [36], Co-array Fortran [37],
Chapel [38], X10 [39], and Global Arrays [40]. The novelty of PGAS
is that the portions of the shared memory may have affinity to a
local process or thread for locality of reference. Thereby, PGAS ap-
proaches attempt to incorporate the shared memory-programing
model with the distributed-memory systems.

However, the knowledge of the detailed hierarchical architec-
ture of parallel system turns is prominent to the efficient program-
ming for the multi-level hierarchy. Generally, the non-experts have
to handle both the message passing model for inter-nodes and the
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shared memory model for intra-node communication. Therefore,
these low-level programming paradigms that closely related to the
parallel system architecture are bound to rather difficult and triv-
ial. Moreover, in the RS data processing specific point of view, there
are different degree of dependencies between the computation and
associated RS data. While, these data dependences that vary with
different algorithms would probably lead to different data paral-
lelism scheme, data computation modes, data/task partition strate-
gies. With no doubt these would make the parallel programming
of RS algorithms much more difficult. Thereafter, a simple but ef-
ficient parallel programming for RS applications with less concern
of architecture related implementing details is urgently desired.

4. State-of-the-art works of processing RS Big Data

The growing amount of RS datasets is outstripping the current
capacity of exploring and interpreting them [12]. The processing
of RS “Big Data” has poses both challenges and opportunities
for several aspects of the state-of-the-art parallel systems,
including system architecture, parallel file system and parallel
I/O, programming models, data managing on multilevel memory
hierarchy and task scheduling.

4.1. System architectures for data-intensive RS applications: clusters,
and clouds

The emergence of RS “Big Data” is revolutionizing the tech-
niques for analyzing and discovering the valuable information
from it. From a system point of view, the rapid processing of RS
big data with increasing volumes and complexity is greatly chal-
lenging the existing systems. Novel advances in system architec-
ture are imperatively needed, especially the inherent scalability of
the underlying hardware and software architecture. To be specific,
these data-intensive systems could be scaled in a linear manner so
as to accommodate processing of RS data at almost any volume.
Possibly, for meeting the near real-time processing requirement of
some RS applications, an easy configuration of adding extra com-
puting resources is also demanded. For performance efficiency, it is
critical for data-intensive platforms to abide by the Move the code
to the data principle [41] so as to minimize data movements. Thus,

a storage hierarchy of system optimized for data-intensive com-
puting would probably reside data locally to reduce network and
system overhead introduced by data transferring. Currently, sev-
eral available high performance platforms are employed to make
sense of these RS Big Data. The most dominant choices of platforms
concentrate on, namely, Cluster-Based HPC systems or supercom-
puters as well as the Cloud platforms.

4.1.1. Cluster-based HPC systems

The cluster platform [9] normally performs a large computa-
tional problem by the collaborative work of multiple computers
while offering a single-system image. At the present, the cluster
platforms are the mainstream architecture for high performance
computing. NASA gives the first shot of building a NEX system for
global RS data processing on a Beowulf cluster with 16 comput-
ers [42]. InforTerra also adopts the cluster platform for the massive
imaging auto-processing system “Pixel Factory” [43]. The Head-
wave company of American also takes advantage of the cluster
systems for extensive analysis and interpretation of pre-stack
seismic data. Google [44] has build a large cluster system con-
sisting of nearly 1500 ordinary personal computers. This system
could offer high-level of data capacity, throughput, and availabil-
ity by virtue of the software fault tolerance, data backup and op-
timized system management. However, despite of the abundant
computational capacities, to process RS Big Data on these existing
cluster-based HPC system still remains quite challenging. The main
reason for that is the current cluster systems are compute-
intensive oriented. The system architecture and tools are not op-
timized for the data-intensive applications where data availability
is the main concern.

The petascale supercomputers have become the mainstream
platforms for large scale scientific computing. These supercom-
puting system are evolving towards hybrid or even accelerator-
based architectures with millions of cores [45]. “Tianhe-2" [46,47]
equipped with 2,736,000 Intel Xeon Phi has topped the TOP500
list of world’s fastest supercomputers in 2014 at a speed of 33.86
petaflops. Tianhe-1A [48] with hybrid multicore CPU and GPU has
ranked the top of the TOP500 at a peak of 2.507 petaflops. Other ex-
amples are CPU/GPU system “TITAN” built by Cray at Oak Ridge Na-
tional Laboratory perform over 10 petaflops [49], the BlueGene/Q
supercomputer “Sequoia” [50] with a LINPACK performance of
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16.32 petaflops, and the “K computer” [51] of Japan with 10.51
petaflops. Moreover, All of these supercomputers are equipped
with high performance Infiniband computing network with high
bandwidth.

In spite of the tremendous computation capacity and outstand-
ing scalability, the cluster systems or petascale supercomputers are
not good at loading, transferring and processing extremely large
volume of data. The main reason account for that is the data lo-
cality optimization of the data storage architecture is not under
consideration in supercomputers where computation is the main
concern. Actually, we are currently witnessing a transition to sys-
tems that are arranged in multiple hierarchical levels. These sys-
tems are trend to have a higher dimensional connection topology,
and multilevel storage architecture as well. For example, the Blue-
Gene/Q system is composed of several islands where non-blocking
communication is only available within an island. The Gordon sys-
tem [52] is designed for the data-centric applications. It has a
five-level memory hierarchy (excluding caches) with a node-local
shared memory, a virtual shared memory within a super node,
a distributed memory, the flash memory (SSDs) and disk arrays.
Wherein, with multi-level structured storage, the requested data
would be much more possibly reside in local memory, local flash
or even local disks. However, for performance efficiency it is crit-
ically important to take data locality into account [53]. Program-
ming for these multiple levels of locality and routes for a certain
dimensionality is anything but easy.

4.1.2. Cloud platforms

Cloud computing [54] has been one of the most robust Big Data
techniques. By virtue of virtualization technologies, the supercom-
puting are made more accessible and affordable. The computing in-
frastructures are virtualized like true physical computer but with
the flexible processors, memory and even disk size. The cloud com-
puting not only delivers application and software as service (Saas),
but also extend to the infrastructure and platform as service. For
example, Amazon EC2 provides infrastructure as a service (laas),
Google AppEngine and Microsoft Azure offer platform as a service
(Paas). Following this way, the cloud computing has led to the pay-
as-you-go computing and give the illusion of infinite resources. An-
other bonus of Cloud is the Cloud storage which provides a tool for
storing Big Data with good scalability.

Hadoop and ecological environment [55] has become one of
the most successful infrastructure for Cloud and also for Big
Data computing. By open source implementation of Map/Reduce
framework [56], Hadoop enable distributed, data-intensive and
parallel applications. Inside the Hadoop ecology, the distributed
File System (HDFS) is a large distributed file system with strategic
layouts and data replication for fault tolerance and better accessing
performance. Recently, Yahoo has deployed its search engine on
the Hadoop cluster, Facebook and eBay also develop its large
applications at a scale of exabyte with Hadoop. In addition, the
Hadoop-GIS [57] system for large-scale spatial data processing,
search and accessing is also build upon the Hadoop system.

4.2. Parallel file systems and database

Scaling from terabytes to petabytes or even exabytes, Big
Data has posed unprecedented challenges for the efficient data
storing and accessing. The storages for Big Data should provide
not only huge storage capacity but also high I/O throughput and
outstanding scalability as well. However, the performance gap
between I/0 and computing is gradually widening by further
growth of computing capability, especially in cluster scenario with
thousands of cores. In this case, the data processing has to wait
a plenty of CPU cycles for data accessing [58]. In particular, in
the scenario of massive RS data processing, the intensive irregular

I/O patterns performed by RS data accessing are leading to even
worse 1/0 situations and wider I/O gap. Obviously, the fast and
easy access of the Big Data also means fully or partially break
the restraint: CPU-heavy but I/O-poor. Currently, the existing
mainstream techniques for Big Data storing and managing would
include parallel file systems and NoSQL Databases.

4.2.1. Parallel file systems (PFSs) for big data storage

The traditional I/O systems may no longer be the wise choice to
meet the intensive high performance I/O requirements in the mod-
ern large-scale cluster systems or even supercomputers. While,
parallel file systems with scalable parallel I/O are widely employed
in HPC systems where I/O emerges as the main bottleneck [29] es-
pecially when the amount of data is extremely large. Through data
stripping, the extremely large amount of data are typically striped
and distributed across hundreds of /O devices (disks) or storage
nodes blockwise. Taking advantage of this, parallel file systems are
capable of storing and managing massive data (“big data”) at a stor-
age capacity of over petabytes. Meanwhile, the data-intensive ap-
plications like large-scale RS applications could access requested
data from different physical storages or disks simultaneously. Fol-
lowing this way, the concurrent I/O through different data access
connections would give rise to an extremely high bandwidth of ag-
gregated /0. The PFS approach is widely regarded as one of the
good options for “Big Data” storing.

Recently, great efforts have been towards parallel file systems,
such as OrangeFS [59], PVFS [29], Lustre [60], PanFS [61] and
GPFS [62]. Lustre, the most widespread object-oriented parallel
file system that adopted in the world’s TOP 500 supercomput-
ers. It offers huge data storage capacity up to petabytes, and a
relatively high aggregated I/O bandwidth of hundreds of giga-
bytes per second. Benefiting from its outstanding scalability, Lus-
tre could be easily scaled from hundreds to tens of thousands
of computing nodes, which perform large amount of I/O connec-
tions and accessing concurrently. OrangeFS the advancing branch
of PVFS [29] is an open source parallel file system for scientific
computing. It provides non-contiguous I/O, distributed metadata
management as well as configurable physical data layout. With
the distributed metadata management, the metadata is separated
from the actual data and spread across storage severs to elimi-
nate the metadata-accessing bottleneck. In addition, OrangeFS also
provides non-contiguous I/O patterns and the ability to integrate
some application-specific data layout schemes. Taking advantages
of these features, OrangeFS could easily obtain high throughput 1/0.
HDFS [63] is the primary distributed storage system for Hadoop
with excellent portability and fault-tolerance. Facebook and Yahoo
have already adopted it for storing and managing big Internet data.
In those aforementioned PFSs, a great number of storage devices
attached to computing nodes are virtually converged as a single
big data image. Eventually, an extremely large storage capacity and
also a high degree of I/O parallelism could be achieved.

However, only one tenth of the peak I/O performance of PFSs
could be actually achieved by most of the scientific applications
which perform small non-contiguous 1/0 [29,27]. The mismatch
between the physical data layout over storages and the expected
I/O characteristics or patterns of applications [30] would probably
be the reason. Scientific computing like RS data processing often
requires many non-contiguous accessing of small data fragments.
Most of these non-contiguous or even irregular I/O patterns
vary across applications in both the size and frequency of data
requests. So, it is of significant importance for file systems to
understand the I/O characterization of applications. Unfortunately,
the applications and PFSs are traditionally designed separately in
the consideration of better transparency. The thing is that PFSs
typically adopt a simple data striping method with a fixed striping
size, but almost know nothing about the I/O characterization of



applications. Lacking information of each other would probably
lead to the mismatch between data access patterns from client side
and the physical data layouts inside PFSs. This mismatch would
inevitably introduce workload imbalance among I/O servers and
eventually negative effect of the overall I/O performance [64].

The physical data layout policies of PFSs are critical to the
data locality and workload balance among I/O servers. PFSs like
OrangeFS are trends to provide extra data striping or data layout
options for some specific I/O workload. Even though, these fixed
data layouts using simple and fixed data striping parameters may
benefit some applications with a few specific I/O patterns, but
may not be the cases for others [64]. Thereby, it is anything
but easy to find a data layout optimized for all data-intensive
scientific applications, especially for those with irregular or even
variable I/O patterns. Accordingly, it is critically important for PFSs
designers to understand the I/O characterization of large scientific
computing. Some efforts are laid towards data layout optimization
in current PFSs. Data replication [65] technique could reorganize
the data layout through creating data replicas across I/O server for
better locality but at the penalty of storage capacity. Song [64] put
forward a segment-level adaptive data layout scheme for variable
I/O pattern. Different stripe sizes are adopted for different data
segments. Apart from the above works, Wang and Ma [26] have
proposed a specific parallel file system with application-aware
data layout for managing RS Big Data. These methods could offer
the physical data layout exactly needed by RS applications for
better locality and an overall I/O performance optimization.

4.2.2. NoSQL database for big data

NoSQL (Not Only SQL) [66] is the most popular but novel
database designed for distributed managing of big unstructured or
non-relational data. It is an inheritance but also development of
the traditional database, since it breaks the rigidity of relational
data model without avoiding SQL. The specific approaches that
employed include the key-value storage for better scalability and
schema-free for greater flexibility. Hbase [67] one of the most
popular NoSQL databases, SQLstream a Big Data analyzing tool
still adopts SQL for a more reliable and simple query. The other
well known NoSQL databases are Apache Cassandra [68], Google
BigTable [69], SimpleDB [70] and etc.

Essentially, it is a distributed database technique. Benefiting
of the distributed data storing and managing architecture, NoSQL
database could offer larger storage capacity, higher concurrency as
well as better scalability and availability. There are two types of
distributed architectures: Master-Slave [69] and P2P [68]. Within
Master-Slave architecture, master node in charges of the whole
distributed system and monitors the health of the distributed slave
database nodes. While, the slave nodes are data storage nodes
that hold a local data indexing table. These nodes are responsible
for handling local data requests within the data storage region
assigned by master node. This kind of architecture has simple
designing but may give rise to single point of failure of master node.
The typical examples are BigTable and Hbase. For P2P structured
databases, there are no master nodes. The distributed storage
nodes are logically organized in a ring structure by virtue of
distributed hashing algorithm. Each of the distributed nodes is
self-managing storage node. Comparatively, the P2P structure has
much better scalability and self-coordination. Actually, Cassandra
and Dynamo [71] are typical P2P structured databases.

In NoSQL databases, huge amount of data are organized with
a simple key-value data model for simpler data operations and
better concurrency of data accessing. With key-value model, the
key based hashing mechanism is employed for data mapping and
locating so as to conduct fast retrieval from tremendous data. In
addition, some of these data are also organized as column families
within key-column model (examples: Hbase and Cassandra),
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where data column is the basic data storage unit. Simply, it would
adopt a multi-dimensional mapping method to locate physical
data. Most of these data indexing approaches are used for local
data mapping inside a data node. While, the global indexing is
typically adopting hashing method to directly locate the exact node
that data hosted. Following this way, NoSQL databases could be
able to provide data retrieval and accessing with extremely high
concurrency and parallelism.

Currently, this new NoSQL paradigm is also applied in remote
sensing domain for the managing of unstructured massive RS
image data as well as GIS (Geographical Information System)
vector data. Generally, NoSQL databases like HBase are employed
for the constructing and storing of distributed R tree or B* tree
structured time-space indexing of these tremendous RS data,
while the PFSs like HDFS are adopted for the actual physical
data file storing. Following this approach, efficient data retrieval
together with high throughput RS data accessing could be offered.
Zhifeng [72] employs HBase to build database for distributed
remote sensing image data.

4.3. Parallel I/O optimizations

A fair number of parallel I/O libraries and optimization
approaches have been exploited for supporting non-contiguous
I[/0. ROMIO [73] a famous and efficient implementation of MPI-
I0 [74] interface has add some optimizing strategy for non-
contiguous data accesses. Two-phase I/O [75] introduces an extra
exchanging phase for Gather-Scatter communication. The non-
contiguous I/0 requests could be rearranged into a contiguous one
for exploring better data locality but also brings in extra network
communication. Data sieving [76] normally loads a large chunk
of data and sieves out non-requested ones in one single I/O. This
approach could apparently reduce I/O calls but at the penalty of
reading extra data. In particular, the collective 1/O [77] merges
small non-contiguous requests into a large contiguous one by
combining the data sieving with two-phase I/O. This approach
could greatly reduce the I/O requests while achieving a better
ratio of actual data accessing. These approaches are also employed
in the RS applications to reduce /O operations for improved I/O
performance, especially for the irregular RS data accessing.

Apart from above approaches, ADIOS [78] depicted in Fig. 7 is
essentially a componentization of different I/O transport methods,
which is scalable and portable. By virtue of high-level I/O inter-
faces, ADIOS allows application scientists to choose the I/O meth-
ods fit the parallel infrastructures most with little modification and
concerning for details of system I/O. The most attractive feature
of ADIOS is data staging. The runtime of ADIOS could derive stag-
ing nodes and I/O nodes respectively dedicated to asynchronous
memory-to-memory transferring between two applications and
data I/O. Therefore, ADIOS would possibly benefit the multi-stage
RS workflows where exist frequent data transferring among stages.

4.4. Programming models

Efficient and productive programming on large scale dis-
tributed systems with multilevel hierarchy will be extremely chal-
lenging, especially in the context of data-intensive applications
just like RS data processing. The main reason is that the pro-
gramming modes widely adopted in conventional cluster-based
distributed platforms or supercomputers are typically machine
dependent. With these low-level programming models, program-
mers have to manually control the machine related implementing
details, include task partition, processing and node communica-
tions. Therefore, the data-intensive platforms require a machine
independent programming model. With this approach, the appli-
cations are expressed in high-level of semantics. The runtime is
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Fig. 7. The ADIOS adaptable parallel I/O system.

also demanded for transparent controls of load balancing, com-
munications and data movements in large cluster system. There-
fore, a programming model of high-level abstraction is urgently
demanded for automatically taking care of the machine related
parallel implementing details. The effective programming require-
ment in data-intensive systems is programmer could easily pro-
gram a data-intensive application with no experience in parallel
programming. There are three categories of programming mod-
els, including low-level programming models, skeletal parallel pro-
gramming as well as generic parallel programming.

4.4.1. Low-level programming models

A number of low-level programming paradigms are devel-
oped for this hierarchical architecture. The OpenMP [79] model is
used for parallelization of shared-memory and distributed shared-
memory clusters. The Message Passing model (MPI)! is employed
within and across the nodes of clusters. The hybrid program-
ming paradigm MPI+OpenMP [80] exploits multiple levels of par-
allelism: the OpenMP model is used for parallelization inside
the node and MPI is for message passing among nodes. The ad-
vantage of these programming models is that a relatively high
parallelism and overall performance could be achieved through
careful specific designing. Nevertheless, these low-level program-
ming are machine dependent, manual control of computing and
communication details as well as the significant tuning are re-
quired. Accordingly, to develop parallel programs for hierarchi-
cal cluster architectures with low-level programming models and
APIs, for example MPI and OpenMP, are still difficult and error-
prone.

4.4.2. Skeletal parallel programming

The skeletal parallel programming with higher-level patterns
is adopted by researchers to simplify parallel programming.
The parallel implementing details are already abstracted in the
skeleton and would be automatically executed across hundreds

1 MpL-3: A Message-Passing Interface Standard Version 3.0, http://www.mpi-
forum.org, November 12, 2010.

to thousands of machines on large distributed systems. The
eSkel library provides parallel skeletons for C language. It can
generate efficient parallel programs but leave users to handle
low-level API with many MPI-specific implementation details.
Muesli [81] offers polymorphic C++ skeletons with high level
of abstraction and simple APIs. The programs can be produced
by construction of abstract skeleton classes and deal with data
transmission via a distributed container. However, it suffers a
large overhead paid for runtime polymorphic virtual function
calls. Google’s MapReduce model, which supports Map and Reduce
operations for distributed data processing in a cluster, is a simple
yet successful example of parallel skeletons. The programs could be
automatically implemented across thousands of nodes in parallel
while taking charge of the data partition, communications among
nodes and other execution details. Following this way, the no-
experts programmers of parallel computing could easily program
efficient codes for large distributed platforms.

4.4.3. Generic parallel programming

The generic programming approach uses templates to program
generically. This concept has been exploited efficiently in the
Standard Template Library (STL) [82], which has been extensively
applied due to its convenient generic features and efficient
implementations. Furthermore, the polymorphism is resolved at
compile time because of its usual type genericity. The QUAFF [83]
skeleton-based library offers generic algorithms. It relies on C++
templates to resolve polymorphism by means of type definitions
processed at the compile time. It reduces the runtime overhead of
polymorphism to the strict minimum while keeping a high-level of
expressivity and readability.

Low-level parallel programming models like MPI, OpenMP and
MPI+OpenMP are extensively employed for remote sensing im-
age processing. The aforementioned projects provide high-level
pattern for parallel programming. However, these implementa-
tions did not develop their research for the massive remote sens-
ing datasets with multi-band image data and complex structured
metadata. Moreover, they did not handle the different depen-
dences between computation and data of RS algorithms. In this
situation, it remains a big challenge to program effective massive
remote sensing data processing algorithms productively.
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4.5. Data management across multilevel memory hierarchy

For performance efficiency, it is imperative to take data locality
into account, especially in data-intensive scenario of processing
RS Big Data. However, the state-of-the-art parallel systems are
arranged in multiple hierarchical levels, higher dimensional
network topology, and a multilevel storage (memory hierarchy).
The loading, managing of these Big Data on the multilevel memory
hierarchy in multiple hierarchical parallel systems turn out to
be rather challenging. Since the exploring of multiple levels of
locality is anything but easy. On one hand, some skeletal parallel
programming libraries offer distributed data structure for data
managing on distributed memories. Wherein, SkeTo [84] and
Muesli [81] provide multiple distributed data types like btree, array
and list on top of MPI with both local and global view. On the other
side, many latest programming models are capable of offering
global data managing on multilevel distributed memories, like
PGAS [35],UPC[85] and Chapel [86]. These PGAS-based approaches
provide global memory view and explicit locality control. But there
is no straightforward way to control multilevel data placement
for exploring multilevel locality. In addition, the current DASH
project? is developing the C++ template library named Hierarchical
Arrays (HA) (Fig. 8) for distributed data structures with support for
hierarchical locality for HPC and data-driven science. HA focuses
on the data structures and their layout as well the efficient
access and processing by optimized algorithms. In HA it will be
possible to exploit multilevel locality by extending the iterator
concept with iterators for multiple hierarchical levels. It is also
important to note that HA is not intended to replace established
programming mechanisms, such as MPI but rather to extend them
with functionality for simplified handling large amounts of data
(both regular as well as irregularly structured).

4.6. Task scheduling

Some RS applications could be modeled as parallel tasks. Data
dependencies exist among tasks. List scheduling heuristic is the
most frequently used scheduling algorithm of the research on
traditional parallel task scheduling. List scheduling [87-89] is a
class of scheduling heuristics in which tasks are assigned priorities
and placed in a list ordered in decreasing magnitude of priority.
Different task scheduling heuristics are proposed, e.g., DLS [87],
ISH [90], DSH [89]. Conventional list scheduling heuristics do
not consider resource reservation problems. The other choices of
scheduling solutions with trade-offs between time complexity and
quality, including clustering scheduling and the task-duplication
based scheduling. The clustering scheduling approaches including
EZ [91] and DCP [92] aim at reducing communication times and
take advantages of more processor by merging cluster of task
nodes.

2 DASH project: under DFG programme “Software for Exascale Computing—
SPPEXA”, http://www.dash-project.org.
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The scheduler is responsible for mapping task to concrete
processors, job execution and monitoring. Swift [93] integrates
Karajan [93] to provide concise specification and scheduling for
task graph, also incorporates Falkon [94] a lightweight execution
framework for efficient dispatch of large numbers of tasks in Grids.
DAGMan [95] offers workflow engine to schedule Condor jobs
expressed as DAGs in distributed environment. In fact it is too
closely tied to the Condor system and lacks generic programming
APIs for easy use. Google's Pregel [96] a distributed computing
framework with super steps and message passing is suitable for
large-scale graph processing.

5. Conclusion

With the advent of high resolution earth observation era give
birth to the explosive growth of remote sensing (RS) data. The
proliferation of data also gives rise to the increasing complexity of
RS data, like the diversity and higher dimensionality characteristic
of the data. RS data are regarded as RS “Big Data”. The large-scale
environmental monitoring and researches are exploiting regional
to global covered multi-temporal and multi-sensor RS data for
processing. Large remote sensing applications overwhelmed with
massive remote sensing data are regarded as typical data-intensive
issues. In spite of the enormous computational power, the cluster-
based HPC systems still remain considerably challenging with RS
“Big Data” issues. These issues including the difficulties in storing
massive complex RS data, intensive irregular data access patterns,
managing RS “Big Data” on multilevel memory hierarchy, optimal
scheduling of large amount of dependent tasks as well as the
efficient programming of RS applications.

There is no doubt that the existing techniques and systems are
so limited to solve the real RS Big Data problems completely. Fortu-
nately, we are witnessing the coming technological leapfrogging.
As we have discussed above, we do have drawn great effort for
optimizing or even revolutionizing the existing technique, tools
or system. These works include: (1) Some supercomputers and
Cloud computing platforms optimized for data-intensive loads;
(2) Parallel file systems and databases take the data availability and
locality as the main concern; (3) The data managing tools for mem-
ory data placement controlling for multilevel data locality; (4) Task
scheduling focusing on large amount of dependent tasks and con-
sidering data availability.

Opportunities are always followed by challenges. In the
prospect of the further requirements in the near future, the de-
mand for real-time processing, on-demand processing as well as
the in-transit processing of standard RS data products also poses
great opportunities.
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